首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The parapatric sibling ant species Temnothorax nylanderi and T. crassispinus hybridize in the contact zone in the Franconian Jura, Southern Germany. Aim of our study was to investigate the impact of hybridization on colony composition and fitness. We classified colonies as either ‘pure’ or containing hybrids by determining their allozyme pattern at GPI, an enzyme that is fixed for different alleles in the two parental species, and quantified their reproductive output. Most colonies with hybrid workers had a T. crassispinus queen. Colonies with heterozygous, hybrid workers produced more young workers than colonies of the parental species but similar numbers of male and female sexuals. Female sexuals from colonies with heterozygous workers had a significantly lower weight than female sexuals from pure colonies. Only a single reproductive queen was found to be heterozygous, suggesting reduced fitness of hybrid queens. As in the parental species, hybrid colonies appear to be frequently taken over by alien queens, which obscures the genetic colony structure. Received 6 April 2006; revised 10 June 2006; accepted 15 June 2006.  相似文献   

2.
Arriving earlier in the breeding area than his rivals may be beneficial for a male when females mate only once or during a short time span. The timing of a male's entrance is usually determined by the male himself, e.g., through returning early from his winter quarters or through accelerated larval development . Here, we document a surprisingly simple way of "first come, first served" in a species with local mate competition. In multiqueen colonies of a Cardiocondyla ant, mother queens make sure that their own sons are the first to monopolize mating with a large harem of female sexuals by producing extremely long-lived males early in colony life. Whereas queens in newly founded single-queen colonies started to produce male and female sexuals only several weeks after the eclosion of their first worker offspring, queens in multiqueen colonies precociously reared sons long before the first female sexuals and even before the emergence of their first workers. These early males killed all later emerging males in the nest and mated with all female sexuals subsequently produced. Our data document that the patterns of growth and productivity of insect colonies are surprisingly flexible and can be turned upside down under appropriate selection pressures.  相似文献   

3.
Wingless males of the ant genus Cardiocondyla engage in fatal fighting for access to female sexual nestmates. Older, heavily sclerotized males are usually capable of eliminating all younger rivals, whose cuticle is still soft. In Cardiocondyla sp. A, this type of local mate competition (LMC) has turned the standard pattern of brood production of social insects upside down, in that mother queens in multi-queen colonies produce extremely long-lived sons very early in the life cycle of the colony. Here, we investigated the emergence pattern of sexuals in two species with LMC, in which males are much less long-lived. Queens of Cardiocondyla obscurior and Cardiocondyla minutior reared their first sons significantly earlier in multi-queen than in single-queen societies. In addition, first female sexuals also emerged earlier in multi-queen colonies, so that early males had mating opportunities. Hence, the timing of sexual production appears to be well predicted by evolutionary theory, in particular by local mate and queen-queen competition.  相似文献   

4.
Summary Female sexuals of the ant Leptothorax gredleri attract males by sexual calling. In an experimental set-up allowing for competition among males, both female and male sexuals copulated with up to four partners, with the median being one mate in both sexes. Neither male nor female sexuals invariably mated with the first partner they encountered, but we could not find any morphological difference between sexuals that succeeded in mating multiply and those that copulated only once. Males did not aggressively compete for access to the female sexuals. According to microsatellite genotyping, workers produced by multiply mated queens were all offspring of a single father, i.e. queens appear to use sperm from a single mate to fertilize their eggs. Population genetic studies revealed a strong population subdivision, suggesting that both male and female sexuals mate in the vicinity of their maternal nests and that gene flow is strongly restricted even between forest patches isolated only by a few meters of grassland.  相似文献   

5.
Males in polygyne populations of Solenopsis invicta are primarily sterile diploids and thought to not express the Gp-9 gene coding for a pheromone-binding protein affecting complex social behavior. We examined an aspect of the breeding system hitherto not considered--male Gp-9 genotypes in relation to sperm stored in queens. Four sites with varying frequencies of sympatric monogyne and polygyne colonies were sampled, including sexuals, workers, and broods from four colonies. Most queens were heterozygotes storing B sperm. Although predicted to be common, only 14 of 504 males were B or BB genotypes, suggesting strong selection. Increased frequency of polygyne colonies at each site paralleled increases in queens with b sperm (1.9-32.8%) and of noninseminated queens. The presence of both B and b sperm in 1.9-18.9% of queens, genotype profiles of colonies, and genotypes of offspring from individual queens suggest some frequency of multiple mating. The bb genotype, rather than an obligate, developmental lethal, was present in some queens and common in alates, workers, and brood. Selective mortality of sexuals may affect multiple aspects of the breeding system, including female-mediated dispersal, mating success, and gene flow.  相似文献   

6.
Multiple mating by queens (polyandry) and the occurrence of multiple queens in the same colony (polygyny) alter patterns of relatedness within societies of eusocial insects. This is predicted to influence kin-selected conflicts over reproduction. We investigated the mating system of a facultatively polygynous UK population of the ant Leptothorax acervorum using up to six microsatellite loci. We estimated mating frequency by genotyping 79 dealate (colony) queens and the contents of their sperm receptacles and by detailed genetic analysis of 11 monogynous (single-queen) and nine polygynous colonies. Results indicated that 95% of queens were singly mated and 5% of queens were doubly mated. The corrected population mean mating frequency was 1.06. Parentage analysis of adults and brood in 17 colonies (10 monogynous, 7 polygynous) showed that female offspring attributable to each of 31 queens were full sisters, confirming that queens typically mate once. Inbreeding coefficients, queen-mate relatedness of zero and the low incidence of diploid males provided evidence that L. acervorum sexuals mate entirely or almost entirely at random. Males mated to queens in the same polygynous colony were not related to one another. Our data also confirmed that polygynous colonies contain queens that are related on average and that their workers had a mixed maternity. We conclude that the mating system of L. acervorum involves queens that mate near nests with unrelated males and then seek readoption by those nests, and queens that mate in mating aggregations away from nests, also with unrelated males.  相似文献   

7.
The North American seed-harvester ant Pogonomyrmex (Ephebomyrmex) pima displays a dimorphism that consists of winged (alate) and wingless (intermorph) queens; both types of queens are fully reproductive. Microsatellite allele frequencies and a mitochondrial phylogeny demonstrate (1) alate and intermorph queens represent an intraspecific wing polymorphism, and (2) an absence of assortative mating and inbreeding by males. Surveys at our field site in southcentral Arizona, USA, demonstrated that only one type of queen (intermorph or dealate) occurred in each colony, including those excavated during the season in which reproductive sexuals were present. Colony structure appeared to vary by queen type as most intermorph colonies contained multiple mated queens. Alternatively, dealate queen colonies rarely contained a mated queen. Our inability to find mated dealate queens in these colonies probably resulted from difficulty in excavating the entire colony and reproductive queen, especially given that these colonies were only excavated over one day. A morphometric analysis demonstrated that intermorph queens are intermediate in size to that of workers and alate queens, but that intermorph queens retain all of the specialized anatomical features of alate queens (except for wings). Some colonies had queens that foraged and performed nest maintenance activities, and these queens sometimes accounted for a significant portion of colony foraging trips. Dissections revealed that these queens were uninseminated; some of these queens produced males in the laboratory. Received 24 October 2006; revised 1 December 2006; accepted 8 December 2006.  相似文献   

8.
Cardiocondyla elegans is a Mediterranean ant that nests on river banks. It rears only wingless (ergatoid) males that live peacefully in the same nest as opposed to other species of the same genus, which have both peaceful, winged and mutually aggressive 'ergatoid' males. Using microsatellite analysis, we investigated the genetic structure of 21 colonies from three different locations as well as the parentage of sexuals of two colonies of C. elegans. We show that C. elegans is strictly monogynous, and that its nests can contain foreign sexuals. The presence of alien sexuals inside ant nests is described for the first time and probably counteracts inbreeding resulting from matings between siblings. In the laboratory, aggression tests showed that workers only allow alien males to enter their nests, while all winged female sexuals attempting to enter were attacked. Nevertheless, the presence of alien female sexuals in nests in the field seems to result from active carrying behaviour by workers during the reproductive period.  相似文献   

9.
Most social Hymenoptera are characterized by simple haploid sex determination and environment-based caste differentiation. This appears to be strikingly different in the queen-polymorphic ant Vollenhovia emeryi. Almost all long- and short-winged queens from a population in Central Japan were homozygous at three microsatellite loci, whereas workers were mostly heterozygous, suggesting either a complex system of genetic caste determination or, more likely, the production of female sexuals from unfertilized eggs by thelytokous parthenogenesis and of workers from fertilized eggs. Furthermore, male genotypes were not compatible with those of the queens and had exclusively the paternal allele found in the sterile, heterozygous workers, probably because males are produced from fertilized eggs after the exclusion of maternal nuclear DNA as recently reported for Wasmannia auropunctata. The genus Vollenhovia might provide an interesting model system to trace the evolution of unusual caste and sex determination systems.  相似文献   

10.
1. Bumblebee colonies show much variation in the number of workers, drones, and queens produced. Because this variation prevails even when colonies are kept under identical conditions, it does not seem to be caused by extrinsic factors but rather by differences between founding queens. 2. The most likely factor that could cause differences between queens is diapause. Although colonies are raised under standardised conditions, the queens often experience diapause of different length. If there are costs associated with diapause that influence post‐diapause reproduction, the diapause history of the queens could affect colony characteristics. 3. Here, several colony characteristics are compared: number of first and second brood workers; total number of workers, drones, and queens; energy spent on sexuals; sex ratio; rate of worker production; time to emergence of first reproductive; and colony lifetime. Colonies were used where the queens experienced a diapause treatment of 0 (nondiapause queens), 2, and 4 months. 4. Although no proof was found for the existence of costs associated with diapause, the colony characteristics of nondiapause queens were significantly different from those of diapause queens. Colonies of nondiapause queens produced the lowest number of workers but the highest number of young queens. 5. It is argued that these nondiapause colonies are more time‐constrained than diapause colonies because nondiapause colonies produce two generations within the same season and should therefore be more efficient in producing sexual offspring. 6. Moreover, nondiapause colonies should rear a more female‐biased sex ratio because they can be certain of the presence of males produced by other (diapause) colonies.  相似文献   

11.
Hybridization in ants can have consequences different from those observed in most other species, with many of the potential deleterious effects being mitigated due to haplodiploidy and eusociality. In some species where colonies are either headed by multiple queens or single queens that mate with many males, hybridization is associated with genetic caste determination, where hybrids develop into workers and purebred individuals develop into queens. A previous study suggested that hybridization occurs between two Dorylus army ant species with multiply mated queens. However, the extent and exact pattern of hybridization have remained unclear, and its possible effect on caste determination has not been investigated. In this study, we aimed to determine the extent and direction of hybridization by measuring how frequently hybrids occur in colonies of both species, and to investigate the possibility of genetic caste determination. We show that hybridization is bidirectional and occurs at equal rates in both species. Hybrid workers make up only 1–2% of the population, and successful interspecific matings represent approximately 2% of all matings in both species. This shows that, although interspecific matings that give rise to worker offspring occur regularly, they are much rarer than intraspecific mating. Finally, we find no evidence of an association between hybridization and genetic caste determination in this population. This means that genetic caste determination is not a necessary outcome of hybridization in ants, even in species where queens mate with multiple males.  相似文献   

12.
Summary Queen ants start new colonies either unassisted by workers (independent founding), assisted by workers from their natal nest (dependent founding), or assisted by the workers of other species (dependent, socially parasitic). The monogyne form of the fire ant,Solenopsis invicta, founds independently in summer, but in the fall it also produces a few sexuals some of which overwinter, then fly and mate in early spring. These overwintered queens lack the nutritional reserves and behaviors for independent colony founding. Rather, they seek out unrelated, mature, orphaned colonies, enter them and exploit the worker force to found their own colony through intraspecific social parasitism. Success in entering orphaned colonies is higher when these lack overwintered female alates of their own. When such alates are present, orphaning causes some to dealate and become uninseminated replacement queens, usually preventing entry of unrelated, inseminated replacement queens. Such colonies produce large, all-male broods. Successful entry of a parasitic queen robs the host colony of this last chance at reproductive success. Only overwintered sexuals take part in this mode of founding.  相似文献   

13.
Studies on sex ratios in social insects provide among the most compelling evidence for the importance of kin selection in social evolution. The elegant synthesis of Fisher's sex ratio principle and Hamilton's inclusive fitness theory predicts that colony-level sex ratios vary with the colonies' social and genetic structures. Numerous empirical studies in ants, bees, and wasps have corroborated these predictions. However, the evolutionary optimization of sex ratios requires genetic variation, but one fundamental determinant of sex ratios - the propensity of female larvae to develop into young queens or workers ("queen bias") - is thought to be largely controlled by the environment. Evidence for a genetic influence on sex ratio and queen bias is as yet restricted to a few taxa, in particular hybrids. Because of the very short lifetime of their queens, ants of the genus Cardiocondyla are ideal model systems for the study of complete lifetime reproductive success, queen bias, and sex ratios. We found that lifetime sex ratios of the ant Cardiocondyla kagutsuchi have a heritable component. In experimental single-queen colonies, 22 queens from a genetic lineage with a highly female-biased sex ratio produced significantly more female-biased offspring sex ratios than 16 queens from a lineage with a more male-biased sex ratio (median 91.5% vs. 58.5% female sexuals). Sex ratio variation resulted from different likelihood of female larvae developing into sexuals (median 50% vs. 22.6% female sexuals) even when uniformly nursed by workers from another colony. Consistent differences in lifetime sex ratios and queen bias among queens of C. kagutsuchi suggest that heritable, genetic or maternal effects strongly affect caste determination. Such variation might provide the basis for adaptive evolution of queen and worker strategies, though it momentarily constrains the power of workers and queens to optimize caste ratios.  相似文献   

14.
In ants, mating and colony founding are critical steps in the life of ant queens. Outside of their nests, young queens are exposed to intense predation. Therefore, they are expected to have evolved behavior to accurately and quickly locate a nesting place. However, data on the early life history of female reproductives are still lacking. Leptothorax gredleri is a suitable model organism to study the behavior of young queens. Reproductives can be reared under artificial conditions and readily mate in the laboratory. After mating, L. gredleri queens have the options to found solitarily, seek adoption into another colony, or return into their natal nest. In this study, we investigated the decision-making processes of female sexuals before and after mating. In particular, we tested whether female sexuals use chemical cues to find their way back to the nest, studied if they prefer their own nest over other nesting sites and followed the adoption dynamics of mated queens over 8 weeks (plus hibernation and spring). We showed that female sexuals and freshly mated queens spent more time on substrate previously used by workers from their own colony and from another colony than on a blank substrate. This discriminatory capability of queens appears to be lost in old, reproductive queens. Nest choice experiments showed that female sexuals and freshly mated queens can distinguish their own nest while old mated queens’ do not. When reintroduced in their maternal colony, young queens were readily adopted, but a few weeks later aggression against young queens led to their emigration from the maternal nest and eventually also death.  相似文献   

15.
Inbreeding can lead to the expression of deleterious recessive alleles and to a subsequent fitness reduction. In Hymenoptera, deleterious alleles are purged in haploid males moderating inbreeding costs. However, in these haplodiploid species, inbreeding can result in the production of sterile diploid males. We investigated the effects of inbreeding on the individual and colony level in field colonies of the highly inbred ant Hypoponera opacior. In this species, outbreeding winged sexuals and nest‐mating wingless sexuals mate during two separate reproductive periods. We show that regular sib‐matings lead to high levels of homozygosity and the occasional production of diploid males, which sporadically sire triploid offspring. On the individual level, inbreeding was associated with an increased body size in workers. On the colony level, we found no evidence for inbreeding depression as productivity was unaffected by the level of homozygosity. Instead, inbred colonies altered their allocation strategies by investing more resources into sexuals than into workers. This shift towards sexual production was due to an increased investment in both males and queens, which was particularly pronounced in the dispersive generation. The absence of inbreeding depression combined with increased reproductive investment, especially in outbreeding sexuals, suggests that these ants have evolved active strategies to regulate the extent and effects of frequent inbreeding.  相似文献   

16.
Multiple mating has been suggested to benefit social insect queens because high genetic variation within colonies might decrease the load imposed by sterile diploid males, enhance resistance to parasites and pathogens, and lead to a more effective division of labour and/or a wider range of tolerable environmental conditions. We tested these hypotheses in the ant Lasius niger with three population samples from Switzerland and Sweden. We found no diploid males in young or mature colonies suggesting a lack of diploid male load. Colonies with multiply-mated queens were not larger nor did they produce more sexuals than colonies with singly-mated queens. We did find a significantly lower frequency of multiple mating among newly mated queens than among the queens heading mature colonies in one population sample (Switzerland 1997). However, this result was not repeated in the other study population, or in the following year in the Swiss population.  相似文献   

17.
We investigated population genetic structure, mating system, worker reproduction and thelytokous parthenogenesis in the desert ant Cataglyphis livida. Pedigree analyses at polymorphic microsatellite loci show that colonies are headed by a single queen, and that queens are mated with two to eight males. No inbreeding was found in the population sampled. Colonies are genetically differentiated and exhibit no isolation-by-distance pattern, consistent with independent foundation of new colonies. Workers do reproduce and lay haploid (arrhenotokous) eggs in queenless colonies; conversely, we found no evidence of worker reproduction in queenright nests. In contrast with C. cursor, where new queens are produced by thelytokous parthenogenesis, female sexuals and workers of C. livida arise from classical sexual reproduction. We discuss the parallels and contrasts between the mating system and population structure in C. livida and the other Cataglyphis species studied so far.  相似文献   

18.
In social Hymenoptera, relatedness asymmetries due to haplodiploidy often generate conflicts of genetic interest between queens and workers. Split sex ratios are common in ant populations and may result from such conflicts, with workers favoring the production of males in some colonies and of gynes in others. Such intercolonial differences may result from variations in relatedness asymmetries among colony members, but several examples are now known in which this hypothesis does not hold. We develop here a simple model assuming monogynous, monoandrous, worker-sterile, perennial colonies without dispersal restrictions. Workers may eliminate eggs of either sex and determine the caste of the female brood, but the queen controls the number of eggs of each sex she lays. In such conditions, we demonstrate that split sex ratios can result from queens adopting a mixed evolutionary stable strategy (ESS), with one option being to put a strict limit to the number of diploid eggs available and the alternative one to provide diploid eggs ad lib. In the former situation, workers should raise all diploid eggs as workers and release only male sexuals. In the latter, workers should adjust the caste ratio so as to reach the maximum sexual productivity for the colony, which is entirely invested into gynes. For a particular relative investment in gynes at the population level, between 0.5 (ESS under full queen control) and 0.75 (ESS under full worker control), an equilibrium is reached at which both strategies yield an equal genetic payoff to the queen. Male-specialized colonies are predicted to be equally abundant but less populous and less productive than gyne-specialized ones. Available data on the monogyne form of the fire ant, Solenopsis invicta, suggest that this model may apply in this case, although more specific studies are required to test these predictions.  相似文献   

19.
Workers of the ant Cardiocondyla elegans drop female sexuals into the nest entrance of other colonies to promote outbreeding with unrelated, wingless males. Corroborating the results from previous years, we document that carrier and carried female sexuals are typically related and that the transfer initially occurs mostly from their joint natal colonies to unrelated colonies. Female sexuals mate multiply with up to seven genetically distinguishable males. Contrary to our expectation, the colony growth rate of multiple‐mated and outbred female sexuals was lower than that of inbred or single‐mated females, leading to the question of why female sexuals mate multiply at all. Despite the obvious costs, multiple mating might be a way for female sexuals to “pay rent” for hibernation in an alien nest. We argue that in addition to evade inbreeding depression from regular sibling mating over many generations, assisted dispersal might also be a strategy for minimizing the risk of losing all reproductive investment when nests are flooded in winter.  相似文献   

20.
Summary Wingless (ergatoid) males of the tramp ant Cardiocondyla minutior attack and kill their young ergatoid rivals and thus attempt to monopolize mating with female sexuals reared in the colony. Because of the different strength of local mate competition in colonies with one or several reproductive queens, we expected the production of new ergatoid males to vary with queen number. Sex ratios were mostly female-biased, but in contrast to the sympatric species C. obscurior (Cremer and Heinze, 2002) neither the percentage of ergatoid males nor of female sexuals among the first 20 sexuals produced varied considerably with queen number. As in C. obscurior, experimental colony fragmentation led to the production of winged males, whereas in unfragmented control colonies only ergatoid males eclosed.Received 3 December 2003; revised 20 February 2004; accepted 23 February 2004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号