首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vitamin K-dependent protein S and the product of growth-arrest-specific gene 6 (Gas6) both possess the ability to phosphorylate members of the Axl/Sky subfamily of receptor tyrosine kinases. However, Gas6 appears to be the bona fide ligand for these receptors in man, as human protein S has been demonstrated to activate murine Sky but not the human orthologue. In contrast, bovine protein S is able to stimulate human Sky despite its high degree of sequence identity with human protein S. The domain organisations of protein S and Gas6 are virtually identical and the C-terminal SHBG-like region, containing two globular (G) domains, has been shown to play a crucial role in the receptor stimulation. In order to further localise the area responsible for the interaction, a number of protein chimeras were used to stimulate human Sky. Each chimera had one part of the human protein S SHBG-like region replaced by the corresponding part of bovine protein S or human Gas6. We found that human protein S may indeed activate human Sky but only above physiological plasma concentrations. The human-bovine protein S chimeras provided new information implying that the first G domain contains critical residues for the interaction with the Sky receptor. Moreover, these residues do not seem to be clustered but rather to be distributed at various positions in the first G domain.  相似文献   

2.
Protein S is an anticoagulant protein containing a Gla (enclosing gamma-carboxyglutamic acids) module, a TSR (thrombin sensitive region) module, four EGF (epidermal growth factor)-like modules, and a SHBG (sex hormone binding globulin)-like region. Protein S is a cofactor to activated protein C (APC) in the degradation of coagulation factors Va and VIIIa but also has APC-independent activities. The function of the fourth EGF module (EGF4) in protein S has so far not been clear. We have now investigated this module through studies of recombinant wild-type protein S and a naturally occurring mutant (Asn217Ser). The mutant has essentially normal APC anticoagulant activity and a previously reported secretion defect. In the wild-type protein, Asn217 is normally beta-hydroxylated. The binding of calcium to wild-type protein S is characterized by four high-affinity binding sites with K(D) values ranging from 10(-)(7) to 10(-)(9) M. Three of these binding sites are located in EGF modules. Using surface plasmon resonance, competition with a calcium chelator, and antibody-based methods, we found that one high-affinity binding site for calcium was lost in protein S Asn217Ser but that the mutation also affected the calcium-dependent conformation of EGF1. We conclude that binding of calcium to EGF4 of protein S, involving Asn217, is important for the maintenance of the structure of protein S. Also, the abolition of binding of calcium to EGF4, related to Asn217, impairs both the structure and function of EGF1.  相似文献   

3.
Human C4b-binding protein (C4BP) is a regulator of the complement system and plays an important role in the regulation of the anticoagulant protein C pathway. C4BP can bind anticoagulant protein S, resulting in a decreased cofactor function of protein S for activated protein C. C4BP is a multimeric protein containing several identical alpha-chains and a single beta-chain (C4BPbeta), each chain being composed of short consensus repeats (SCRs). Previous studies have localized the protein S binding site to the NH2-terminal SCR (SCR-1) of C4BPbeta. To further localize the protein S binding site, we constructed chimeras containing C4BPbeta SCR-1, SCR-2, SCR-3, SCR-1+2, SCR-1+3, and SCR-2+3 fused to tissue-type plasminogen activator. Binding assays of protein S with these chimeras indicated that SCR-2 contributes to the interaction of protein S with SCR-1, since the affinity of protein S for SCR-1+2 was up to 5-fold higher compared with SCR-1 and SCR-1+3. Using an assay that measures protein S cofactor activity, we showed that cofactor activity was decreased due to binding to constructs that contain SCR-1. SCR-1+2 inhibited more potently than SCR-1 and SCR-1+3. SCR-3 had no additional effect on SCR-1, and therefore the effect of SCR-2 was specific. In conclusion, beta-chain SCR-2 contributes to the interaction of C4BP with protein S.  相似文献   

4.
Protein S (PS) is a vitamin K-dependent glycoprotein that consists of several modules including a C-terminal sex hormone-binding globulin (SHBG)-like domain that has been subdivided into two laminin LG-type domains. The SHBG-like region of PS is known to bind to a complement regulator molecule, C4b-binding protein (C4BP), coagulation factor Va (FVa) and receptor tyrosine kinases. Inherited PS deficiency has been associated with thromboembolic disease. Yet, study of the mechanisms by which the SHBG-like region of PS serves its essential functions has so far been hampered because of the lack of structural information. Recently, the three-dimensional (3D) structure of LG domains from plasma SHBG, laminin and neurexin have been reported and were found related to the pentraxin family. We used these X-ray structures to build homology models of the SHBG-like region of human PS. We then analyzed previously reported experimental/clinical data in the light of the predicted structures. A potential calcium-binding site is found in the first LG domain of PS and D292 could play a role in this process. This region is close to the interface between the two LG domains and is also surrounded by segments that have been suggested by synthetic peptide studies to be important for C4BP or FVa binding. The 39 point mutations linked to PS deficiencies or reported as neutral variants were rationalized in the 3D structure. Proteins 2001;43:203-216.  相似文献   

5.
The fusion (F) proteins of Newcastle disease virus (NDV) and Nipah virus (NiV) are both triggered by binding to receptors, mediated in both viruses by a second protein, the attachment protein. However, the hemagglutinin-neuraminidase (HN) attachment protein of NDV recognizes sialic acid receptors, whereas the NiV G attachment protein recognizes ephrinB2/B3 as receptors. Chimeric proteins composed of domains from the two attachment proteins have been evaluated for fusion-promoting activity with each F protein. Chimeras having NiV G-derived globular domains and NDV HN-derived stalks, transmembranes, and cytoplasmic tails are efficiently expressed, bind ephrinB2, and trigger NDV F to promote fusion in Vero cells. Thus, the NDV F protein can be triggered by binding to the NiV receptor, indicating that an aspect of the triggering cascade induced by the binding of HN to sialic acid is conserved in the binding of NiV G to ephrinB2. However, the fusion cascade for triggering NiV F by the G protein and that of triggering NDV F by the chimeras can be distinguished by differential exposure of a receptor-induced conformational epitope. The enhanced exposure of this epitope marks the triggering of NiV F by NiV G but not the triggering of NDV F by the chimeras. Thus, the triggering cascade for NiV G-F fusion may be more complex than that of NDV HN and F. This is consistent with the finding that reciprocal chimeras having NDV HN-derived heads and NiV G-derived stalks, transmembranes, and tails do not trigger either F protein for fusion, despite efficient cell surface expression and receptor binding.  相似文献   

6.
Protein S (PS) possesses a sex-hormone-binding globulin (SHBG)-like domain in place of the serine-protease domain found in other vitamin K-dependent plasma proteins. This SHBG-like domain is able to bind a complement fraction, C4b-binding protein (C4b-BP). To establish whether the PS SHBG-like domain can fold normally in the absence of other domains, and to obtain information on the specific functions of this region, we expressed the PS SHBG-like domain alone or together with its adjacent domain EGF4. The folding of the two recombinant modules was studied by analyzing their binding to C4b-BP. The apparent dissociation constants of this interaction indicated that both recombinant modules adopted the conformation of native PS, indicating that the PS SHBG-like region is an independent folding unit. We also obtained the first direct evidence that the SHBG-like domain alone is sufficient to support the interaction with C4b-BP. In addition, both recombinant modules were able to bind Ca2+ directly, as shown by the migration shift in agarose gel electrophoresis in the presence of Ca2+, together with the results of equilibrium dialysis and the functional effect of Ca2+ on the C4b-BP/PS interaction, confirming the presence of one Ca2+ binding site within the SHBG-like domain. Neither recombinant module exhibited activated protein C (aPC) cofactor activity in a clotting assay, suggesting that the PS SHBG-like region must be part of the intact molecule for it to contribute to aPC cofactor activity, possibly by constraining the different domains in a conformation that permits optimal interaction with aPC.  相似文献   

7.
B Dahlb?ck  T Wiedmer  P J Sims 《Biochemistry》1992,31(51):12769-12777
Vitamin K-dependent protein S is an anticoagulant plasma protein serving as cofactor to activated protein C in degradation of coagulation factors Va and VIIIa on membrane surfaces. In addition, it forms a noncovalent complex with complement regulatory protein C4b-binding protein (C4BP), a reaction which inhibits its anticoagulant function. Both forms of protein S have affinity for negatively charged phospholipids, and the purpose of the present study was to elucidate whether they bind to the surface of activated platelets or to platelet-derived microparticles. Binding of protein S to human platelets stimulated with various agonists was examined with FITC-labeled monoclonal antibodies and fluorescence-gated flow cytometry. Protein S was found to bind to membrane microparticles which formed during platelet activation but not to the remnant activated platelets. Binding to microparticles was saturable and maximum binding was seen at approximately 0.4 microM protein S. It was calcium-dependent and reversed after the addition of EDTA. Inhibition experiments with monoclonal antibodies suggested the gamma-carboxyglutamic acid containing module of protein S to be involved in the binding reaction. An intact thrombin-sensitive region of protein S was not required for binding. The protein S-C4BP complex did not bind to microparticles or activated platelets even though it bound to negatively charged phospholipid vesicles. Intact protein S supported binding of both protein C and activated protein C to microparticles. Protein S-dependent binding of protein C/activated protein C was blocked by those monoclonal antibodies against protein S that inhibited its cofactor function. In conclusion, we have found that free protein S binds to platelet-derived microparticles and stimulates binding of protein C/activated protein C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The homologous proteins Gas6 and protein S (ProS1) are both natural ligands for the TAM (Tyro3, Axl, MerTK) receptor tyrosine kinases. ProS1 selectively activates Tyro3; however, the precise molecular interface of the ProS1-Tyro3 contact has not been characterised. We used a set of chimeric proteins in which each of the C-terminal laminin G-like (LG) domains of ProS1 were swapped with those of Gas6, as well as a set of ProS1 mutants with novel added glycosylations within LG1. Alongside wildtype ProS1, only the chimera containing ProS1 LG1 domain stimulated Tyro3 and Erk phosphorylation in human cancer cells, as determined by Western blot. In contrast, Gas6 and chimeras containing minimally the Gas6 LG1 domain stimulated Axl and Akt phosphorylation. We performed in silico homology modelling and molecular docking analysis to construct and evaluate structural models of both ProS1-Tyro3 and Gas6-Axl ligand-receptor interactions. These analyses revealed a contact between the ProS1 LG1 domain and the first immunoglobulin domain of Tyro3, which was similar to the Gas6-Axl interaction, and involved long-range electrostatic interactions that were further stabilised by hydrophobic and polar contacts. The mutant ProS1 proteins, which had added glycosylations within LG1 but which were all outside of the modelled contact region, all activated Tyro3 in cells with no hindrance. In conclusion, we show that the LG1 domain of ProS1 is necessary for activation of the Tyro3 receptor, involving protein-protein interaction interfaces that are homologous to those of the Gas6-Axl interaction.  相似文献   

9.
Ho DK  Tissari J  Järvinen HM  Blom AM  Meri S  Jarva H 《PloS one》2011,6(11):e27546
Resistance to complement mediated killing, or serum resistance, is a common trait of pathogenic bacteria. Rck is a 17 kDa outer membrane protein encoded on the virulence plasmid of Salmonella enterica serovars Typhimurium and Enteritidis. When expressed in either E. coli or S. enterica Typhimurium, Rck confers LPS-independent serum resistance as well as the ability to bind to and invade mammalian cells. Having recently shown that Rck binds the inhibitor of the alternative pathway of complement, factor H (fH), we hypothesized that Rck can also bind the inhibitor of the classical and lectin pathways, C4b-binding protein (C4BP). Using flow cytometry and direct binding assays, we demonstrate that E. coli expressing Rck binds C4BP from heat-inactivated serum and by using the purified protein. No binding was detected in the absence of Rck expression. C4BP bound to Rck is functional, as we observed factor I-mediated cleavage of C4b in cofactor assays. In competition assays, binding of radiolabeled C4BP to Rck was reduced by increasing concentrations of unlabeled protein. No effect was observed by increasing heparin or salt concentrations, suggesting mainly non-ionic interactions. Reduced binding of C4BP mutants lacking complement control protein domains (CCPs) 7 or 8 was observed compared to wt C4BP, suggesting that these CCPs are involved in Rck binding. While these findings are restricted to Rck expression in E. coli, these data suggest that C4BP binding may be an additional mechanism of Rck-mediated complement resistance.  相似文献   

10.
The solution structures of the N-terminal domains of protein S, a plasma vitamin K-dependent glycoprotein, and its homolog growth arrest specific protein 6 (Gas6) were predicted by molecular dynamics computer simulations. The initial structures were based on the x-ray crystallographic structure of the corresponding region of bovine prothrombin fragment 1. The subsequent molecular dynamics trajectories were calculated using the second-generation AMBER force field. The long-range electrostatic forces were evaluated by the particle mesh Ewald method. The structures that stabilized over a 400-ps time interval were compared with the corresponding region of the simulated solution structure of bovine prothrombin fragment 1. Structural properties of the gamma-carboxyglutamic acid (Gla) domains obtained from simulations and calcium binding were found to be conserved for all three proteins. Analysis of the predicted solution structure of the Gla domain of Gas6 suggests that this domain should bind with negatively charged phospholipid surfaces analogous to bovine prothrombin fragment 1 and protein S.  相似文献   

11.
G(s)alpha, G(i)alpha(1), and G(q)alpha subunits bind tubulin with high affinity, whereas transducin (G(t)alpha) does not. The interaction between tubulin and Galpha, which also involves the direct transfer of GTP from tubulin to Galpha (transactivation), is not yet fully understood. This study, using chimeras of G(i)alpha and G(t)alpha, showed that the G(i)alpha (215-295) segment converted G(t)alpha to bind to tubulin and this chimera (chimera 1) could be transactivated by tubulin. Insertion of G(t)alpha (237-270) into chimera 1 to form chimera 2 resulted in a protein that, like G(t)alpha, did not bind tubulin. Thus, it was thought that the G(i)alpha (237-270) domain was essential to modulate the binding of G(i)alpha(1) to tubulin. Surprisingly, when domain (237-270) of G(i)alpha was replaced by G(t)alpha (237-270) to form chimera 3, the chimera bound to tubulin with a similar affinity (K(D) congruent with 120 nm) as wild-type G(i)alpha(1). However, even though chimera 3 displayed normal GTP binding, it was not transactivated by GTP-tubulin. Furthermore, when these chimeras were expressed in COS-1 cells, cellular processes in cells overexpressing G(i)alpha(1) or chimera 1 were more abundant and longer than those in native cells. Galpha was seen throughout the length of the process. Morphology of cells expressing chimera 2 was identical to controls. Consistent with the role of Chimera 3 as a "dominant negative" Galpha, cells transfected with chimera 3 had only few truncated processes. This study demonstrates that although G(i)alpha (237-270) is not obligatory for the binding of G(i)alpha to tubulin, it is crucial for the transactivation of Galpha by tubulin. These results also suggest that the transactivation of Galpha by tubulin may play an important role in modulating microtubule organization and cell morphology.  相似文献   

12.
Six chimeric constructs of the sequentially similar growth factor-associated kallikreins-epidermal growth factor binding protein (EGF-BP) and the gamma-subunit of nerve growth factor (gamma-NGF)--have been expressed, and their ability to generate complexes with epidermal growth factor (EGF) and beta-NGF, analogous to the high molecular weight forms (7S NGF and HMW-EGF) found in the mouse submaxillary gland, evaluated. The chimeras are distinguished by the interchange of three regions composing the amino, middle, and carboxyl terminal regions that encompass four surface loops possibly involved in specific growth factor interactions. Native beta-NGF (along with native alpha-NGF) formed complexes indistinguishable from naturally occurring 7S NGF, characterized by an alpha 2 beta gamma 2 structure (where beta-NGF is itself a dimer), with recombinant (r) gamma-NGF and with a chimera in which the amino terminal region from EGF-BP was substituted. Two other chimeras containing either the middle or carboxyl terminal regions of gamma-NGF showed weaker ability to form 7S complexes. Thus, all chimeras containing two segments from gamma-NGF retained at least some ability to form the 7S complex. rEGF-BP reacted weakly with EGF, but the chimera composed of the amino and middle segments of EGF-BP and the carboxyl terminal segment of gamma-NGF formed a nativelike HMW-EGF complex. None of the other chimeras appeared to bind EGF. These results identify amino acid positions within each kallikrein that participate in strong growth factor interactions and demonstrate that, outside of active site contacts, different regions of the kallikreins are involved in the binding of EGF and beta-NGF, respectively.  相似文献   

13.
The spike protein (S) of severe acute respiratory syndrome coronavirus (SARS-CoV) is responsible for receptor binding and membrane fusion. It contains a highly conserved transmembrane domain that consists of three parts: an N-terminal tryptophan-rich domain, a central domain, and a cysteine-rich C-terminal domain. The cytoplasmic tail of S has previously been shown to be required for assembly. Here, the roles of the transmembrane and cytoplasmic domains of S in the infectivity and membrane fusion activity of SARS-CoV have been studied. SARS-CoV S-pseudotyped retrovirus (SARSpp) was used to measure S-mediated infectivity. In addition, the cell-cell fusion activity of S was monitored by a Renilla luciferase-based cell-cell fusion assay. S(VSV-Cyt), an S chimera with a cytoplasmic tail derived from vesicular stomatitis virus G protein (VSV-G), and S(MHV-TMDCyt), an S chimera with the cytoplasmic and transmembrane domains of mouse hepatitis virus, displayed wild-type-like activity in both assays. S(VSV-TMDCyt), a chimera with the cytoplasmic and transmembrane domains of VSV-G, was impaired in the SARSpp and cell-cell fusion assays, showing 3 to 25% activity compared to the wild type, depending on the assay and the cells used. Examination of the oligomeric state of the chimeric S proteins in SARSpp revealed that S(VSV-TMDCyt) trimers were less stable than wild-type S trimers, possibly explaining the lowered fusogenicity and infectivity.  相似文献   

14.
The InsP3R proteins have three recognized domains, the InsP3-binding, regulatory/coupling, and channel domains (Mignery, G.A., and T.C. Südhof. 1990. EMBO J. 9:3893-3898). The InsP3 binding domain and the channel-forming domain are at opposite ends of the protein. Ligand regulation of the channel must involve communication between these different regions of the protein. This communication likely involves the interceding sequence (i.e., the regulatory/coupling domain). The single channel functional attributes of the full-length recombinant type-1, -2, and -3 InsP3R channels have been defined. Here, two type-1/type-2 InsP3R regulatory/coupling domain chimeras were created and their single channel function defined. One chimera (1-2-1) contained the type-2 regulatory/coupling domain in a type-1 backbone. The other chimera (2-1-2) contained the type-1 regulatory/coupling domain in a type-2 backbone. These chimeric proteins were expressed in COS cells, isolated, and then reconstituted in proteoliposomes. The proteoliposomes were incorporated into artificial planar lipid bilayers and the single-channel function of the chimeras defined. The chimeras had permeation properties like that of wild-type channels. The ligand regulatory properties of the chimeras were altered. The InsP3 and Ca2+ regulation had some unique features but also had features in common with wild-type channels. These results suggest that different independent structural determinants govern InsP3R permeation and ligand regulation. It also suggests that ligand regulation is a multideterminant process that involves several different regions of the protein. This study also demonstrates that a chimera approach can be applied to define InsP3R structure-function.  相似文献   

15.
Islet amyloid polypeptide (IAPP) is synthesized in pancreatic β-cells and co-secreted with insulin. Aggregation and formation of IAPP-amyloid play a critical role in β-cell death in type 2 diabetic patients. Because Aβ-fibrils in Alzheimer disease activate the complement system, we have here investigated specific interactions between IAPP and complement factors. IAPP fibrils triggered limited activation of complement in vitro, involving both the classical and the alternative pathways. Direct binding assays confirmed that IAPP fibrils interact with globular head domains of complement initiator C1q. Furthermore, IAPP also bound complement inhibitors factor H and C4b-binding protein (C4BP). Recombinant C4BP mutants were used to show that complement control protein (CCP) domains 8 and 2 of the α-chain were responsible for the strong, hydrophobic binding of C4BP to IAPP. Immunostaining of pancreatic sections from type 2 diabetic patients revealed the presence of complement factors in the islets and varying degree of co-localization between IAPP fibrils and C1q, C3d, as well as C4BP and factor H but not membrane attack complex. Furthermore, C4BP enhanced formation of IAPP fibrils in vitro. We conclude that C4BP binds to IAPP thereby limiting complement activation and may be enhancing formation of IAPP fibrils from cytotoxic oligomers.  相似文献   

16.
Type 2 porcine circovirus (PCV2) is associated with postweaning multisystemic wasting syndrome in pigs, whereas the genetically related type 1 PCV (PCV1) is nonpathogenic. In this study, seven monoclonal antibodies (MAbs) against PCV2-ORF2 capsid protein were generated, biologically characterized, and subsequently used to map the antigenic sites of PCV2 capsid protein by using infectious PCV DNA clones containing PCV1/PCV2-ORF2 chimeras. The PCV1/PCV2-ORF2 chimeras were constructed by serial deletions of PCV2-ORF2 and replacement with the corresponding sequences of the PCV1-ORF2. The reactivities of chimeric PCV1/PCV2 clones in transfected PK-15 cells with the seven MAbs were detected by an immunofluorescence assay (IFA). The chimera (r140) with a deletion of 47 amino acids at the N terminus of PCV2-ORF2 reacted strongly to all seven MAbs. Expanding the deletion of PCV2-ORF2 from residues 47 to 57 (r175) abolished the recognition of MAb 3B7, 3C11, 4A10, 6H2, or 8F6 to the chimera. Further deletion of PCV2-ORF2 to 62 residues disrupted the binding of this chimera to all seven MAbs. IFA reactivities with all MAbs were absent when residues 165 to 233 at the C terminus of PCV2-ORF2 was replaced with that of PCV1-ORF2. Extending the sequence of PCV2-ORF2 from residues 165 (r464) to 185 (r526), 200 (r588), or 224 (r652) restored the ability of the three chimeras to react with MAbs 3C11, 6H2, 9H7, and 12G3 but not with 8F6, 3B7, or 4A10. When the four amino acids at the C terminus of r588 were replaced with that of PCV2-ORF2, the resulting chimera (r588F) reacted with all seven MAbs. The results from this study suggest that these seven MAbs recognized at least five different but overlapping conformational epitopes within residues 47 to 63 and 165 to 200 and the last four amino acids at the C terminus of the PCV2 capsid protein.  相似文献   

17.
In Saccharomyces cerevisiae, the Mrt4 protein is a component of the ribosome assembly machinery that shares notable sequence homology to the P0 ribosomal stalk protein. Here, we show that these proteins can not bind simultaneously to ribosomes and moreover, a chimera containing the first 137 amino acids of Mrt4 and the last 190 amino acids from P0 can partially complement the absence of the ribosomal protein in a conditional P0 null mutant. This chimera is associated with ribosomes isolated from this strain when grown under restrictive conditions, although its binding is weaker than that of P0. These ribosomes contain less P1 and P2 proteins, the other ribosomal stalk components. Similarly, the interaction of the L12 protein, a stalk base component, is affected by the presence of the chimera. These results indicate that Mrt4 and P0 bind to the same site in the 25S rRNA. Indeed, molecular dynamics simulations using modelled Mrt4 and P0 complexes provide further evidence that both proteins bind similarly to rRNA, although their interaction with L12 displays notable differences. Together, these data support the participation of the Mrt4 protein in the assembly of the P0 protein into the ribosome and probably, that also of the L12 protein.  相似文献   

18.
C4b-binding protein (C4BP) is an important plasma inhibitor of the classical pathway of complement activation. Several bacterial pathogens bind C4BP, which may contribute to their virulence. In the present report we demonstrate that isolated type IV pili from Neisseria gonorrhoeae bind human C4BP in a dose-dependent and saturable manner. C4BP consists of seven identical alpha-chains and one beta-chain linked together with disulfide bridges. We found that pili bind to the alpha-chain of C4BP, which is composed of eight homologous complement control protein (CCP) domains. From the results of an inhibition assay with C4b and a competition assay in which we tested mutants of C4BP lacking individual CCPs, we concluded that the binding area for pili is localized to CCP1 and CCP2 of the alpha-chain. The binding between pili and C4BP was abolished at 0.25 M NaCl, implying that it is based mostly on ionic interactions, similarly to what have been observed for C4b-C4BP binding. Furthermore, the N-terminal part of PilC, a structural component of pili, appeared to be responsible for binding of C4BP. Membrane cofactor protein, previously shown to be a receptor for pathogenic N. gonorrhoeae on the surface of epithelial cells, competed with C4BP for binding to pili only at high concentrations, suggesting that different parts of pili are involved in these two interactions. Accordingly, high concentrations of C4BP were required to inhibit binding of N. gonorrhoeae to Chang conjunctiva cells, and no inhibition of binding was observed with cervical epithelial cells.  相似文献   

19.
The vitamin K-dependent anticoagulant protein S binds with high affinity to C4b-binding protein (C4BP), a regulator of complement. Despite the physiological importance of the complex, we have only a patchy view of the C4BP-binding site in protein S. Based on phage display experiments, protein S residues 447-460 were suggested to form part of the binding site. Several experimental approaches were now used to further elucidate the structural requirements for protein S binding to C4BP. Peptides comprising residues 447-460, 451-460, or 453-460 of protein S were found to inhibit the protein S-C4BP interaction, whereas deletion of residues 459-460 from the peptide caused complete loss of inhibition. In recombinant protein S, each of residues 447-460 was mutated to Ala, and the protein S variants were tested for binding to C4BP. The Y456A mutation reduced binding to C4BP approximately 10-fold, and a peptide corresponding to residues 447-460 of this mutant was less inhibitory than the parent peptide. A further decrease in binding was observed using a recombinant variant in which a site for N-linked glycosylation was moved from position 458 to 456 (Y456N/N458T). A monoclonal antibody (HPSf) selective for free protein S reacted poorly with the Y456A variant but reacted efficiently with the other variants. A second antibody, HPS 34, which partially inhibited the protein S-C4BP interaction, reacted poorly with several of the Ala mutants, suggesting that its epitope was located in the 451-460 region. Phage display analysis of the HPS 34 antibody further identified this region as its epitope. Taken together, our results suggest that residues 453-460 of protein S form part of a more complex binding site for C4BP. A recently developed three-dimensional model of the sex hormone-binding globulin-like region of protein S was used to analyze available experimental data.  相似文献   

20.
Adherence of group A streptococcus (GAS) to keratinocytes is mediated by an interaction between human CD46 (membrane cofactor protein) with streptococcal cell surface M protein. CD46 belongs to a family of proteins that contain structurally related short consensus repeat (SCR) domains and regulate the activation of the complement components C3b and/or C4b. CD46 possesses four SCR domains and the aim of this study was to characterize their interaction with M protein. Following confirmation of the M6 protein-dependent interaction between GAS and human keratinocytes, we demonstrated that M6 protein binds soluble recombinant CD46 protein and to a CD46 construct containing only SCRs 3 and 4. M6 protein did not bind to soluble recombinant CD46 chimeric proteins that had the third and/or fourth SCR domains replaced with the corresponding domains from another complement regulator, CD55 (decay-accelerating factor). Homology-based molecular modeling of CD46 SCRs 3 and 4 revealed a cluster of positively charged residues between the interface of these SCR domains similar to the verified M protein binding sites on the plasma complement regulators factor H and C4b-binding protein. The presence of excess M6 protein did not inhibit the cofactor activity of CD46 and the presence of excess C3b did not inhibit the ability of CD46 to bind M6 protein by ELISA. In conclusion, 1) adherence of M6 GAS to keratinocytes is M protein dependent and 2) a major M protein binding site is located within SCRs 3 and 4, probably at the interface of these two domains, at a site distinct from the C3b-binding and cofactor site of CD46.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号