首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adult wolves (Canis lupus) were immobilized with 6.6 mg/kg ketamine hydrochloride (KET) and 2.2 mg/kg xylazine hydrochloride (XYL) administered intramuscularly. Induction time was 4.6 +/- 0.3 min (mean +/- SE). Immobilization resulted in significant bradycardia and hypertension (P less than 0.05). Twenty min after induction, the wolves were given 0.05-0.60 mg/kg yohimbine hydrochloride (YOH). Yohimbine given intravenously produced dose-related increases in heart rate (HR) with doses greater than 0.15 mg/kg resulting in extreme tachycardia (greater than 300 bpm). All doses of YOH caused a temporary decrease in mean arterial blood pressure (MABP) with some individual animals manifesting profound hypotension (less than 30 torr) at doses greater than 0.15 mg/kg. Increasing the dose of YOH above 0.15 mg/kg did not significantly decrease either arousal or ambulation times. Administering YOH at 40 or 60 min after induction resulted in decreased arousal and ambulation times. Stimulation by weighing and taking repeated blood samples during anesthesia did not shorten arousal times. We recommend that wolves immobilized with XYL-KET be antagonized with doses of YOH less than 0.15 mg/kg.  相似文献   

2.
October 2001 to January 2002, captive free-ranging white-tailed deer (Odocoileus virginianus) were immobilized with a combination of carfentanil citrate and xylazine hydrochloride. From this study, we selected a dose of carfentanil/xylazine for the purpose of comparing immobilization parameters and physiologic effects with those of a combination of tiletamine and zolazepam (Telazol) and xylazine. Animals were initially given intramuscular injections of 10 mg xylazine and one of four doses of carfentanil (i.e., 0.5, 1.0, 1.5, and 2.0 mg). A carfentanil dose of 1.2 mg (x +/- SD = 23.5 +/- 3.2 microg/kg) and 10 mg xylazine (0.2 +/- 0.03 mg/kg) were selected, based on induction times and previously published reports, to compare with a combination of 230 mg of Telazol (4.5 +/- 0.6 mg/kg) and 120 mg xylazine (2.3 +/- 0.3 mg/kg). Time to first observable drug effects and to induction were significantly longer for deer treated with carfentanil/xylazine than with Telazol/xylazine (P < 0.01). Hyperthermia was common in deer immobilized with carfentanil/xylazine, but heart rate, respiration rate, and hemoglobin saturation were within acceptable levels. Degree of anesthesia of deer immobilized with Telazol/xylazine was superior to deer immobilized with carfentanil/xylazine. The combination of 120 mg of naltrexone hydrochloride and 6.5 mg of yohimbine hydrochloride provided rapid and complete reversal (1.9 +/- 1.1 min) of carfentanil/xylazine immobilization. Animals immobilized with Telazol/xylazine had long recovery times with occasional resedation after antagonism with 6.5 mg of yohimbine. The combination of carfentanil and xylazine at the doses tested did not provide reliable induction or immobilization of white-tailel (leer even though drug reversal was rapid and safe using naltrexone and yohimbine.  相似文献   

3.
Gray wolves (Canis lupus) were immobilized with 0.5 mg/kg xylazine plus 7.5 micrograms/kg of either sufentanil (n = 8), etorphine (n = 8), or carfentanil (n = 2). Drug doses used in this study were selected to provide consistency for comparison and are not recommended doses for effective immobilization of wolves. Induction times were similar among groups (11.9 +/- 1.0 min). Thirty min after induction, wolves were given either 0.5 mg/kg naloxone hydrochloride plus 0.15 mg/kg yohimbine hydrochloride or saline only intravenously. Arousal times for wolves given naloxone and yohimbine (1.2 +/- 0.1 min) were shorter than wolves given saline (35.5 +/- 6.4 min). Respiratory rates were similar among the three drug groups (6.9 +/- 1.0 breaths/min). One animal given sufentanil then saline was found dead 108 min after induction. Presumptive diagnosis was renarcotization and hypothermia. Results indicated that sufentanil is an effective opioid immobilizing agent for gray wolves.  相似文献   

4.
Captive gray wolves (Canis lupus) were immobilized (loss of consciousness) with 2.0 mg/kg xylazine hydrochloride (XYL) and 0.4 mg/kg butorphanol tartrate (BUT) administered intramuscularly. Induction time was 11.8 +/- 0.8 min (mean +/- SE). Immobilization resulted in bradycardia, respiratory depression, and normotension. Fifteen min after induction, six wolves were given either 0.05 mg/kg naloxone hydrochloride (NAL) and 0.125 or 0.250 mg/kg yohimbine hydrochloride (YOH), or an equal volume of saline (control) intravenously. Antagonism resulted in shortened recovery times compared to control animals (P less than 0.03); there was no difference in recovery times between the YOH doses (P greater than 0.05). Antagonism caused increases in heart rate (HR) and respiratory rate (RR), but no changes in MABP. Eight other wolves were similarly immobilized, but given only NAL. This resulted in partial antagonism with the animals appearing to be sedated with XYL only. Three wolves given only 0.4 mg/kg BUT assumed a state described as "apathetic sedation." Three other wolves sedated with only 2.0 mg/kg XYL showed a profound sedation characterized by recumbency, bradycardia and shallow, but regular, respiration. This study demonstrated that (1) BUT and XYL together, but not separately, can completely immobilize wolves, (2) this combination can be rapidly antagonized by NAL and YOH, and (3) there appeared to be no adverse cardiopulmonary reactions to any of the drugs used.  相似文献   

5.
Fourteen wolves (Canis lupus L.) were singularly or repeatedly immobilized with 30 mg xylazine hydrochloride (HCl) and 400 mg ketamine HCl. Mean induction time was 5.3 +/- 4.6 min (mean +/- SD). Administration of 8.0 mg/kg tolazoline HCl as an antagonist significantly reduced immobilization times from 148.0 +/- 52.7 to 47.9 +/- 8.9 min (F = 63.69, df = 1,17, P less than 0.05). The average times from injection to ambulation for 2.0, 4.0, and 8.0 mg/kg tolazoline HCl were 35.2 +/- 31.8, 18.5 +/- 11.7, and 10.2 +/- 9.1 min. Tolazoline HCl increased heart rates significantly (P less than 0.001) from 75 +/- 14 to 120 +/- 23 beats/min, reversing a xylazine HCl-induced bradycardia. Respiratory rates also increased significantly (P less than 0.01) after tolazoline HCl injection from 19 +/- 7 to 28 +/- 8 breaths/min. Immobilization resulted in an initial hypertension which was normalized after tolazoline HCl administration. One female wolf had a single sinoatrial block within 1 min of receiving tolazoline HCl. Tolazoline HCl appears to be an effective antagonist for xylazine HCl-ketamine HCl immobilization of wolves.  相似文献   

6.
Immobilization features and physiologic effects of combinations of xylazine-zolazepam-tiletamine (XZT) and zolazepam-tiletamine (ZT or Telazol) were compared in nine captive and 17 free-ranging polar bears (Ursus maritimus) between 1998 and 2001. Although induction time was similar between drugs, induction dosage and volume were less with XZT. Induction of immobilization with XZT was predictable and smooth, muscle relaxation was good, and all bears remained completely immobilized and unresponsive to stimuli throughout a 1 hr handling period. The combination XZT was safely tolerated at two to three times the recommended dosage of 5 mg/kg (i.e., xylazine at 2 mg/kg + Telazol at 3 mg/kg). Bears immobilized with XZT had slower pulse rates, higher mean arterial pressures, and lower arterial oxygen tensions than bears immobilized with ZT. Rectal temperature increased slowly over time (approximately 0.5 C per hr) following immobilization with XZT. Based on response to a painful stimulus (compression of a claw bed), XZT was a more effective analgesic than ZT. Although the immobilization effects of XZT could not be reversed with the alpha 2-antagonist drug tolazoline, they were reversed with yohimbine or atipamezole. However, the time to complete reversal of effects (i.e., standing and ambulatory) was highly variable among bears.  相似文献   

7.
From January 1999 to April 2002, 14 free-ranging elk were darted with a mixture of Telazol reconstituted with xylazine hydrochloride (HCl) in a forested habitat in southwestern Oklahoma and north-central Arkansas. Elk were darted from ground blinds, tree stands, or a vehicle at distances of 14-46 m and were recovered 37-274 m from the dart site. Elk were located using radiotelemetry with 3-cc disposable Pneu-dart transmitter darts. Mean+/-SD dose of Telazol and xylazine HCl was 590+/-192 mg/ml and 276+/-153 mg/ml, respectively, and mean time to standing after injection of reversal agent was 27 min (range: 1-65 min). The combination of Telazol and xylazine HCl successfully immobilized free-ranging elk, and transmitter-equipped darts permitted successful location of sedated elk by two people in areas of dense forest cover. The dose required to sedate elk appeared to vary depending on physiology and behavior, but no drug-induced mortality occurred despite the wide variance in the doses administered. We recommend 500 mg Telazol reconstituted with 300 mg xylazine HCl as an initial dose for a >or=200 kg elk. If needed to achieve full sedation, up to 3 additional ml of the mixture may be administered without adverse effects.  相似文献   

8.
Five red-tailed hawks (Buteo jamaicensis) were anesthetized at weekly intervals with intravenous ketamine hydrochloride (KET, 4.4 mg/kg) and xylazine hydrochloride (XYL, 2.2 mg/kg). Twenty min after anesthesia, yohimbine hydrochloride (YOH, 0.05, 0.10, 0.20 and 0.40 mg/kg) or a control was administered. All doses of YOH significantly reduced the head-up times (F = 20.84, df = 1,24, P less than 0.0001) and the standing times (F = 12.30, df = 1,24, P less than 0.0001), compared to the control group. The heart and respiratory rates following YOH (all doses) were significantly greater (P less than 0.01) than the anesthetized rates, but were comparable to the rates observed in restrained, unanesthetized hawks. Yohimbine did not appear to have any significant effect on body temperature. Based upon administration of 4.4 mg/kg KET and 2.2 mg/kg XYL, a dose of 0.10 mg/kg YOH was recommended to achieve antagonism without causing profound cardiovascular or respiratory changes.  相似文献   

9.
Red foxes (Vulpes vulpes) were immobilized with one of the following drug combinations: ketamine/xylazine (n = 22), ketamine/promazine (n = 35), ketamine/midazolam (n = 13), or tiletamine/zolazepam (n = 22). Foxes given ketamine/xylazine had the shortest induction and longest recovery times relative to other drug combinations, whereas foxes given ketamine/midazolam had the longest induction times. Recommended doses for the various combinations are given. Foxes given ketamine/xylazine were given either 0.1, 0.2, 0.4 mg/kg yohimbine, or saline 40 min after anesthetic induction. Administration of yohimbine significantly shortened arousal and recovery times relative to control values (P less than 0.001).  相似文献   

10.
Four medetomidine/ketamine (M/K) doses (30 microg/kg/3 mg/kg; 40/4; 50/5; 60/6), administered by intramuscular injection, were evaluated for short-term immobilization of adult male variable flying foxes (Pteropus hypomelanus). The highest dose (60 microg/kg/6 mg/kg) produced a significantly faster induction (31 +/- 46 sec) than the lowest dose (30/3) (125 +/- 62 sec). The highest dose levels (50/5, 60/6) produced significantly longer immobilization times (52.5 +/- 25.7 min and 60.6 +/- 20.8 min, respectively) than did the lower doses (30/3, 40/4) (18.8 +/- 8.7 min and 31.0 +/- 14.3 min, respectively). The dose at which 50% of the bats were immobilized for > or = 30 min (ED(50)) was approximately 40 microg/kg/4 mg/kg. This dose produced a mean immobilization time of 31 +/- 14 min, bradypnea and bradycardia. In conclusion, a M/K dose of 50 microg/kg/5 mg/kg is recommended for greater than 30 min of relaxed immobilization in free-living variable flying foxes and is sufficient for safe collection of samples.  相似文献   

11.
A combination of tiletamine-zolazepam/xylazine (TZ/X) is effective in the chemical immobilization of white-tailed deer (Odocoileus virginianus); however, the lengthy duration of immobilization may limit its usefulness. From October to November 2002, 21 captive female deer were assigned randomly to an alpha(2) antagonist treatment to reverse xylazine-induced sedation (seven does per group). All deer were given 220 mg of TZ (4.5+/-0.4 mg/kg) and 110 mg of X (2.2+/-0.2 mg/kg) intramuscularly (IM). Antagonist treatments were either 200 mg of tolazoline (4.0+/-0.4 mg/kg), 11 mg of atipamezole (0.23+/-0.02 mg/kg), or 15 mg of yohimbine (0.30+/-0.02 mg/kg) injected, half intravenously and half subcutaneously, 45 min after the IM TZ/X injection. In addition, 10 other deer (five per group) were immobilized as before and then given tolazoline (200 mg) after 45 min, with either a carrier (dimethyl sulfoxide [DMSO]) or carrier (DMSO) plus flumazenil (5 mg) to reverse the zolazepam portion of TZ. Mean times from antagonist injection until a deer raised its head were different for alpha(2) antagonist treatments (P=0.02). Times were longer for yohimbine (62.3+/-42.7 min) than for either atipamezole (24.3+/-17.1 min) or tolazoline (21.3+/-14.3 min). Mean times from antagonist injection until standing were not different (P=0.15) among yohimbine (112.0+/-56.4 min), atipamezole (89.7+/-62.8 min), or tolazoline (52.6+/-37.2 min). A sedation score based on behavioral criteria was assigned to each deer every 30 min for 5 hr. On the basis of sedation scores, tolazoline resulted in a faster and more complete reversal of immobilization. Flumazenil treatment did not affect recovery.  相似文献   

12.
In 1986, 213 polar bears (Ursus maritimus) were immobilized with Telazol on the sea ice of the eastern Beaufort Sea during April and May, and 106 along the western coast of Hudson Bay near Churchill, Manitoba (Canada) in September. No animals died from handling. The efficacy of this drug at different seasons and the physiological responses of the immobilized bears were compared. A single injection of 8 to 9 mg of Telazol per kg of body weight gave a rapid full immobilization with satisfactory analgesia, and faster recovery than other drugs for which there is no antagonist. The reactions of the bears could be reliably and easily interpreted from a safe distance before the animal was approached. There was a wide range of tolerance to high dosages and bears appeared able to thermoregulate while immobilized. The mortality rate due to handling was lower than with any other drug used to date.  相似文献   

13.
Xylazine hydrochloride was used to immobilize 124 Rocky Mountain bighorn sheep (Ovis canadensis canadensis) between 1983 and 1988. Doses of xylazine for free-ranging lambs ranged from 70 to 130 mg with amounts increasing with lamb age. Average doses for 11 free-ranging adult males and 21 adult females darted from the ground were (means +/- SE) 363 +/- 16 and 251 +/- 7 mg, respectively. Adult females captured in "Stevenson's " box traps (n = 7) could be immobilized with significantly (P less than 0.001) less xylazine (93 +/- 9 mg) than free-ranging females but had similar induction times. Long recovery times associated with xylazine immobilization were eliminated with the intravenous administration of idazoxan (RX 781094) at an approximate dosage of 0.1 mg/kg. Eighteen sheep given idazoxan appeared fully recovered within 3 min of injection (means +/- SE = 1.2 +/- 0.2 min). Four mortalities (three lambs, one yearling male) (3% of total) occurred before idazoxan was available for trial.  相似文献   

14.
The effectiveness of tiletamine plus zolazepam (Telazol) and xylazine was evaluated as an immobilizing combination for raccoons (Procyon lotor). Fifteen raccoons were injected intramuscularly with a 3:2 mixture of Telazol (3.2+/-0.6 mg/kg [mean+/-SD]) and xylazine (2.1+/-0.4 mg/kg) at Pictured Rocks National Lakeshore, Michigan, USA, during May-October, 2001-03. Mean induction time was 4.8+/-3.8 min; mean recovery time was 128.5+/-48.4 min. No linear relationships were found between the amount (mg/kg) of Telazol-xylazine injected and induction (r2 = 0.06, P = 0.40) or recovery times (r2 = 0.01, P = 0.78). Mean heart rate, respiratory rate, and body temperature declined through 20 min after induction (P< 0.05). No mortality occurred and no short-term adverse effects were observed in recaptured individuals. I conclude that a 3:2 mixture of Telazol-xylazine is a safe and effective immobilizing agent for raccoons when conducting nonsurgical field procedures. Immobilizing raccoons with Telazol at 3 mg/kg and xylazine at 2 mg/kg should provide up to 60 min of handling time and usually allow full recovery in about 120 min.  相似文献   

15.
A dose range was determined for anesthesia of recently boma-captured Lichtenstein's hartebeest (Sigmoceros lichtensteinii) (n = 13) with the synthetic opiate thiafentanil (THIA) (formerly called A3080) combined with medetomidine (MED) and ketamine (KET) in the Kasungu National Park, Malawi on 4 to 5 September 1999. The dose range of 11-29 micrograms/kg THIA (mean +/- SD = 21 +/- 4 micrograms/kg) combined with 5-10 mg/kg MED (8 +/- 1 micrograms/kg) plus 0.7-1.4 mg/kg KET (1.1 +/- 0.2 mg/kg) was found to be safe and effective for the field conditions associated with this study. The anesthesia produced by this drug combination was very predictable and characterized by a short induction time (3:34 +/- 1:20 min:sec), good muscle relaxation, and acceptable physiologic parameters for anesthesia periods ranging from 22:30-35:00 min:sec (31:14 +/- 2:50). Within the range of doses used in this study, times to onset of initial effects and recumbency were not dependent on THAI, MED, or KET doses. Anesthesia was rapidly and completely reversed by intravenous injections of naltrexone at 30 times the THAI dosage (0.69 +/- 0.19 mg/kg) and atipamezole at about four times the MED dosage (38 +/- 14 micrograms/kg). There was no residual effect from ketamine noted following reversal of THIA and MED and no mortality or morbidity was associated with this anesthetic regimen.  相似文献   

16.
Telazol–xylazine and ketamine–xylazine are versatile and safe drug combinations that are used frequently for chemical immobilization of cervids. Although neither combination consistently offers rapid induction and recovery, we hypothesized that a combination of Telazol, ketamine, and xylazine (TKX) would provide a safe and effective alternative for immobilization of white-tailed deer (Odocoileus virginianus). During a 2-stage study, we evaluated the effectiveness of yohimbine and tolazoline as alpha2-adrenergic antagonists (2005–2006), and characterized the factors that affected chemical immobilization of male deer with a targeted dose of telazol (2.20 mg/kg), ketamine (1.76 mg/kg), and xylazine (0.44 mg/kg), using explosive-charged darts (2007–2010). During the first stage, we randomly assigned deer to antagonist treatments, including a control group that did not receive an antagonist (n = 8), a tolazoline (4 mg/kg) treatment (n = 16), and a yohimbine (0.11 mg/kg) treatment (n = 15). Recovery times were longer (P = 0.0013) for control (150.6 ± 21.7 min) and yohimbine (74.5 ± 13.1 min), compared with tolazoline (12.5 ± 12.3 min). Tolazoline resulted in faster and more complete recovery compared with the frequent incomplete antagonism and ataxia observed with yohimbine. During the second stage, 56 immobilization events (2007–2010) with TKX yielded a mean induction time of 7.8 minutes (SE = 0.44). Repeated-measures analyses indicated that induction and recovery were affected by body weight, with larger males taking longer to become recumbent (P = 0.08), but they recovered more rapidly (P = 0.003) following administration of tolazoline. Physiological parameters we measured under anesthesia were within normal ranges for white-tailed deer; however, initial temperature was higher (β = −0.86) for younger males (P = 0.014). Final physiological parameters were closely related to initial measurements, with rectal temperature being the most preserved (β = 0.90); heart and respiration rate declined (β < 0.60) during anesthesia. Our results indicate that TKX may be useful for chemically immobilizing white-tailed deer, and we recommend tolazoline as an antagonist for xylazine. © 2012 The Wildlife Society.  相似文献   

17.
Twenty-nine female northern sea lions (Eumetopias jubatus) were immobilized using Telazol in dosages ranging from 1.8 to 8.1 mg/kg. Best results were achieved with Telazol dosages ranging between 1.8 and 2.5 mg/kg which resulted in smooth induction and recovery. Optimal injection location was in the muscle mass of the lower back and hip. Dosages greater than 3.5 mg/kg resulted in a tendency toward hypothermia. Six mortalities occurred which were partially caused by the location of drug injection and perhaps the high dosage.  相似文献   

18.
A mixture of 120 mg ketamine hydrochloride (KHCL)/20 mg xylazine hydrochloride (XHCL)/ml was used to immobilize 37 wild mountain lions (Felis concolor) 46 times. Observations were recorded during 37 trials that included kittens, adult females, and adult males. Dosages were based on 11 mg KHCL and 1.8 mg XHCL/kg estimated body weight. Actual doses for 24 lions requiring a single injection for immobilization ranged from 4.7-15.8 mg KHCL/kg and 0.8-2.6 mg XHCL/kg. Induction, duration, and recovery times did not differ (P greater than 0.05) between the sex and age classes. Two kittens were overdosed with the drug combination, but the effects were not life threatening. Eleven other lions, nine of which were initially underdosed, required additional injections of the drug combination for safe handling. Immobilization was characterized initially by semi-consciousness, open eyelids, pupillary dilation, and muscle rigidity. Later, most lions appeared unconscious, muscles relaxed, and breathing slowed considerably. No convulsions or hypersalivation occurred. The KHCL/XHCL mixture given at approximately 11 mg KHCL and 1.8 mg XHCL/kg body weight proved useful for immobilizing wild mountain lions for research purposes. Suggestions for case of immobilized cats are included.  相似文献   

19.
We compared the efficiency of succinylcholine chloride, xylazine hydrochloride and carfentanil/xylazine mixtures in immobilizing 364 free-ranging moose (Alces alces) between 1987 and 1997 in Québec (Canada). With succinylcholine chloride (0.070, 0.062, 0.051 mg/kg of estimated body weight for calves, juveniles and adults), 63% of the 252 immobilization attempts led to complete immobilization and marking, whereas 7% of the darted animals died of respiratory paralysis during handling. The moose took an average of 13 min to lay down after darting (down time). Injection of xylazine (3.67-4.22 mg/kg) permitted sedation (the animal laid down but got up again when approached) or complete immobilization in 78% of the 40 darted adult moose, the mean down time being 8.7 min. No mortality was noted with this drug but 58% of the marked animals were only sedated. The use of RX821002A (0.058 mg/kg) as an antagonist, permitted a mean recovery time of 2.8 min after intravenous injection. With the carfentanil/xylazine mixtures (0.0071 and 0.181 mg/kg), 96% of the immobilization trials (n = 72) led to complete (88%) or partial (8%) immobilization, but 6% of the moose died several days after capture. The mean down time was 6.6 min, and injection of naltrexone (0.709 mg/kg) antagonized the effect of the immobilizing agent within 3.7 min. The respiratory rate was higher (P < 0.05) among moose immobilized with xylazine (35/min) than among those immobilized with carfentanil/xylazine mixtures (19/min) but this variation could be related to a longer pursuit time (z = 3.60; P < 0.01) and higher stress levels during handling. Rectal temperature also was higher with xylazine but the difference was small (39.7 vs. 39.3, P = 0.03) and did not differ significantly between the sexes (P > 0.05). Considering loss of materials and helicopter flight time due to non-successful marking trials, carfentanil/xylazine mixtures were the least expensive ($333 Cdn/animal).  相似文献   

20.
The release of hypothalamic-pituitary-adrenocortical hormones was studied in intact and neutered gray wolves (Canis lupus) to determine how these hormones interact and affect reproductive hormones. Experiments were performed on adult wolves anesthetized with 400 mg ketamine and 50 mg promazine. Intravenous (i.v.) injections with 50 micrograms ovine corticotropin releasing factor (oCRF) significantly increased adrenocorticotropin (ACTH; P < or = 0.01), cortisol (CORT; P < or = 0.004), and progesterone (P < or = 0.036), but not beta-endorphin (P > or = 0.52). Since neutered wolves demonstrated dose-dependent elevations in response to ACTH, it was concluded that the progesterone was secreted from the adrenal gland. Basal luteinizing hormone (LH) concentrations in neutered wolves were similar before and 60 min after i.v. injection of 1, 5, or 25 IU ACTH (P > or = 0.36) or 2.2 mg/kg cortisol (P = 0.42). Neither 25 IU ACTH (P = 0.55) nor 0.22 mg/kg dexamethasone (P = 0.49) altered the LH response to injection of LH releasing hormone in neutered wolves. Chronic administration of 0.22 mg/kg/day dexamethasone for 3 d did not alter baseline LH concentrations (P = 0.75). Injection of 1.0 mg/kg naloxone (NAL), however, increased LH concentrations relative to baseline values in both intact (P = 0.032) and neutered (P = 0.0005) female wolves, but not in intact (P = 0.19) or neutered males (P = 0.07). These results indicated that in gray wolves (1) oCRF stimulated the release of pituitary and adrenal hormones in a fashion similar to that of other mammals; (2) the adrenal cortex was capable of secreting progesterone into the systemic circulation; (3) exogenous glucocorticoids did not alter LH concentrations; and (4) endogenous opioids may modulate LH secretion in female wolves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号