首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An earlier report (1a) has shown the utility of 8-N3cAMP (8-azidoadenosine-3′, 5′-cyclic monophosphate) as a photoaffinity probe for cAMP binding sites in human erythrocyte membranes. The increased resolution obtained using a linear-gradient SDS polyacrylamide gel system now shows that: (1) both cAMP and 8-N3cAMP stimulate the phosphorylation by [γ-32P]-ATP of the same red cell membrane proteins; (2) the protein of approximately 48,000 molecular weight whose phosphorylation by [γ-32P]-ATP is stimulated by cAMP and 8-N3cAMP migrates at a solwer rate than the protein in the same molecular weight range which is heavily photolabeled with [32P]-8-N3cAMP; (3) other cyclic nucleotide binding sites exist besides those initailly reported; (4) the variation in the ratio of incorporation of 32P-8-N3cAMP into the two highest affinity binding sites appears to be the result of a specific proteolysis of the larger protein.  相似文献   

2.
Previous studies have shown that the nontransformed AKR-2B mouse embryo derived cell line may growth arrest by two separate mechanisms in the G1 phase of the cell cycle-growth factor deficiency arrest (G0) and low molecular weight nutrient deficiency arrest. An examination of epidermal growth factor (EGF) receptors under the different resting or growth conditions has shown that rapidly growing cells or cells arrested due to growth factor deficiency have the expected amount of 125I-EGF binding with approximately 105 receptors per cell being present in G0 arrested cells. In contrast, cells arrested due to nutrient deficiency show a reduction in 125I-EGF binding to 10--20% of that observed under the other conditions. This effect appears to be due to decreased receptor number and not to a change in the affinity of the receptor. Stimulation of DNA synthesis by nutrient replenishment causes a tenfold increase in EGF binding 20 hours later, with some increase in binding being detectable as early as six hours. The increase in binding is inhibited by cycloheximide and actinomycin D. This suggests that new mRNA synthesis as well as increased protein synthesis is required for the increase in EGF binding.  相似文献   

3.
When human α2 macroglobulin (α2M) or its asialo-[3H]galactose derivative reacts with trypsin, a glycopeptide of molecular weight 3500–4000 is released from the α2M. The glycopeptide was purified on Biogel P-4 columns and its amino acid and carbohydrate composition were determined. The oligosaccharide contains sialic acid, galactose, mannose and GlcNAc in a ratio of 1.0:0.73:3.85:2.85 and is apparently attached to protein in a GlcNAc→asparagine linkage.  相似文献   

4.
DNA polymerase α/primase (Polα) is the key replication enzyme in eukaryotic cells. This enzyme synthesizes and elongates short RNA primers at an unwound origin of replication. Polα was used as an affinity ligand to identify cellular replication factors interacting with it. Protein complexes between Polα and cellular factors were analyzed by co-immunoprecipitations with monoclonal antibodies directed against Polα and by protein affinity chromatography of cell extracts derived from pure G1-and S-phase cell populations on Polα affinity columns. Co-immunoprecipitations resulted in the identification of a polypeptide with a molecular weight of 46 kDa. For Polα affinity chromatography, the ligand was purified from insect cells infected with a recombinant baculovirus encoding the catalytic subunit (p180) of Polα (Copeland and Wang, 1991). With 5×108 infected Sf9 cells, a rapid one step purification protocol was used which yielded in five hours 0.6 mg pure enzyme with a specific activity of 140,000 units/mg. The G1-and S-phase cell populations were generated by block, release and counterflow centrifugal elutriation of exponentially growing human MANCA cells. Starting with 2×109 non synchronous cells, 5×108 G1-phase cells were isolated. Chromatography of cell extracts derived from G1-or S-phase cells on Polα affinity columns resulted in identifying several polypeptides in the range of 40–70 kDa. Some of these polypeptides are more abundant in eluates derived from S-phase extracts than from G1-phase extracts.  相似文献   

5.
Nicotinic acid adenine dinucleotide phosphate is an evolutionarily conserved second messenger, which mobilizes Ca2+ from acidic stores. The molecular identity of the NAADP receptor has yet to be defined. In pursuit of isolating and identifying NAADP-binding proteins, we synthesized and characterized a bifunctional probe that incorporates both a photoactivatable crosslinking azido moiety at the 5-position of the nicotinic ring and a ‘clickable’ ethynyl moiety to the 8-adenosyl position in NAADP. Microinjection of this 5N3-8-ethynyl-NAADP into cultured U2OS cells induced robust Ca2+ responses. Higher concentrations of 5N3-8-ethynyl were required to elicit Ca2+ release or displace 32P-NAADP in radioligand binding experiments in sea urchin egg homogenates. In human cell extracts, incubation of 32P-5N3-8-ethynyl-NAADP followed by UV irradiation resulted in selective labeling of 23 kDa and 35 kDa proteins and photolabeling of these proteins was prevented when incubated in the presence of unlabeled NAADP. Compared to the monofunctional 32P-5N3-NAADP, the clickable 32P-5N3-8-ethynyl-NAADP demonstrated less labeling of the 23 kDa and 35 kDa proteins (~3-fold) but provided an opportunity for further enrichment through the ‘clickable’ ethynyl moiety. No proteins were specifically labeled by 32P-5N3-8-ethynyl-NAADP in sea urchin egg homogenate. These experiments demonstrate that 5N3-8-ethynyl-NAADP is biologically active and selectively labels putative NAADP-binding proteins in mammalian systems, evidencing a ‘bifunctional’ probe with utility for isolating NAADP-binding proteins.  相似文献   

6.
Malignant cell transformation is generally accompanied by changes in their interactions with environing matrix proteins in a way to facilitate their migration and generate invasion. Our results show the binding of rat colon adenocarcinoma PROb cells to fibronectin strongly reduced when compared to normal rat intestine epithelial cells. This decrease was not due to the level of α(s)β1 integrins expressed at the surface of the cell line. However, β1- and α(s)-associated subunits appeared to be structurally altered as shown by immunoprecipitation followed by electrophoresis. Pulse chase experiments using 35S methionine evidenced differences in the biosynthesis of β1- and α (s) associated integrins: normal epithelial IEC18 cells required 16 h for maximal biosynthesis of the completely mature β1 subunit, while PROb cells did it within 4-6 h. Studies using endoglycosidases O, H, D, and N glycanase confirmed that the molecular weight alterations were due to abnormal glycosylation and suggested that α(s)β1 integrins of PROb cells could bear both mature complex and immature high mannose types while IEC18 cells borne only mature complex type oligosaccharidic chains. Treatment of both cell types with castanospermine, an inhibitor of N-glycosylation, reduced the differences observed in their adhesion to the fibronectin without significantly affecting β1 receptors expression at the cell surface. These results strongly suggest a role of the glycosylation of β1 receptors in the adhesion of rat colon adenocarcinoma PROb cells to fibronectin substrata. © 1996 Wiley-Liss, Inc.  相似文献   

7.
The cytoplasmic DNA-binding proteins of Physarum polycephalum were recovered by chromatography of cytosol extracts on sequential columns of native and denatured calf thymus DNA-cellulose. 5.4% of the total cytosol protein was bound to native DNA-cellulose, while 4.4% was bound to denatured DNA-cellulose. Stepwise salt gradient elution of the columns separated the DNA-binding proteins into 9 fractions which were analysed by acrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Several hundred discrete polypeptide bands were identified, with many more high molecular weight polypeptides (greater than 100 000 D) binding to native than to denatured DNA. Continuous in vivo labelling of microplasmodia in KH2[32P]O4 and [3H]leucine was used to determine which of the DNA-binding proteins were phosphorylated, and to approximate their phosphorus content. About 30–40 phosphoproteins were resolved among the DNA-binding proteins. Most phosphoproteins contained less than 3 phosphates per polypeptide, but a small number of low molecular weight phosphoproteins (less than 50 000 D) contained from 5 to 10 phosphates per polypeptide. The majority of high molecular weight DNA-binding phosphoproteins bound to native DNA and were eluted with 0.25 M NaCl. As a group, the DNA-binding proteins were enriched in protein-bound phosphorus when compared with the cytosol proteins which did not bind to DNA. The phosphorus content of the cytoplasmic DNA-binding proteins was similar to that of the acidic nuclear proteins.  相似文献   

8.
Chlorella sorokiniana cells, cultured for 12 hours in 30 millimolar ammonium medium, contained an ammonium inducible nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase (NADP-GDH) isoenzyme with subunits having a molecular weight of 53,000. In vitro translation of total cellular poly(A)+ RNA, isolated from fully induced cells, resulted in synthesis of an NADP-GDH antigen with a molecular weight of 58,500. The 58,500 dalton antigen was processed in vitro, with a 100,000g supernatant prepared from broken fully induced Chlorella cells, to a protein with a molecular weight of 53,000. These data support the inference that the NADP-GDH subunit (Mr = 53,000) is initially synthesized as a larger precursor protein (Mr = 58,500). By use of a cytochemical staining procedure, dependent upon NADP-GDH catalytic activity, the holoenzyme was shown to be chloroplast-localized. An immunoelectron microscopy procedure, employing anti-NADP-GDH immunoglobulin G and Protein A-gold complex, showed that NADP-GDH antigen was absent from the nucleus but present in both the chloroplast and cytosol. Since synthesis of the enzyme can be inhibited by cycloheximide, the detection of NADP-GDH antigen in the cytosol was probably due to binding of the NADP-GDH antibody to nascent polypeptide chains of the precursor-protein being synthesized on cytosolic 80S ribosomes.  相似文献   

9.
Solubilization and Characterization of Striatal Dopamine Receptors   总被引:5,自引:5,他引:0  
Abstract: Dopamine receptor binding proteins were sol-ubilized with the detergent 3–(3–cholamidopropyl) dimethylammonio - 2 - hydroxy - 1– propanesulfonate (CHAPSO) from bovine and rat striatal membranes. The binding of the dopamine antagonist [3H]spiroperidol ([3H]Spi) to the solubilized dopamine receptors was determined by the polyethyleneglycol method. The CHAPSO-solubilized dopamine receptor binding proteins remain in the supernatant fraction following centrifuga-tion at 100,000 ×g for 2 h. The CHAPSO-solubilized dopamine receptor proteins, as well as the prelabeled [3H]Spi-receptor protein complex, bind specifically to wheat germ agglutinin (WGA)-agarose columns, which is consistent with an identification as glycoproteins. HPLC analysis of the CHAPSO-solubilized, prelabeled [3H]Spi-receptor protein complex (CHAPSO preparation) reveals association with a high molecular weight form, indicating the formation of aggregates and/or micelles. Treatment of the WGA-agarose-bound [3H]Spi-receptor protein complex with digitonin (CHAPSO-digitonin preparation) results in dissociation of the high molecular weight form into lower molecular weight forms. The HPLC profile of the prelabeled [3H]Spi-receptor complex in the CHAPSO-digitonin preparation reveals two radioactive peaks. The major peak had a retention time of 16 min, corresponding to an apparent MW of 175,000, whereas the minor peak had a retention time of 21 min, corresponding to an apparent MW of 49,000. The CHAPSO-solubilized dopamine receptor binding proteins are sensitive to modulation by GTP, indicating that the association with the GTP binding component is preserved in the “soluble” state. The potencies of dopamine antagonists and agonists for inhibiting the binding of [3H]Spi to CHAPSO-solubilized dopamine receptor proteins are similar to those for membrane-bound proteins. Chronic treatment with haloperidol increases the Bmax, and does not change the KD for [3H]Spi in the CHAPSO-solubilized and in the membrane-bound preparations. Thus, the CHAPSO-solubilized dopamine receptor proteins retain the binding characteristics of the supersensitive membrane-bound dopamine receptors.  相似文献   

10.
[3H]phenoxybenzamine of high specific activity (5.3 Ci/mmol) was synthesized and its binding to isolated, viable rat liver cells was studied. Phentolamine suppressible binding of [3H]phenoxybenzamine was irreversible and saturable (EC50: 10 nM, bmax: 200 fmol/mg wet cell weight). Competition-inhibition studies showed structural and stereoselectivity compatible with α-receptors. The IC50 of unlabelled phenoxybenzamine to reduce specific binding (9 nM) or to block adrenaline-induced phosphorylase activation in the same cells (2 nM) was similar, whereas the IC50 of agonists to suppress binding was higher than their EC50's for phosphorylase activation. The results represent the first example of labelling α-adrenoceptors in intact liver cells. The sites labelled by [3H]phenoxybenzamine mediate the block of phosphorylase activation by α-adrenoceptor antagonists. However, the relationship of these sites to receptors that mediate responses to physiological, low concentrations of catecholamines remains to be clarified.  相似文献   

11.
The 55,000 dalton polypeptide component of the membrane sector of the mitochondrial oligomycin sensitive ATPase has been purified by recycling chromatography on BioGel P-100. The amino acid composition of the purified polypeptide differs significantly from that of the α-subunit of F1 with which it shares a similar apparent molecular weight. However, the amino acid composition of the former is identical to that of the Factor B polypeptide, which is known to occur in oligomeric forms. Evidence is presented which suggests that the mitochondrial uncoupler binding proteins and the various oligomeric forms of the Factor B polypeptide, including the 55,000 dalton species described in the present report, are identical.  相似文献   

12.
A protein fraction has been purified from Gossypium hirsutum var. Coker 413 which synthesized all four geometrical isomers of farnesyl pyrophosphate from isopentenyl pyrophosphate alone, from isopentenyl pyrophosphate and geranyl or neryl pyrophosphate. Electrophoretic analysis showed that this protein fraction consisted of three proteins. One of these proteins contained isopentenyl pyrophosphate /ag dimethylallyl pyrophosphate isomerase activity. The other two proteins were insufficiently pure to characterize. Estimation of molecular weights by electrophoresis of the three proteins revealed values in the order of 3 × 104 to 1.3 × 105. However the same protein fraction eluted as one peak from Sepharose 6B molecular sieve columns, indicative of a larger protein component as could be accounted for by the electrophoretic molecular weight estimation. From these results and from the different products synthesized it is proposed that isopentenyl pyrophosphate /ag dimethylallyl pyrophosphate isomerase and prenyltransferase (farnesyl pyrophosphate synthetase) exists as a multiprotein complex in G. hirsutum.  相似文献   

13.
Newly synthesized, [35S]methionine-labeled cholesterol side-chain cleavage cytochrome P-450, 11β-hydroxylase cytochrome P-450, adrenodoxin, and adrenodoxin reductase were immunoisolated from radiolabeled bovine adrenocortical cells and from rabbit reticulocyte lysate translation systems programmed with bovine adrenocortical RNA. Cholesterol side-chain cleavage cytochrome P-450 immunoisolated from a reticulocyte lysate translation system had an apparent molecular weight of 54,500 whereas this cytochrome P-450 immunoisolated from radiolabeled bovine adrenocortical cells had an apparent molecular weight of 49,000, an apparent molecular weight identical to that of the purified protein. Similarly, newly synthesized, [35S]methionine-labeled 11β-hydroxylase cytochrome P-450 immunoisolated from a reticulocyte lysate translation system had an apparent molecular weight 5500 daltons larger than that immunoisolated from radiolabeled adrenocortical cells (48,000) and the authentic cytochrome (48,000). The cell-free translation products of adrenodoxin and adrenodoxin reductase were also several thousand daltons larger than the corresponding mitochondrial proteins. The apparent molecular weight of adrenodoxin immunoisolated from a reticulocyte lysate translation system was 19,000, while that of the authentic protein was 12,000. Adrenodoxin reductase immunoisolated from a lysate translation system had an apparent molecular weight of 53,400; an apparent molecular weight 2300 daltons larger than that of adrenodoxin reductase immunoisolated from radiolabeled adrenocortical cells or purified by conventional techniques. These results demonstrate that all of the components of the mitochondrial steroid hydroxylase systems of the bovine adrenal cortex are synthesized as precursor molecules of higher molecular weight. Presumably, the precursor proteins are post-translationally converted to the mature enzymes upon insertion into the mitochondrion by a process which includes the proteolytic cleavage of the precursor segments.  相似文献   

14.
α-l-Iduronidase has been purified 25,000-fold from the soluble proteins of human kidney by chromatography on heparin-Sepharose, hydroxylapatite, and Bio-Gel P-100. The α-l-iduronidase activity is associated with 80% of the protein in the most purified preparation. It has a molecular weight of 60,000 ± 6500, determined by sedimentation equilibrium, and can be dissociated by reduction into subunits of molecular weight 31,000 ± 6500 determined by polyacrylamide gel electrophoresis in sodium dodecyl sulfate in the presence of dithiothreitol. It contains glucosamine and binds to concanavalin A. The pH optimum, Km and Vmax for two substrates, phenyl iduronide and [3H]anhydromannitol iduronide, were found to be 4.0, 1.05 mm, 16 μmol/mg protein/min, and 4·5, 9 mm and 270 μmol/mg protein/min, respectively. The enzyme is of the low uptake, noncorrective form with respect to fibroblasts cultured from the skin of patients with Hurler syndrome. It is inhibited by 106 m p-chloromercuribenzoate and 10?3 m Cu2+, but is not significantly affected by other divalent cations, EDTA, or sulfhydryl compounds. Antibodies to α-l-iduronidase have been raised in goats.  相似文献   

15.
Abstract: The present results demonstrate stable expression of α-bungarotoxin (α-BGT) binding sites by cells of the GH4C1 rat pituitary clonal line. Wild-type GH4C1 cells do not express α-BGT binding sites, nor do they contain detectable mRNA for nicotinic receptor α2, α3, α4, α5, α7, β2, or β3 subunits. However, GH4C1 cells stably transfected with rat nicotinic receptor α7 cDNA (α7/GH4C1 cells) express the transgene abundantly as mRNA, and northern analysis showed that the message is of the predicted size. The α7/GH4C1 cells also express saturable, high-affinity binding sites for 125I-labeled α-BGT, with a KD of 0.4 nM and Bmax of 3.2 fmol/106 intact cells. 125I-α-BGT binding affinities and pharmacological profiles are not significantly different for sites in membranes prepared either from rat brain or α7/GH4C1 cells. Furthermore, KD and Ki values for 125I-α-BGT binding sites on intact α7/GH4C1 cells are essentially similar to those for hippocampal neurons in culture. Sucrose density gradient analysis showed that the size of the α-BGT binding sites expressed in α7/GH4C1 cells was similar to that of the native brain α-BGT receptor. Chronic exposure of α7/GH4C1 cells in culture to nicotine or an elevated extracellular potassium concentration induces changes in the number of α-BGT binding sites comparable to those observed in cultured neurons. Collectively, the present results show that the properties of α-BGT binding sites in transfected α7/GH4C1 cells resemble those for brain nicotinic α-BGT receptors. If the heterologously expressed α-BGT binding sites in the present study are composed solely of α7 subunits, the results could suggest that the rat brain α-BGT receptor has a similar homooligomeric structure. Alternatively, if α-BGT binding sites exist as heterooligomers of α7 plus some other previously identified or novel subunit(s), the data would indicate that the α7 subunits play a major role in determining properties of the α-BGT receptor.  相似文献   

16.
G protein-coupled receptors (GPCRs) transduce extracellular signals to the interior of the cell by activating membrane-bound guanine nucleotide-binding regulatory proteins (G proteins). An increasing number of proteins have been reported to bind to and regulate GPCRs. We report a novel regulation of the alpha2A adrenergic receptor (α2A-R) by the ubiquitous stress-inducible 70 kDa heat shock protein, hsp70. Hsp70, but not hsp90, attenuated G protein-dependent high affinity agonist binding to the α2A-R in Sf9 membranes. Antagonist binding was unchanged, suggesting that hsp70 uncouples G proteins from the receptor. As hsp70 did not bind G proteins but complexed with the α2A-R in intact cells, a direct interaction with the receptor seems likely. In the presence of hsp70, α2A-R-catalyzed [35S]GTPγS binding was reduced by approximately 70%. In contrast, approximately 50-fold higher concentrations of hsp70 were required to reduce agonist binding to the stress-inducible 5-hydroxytryptamine1A receptor (5-HT1A-R). In heat-stressed CHO cells, the α2A-R was significantly uncoupled from G proteins, coincident with an increased localization of hsp70 at the membrane. The contrasting effect of hsp70 on the α2A-R compared to the 5-HT1A-R suggests that during stress, upregulation of hsp70 may attenuate signaling from specific GPCRs as part of the stress response to foster survival.  相似文献   

17.
We have optimized and compared the synthesis of 1,2-epoxyoctane from 1-octene by resting and by growing cells of Pseudomonas oleovorans. The net production of 1,2-epoxyoctane by resting cells never exceeded 0.6 mg/ml of suspension. In contrast, P. oleovorans produced much more epoxide when it was grown on high levels of 1-octene. To raise the total production of epoxide, the octene layer was repeatedly transferred to fresh, growing cultures of P. oleovorans. By using this approach, a maximum of 28 mg of epoxide was synthesized per ml of total culture, resulting in the accumulation of ca. 75 mg of epoxide per ml in the octene phase.  相似文献   

18.
Dextransucrase from Leuconostoc mesenteroides B-512 catalyzes the polymerization of dextran from sucrose. The resulting dextran has 95% α-1 → 6 linkages and 5% α-1 → 3 branch linkages. A purified dextransucrase was insolubilized on Bio-Gel P-2 beads (BGD, Bio-Gel-dextransucrase). The BGD was labeled by incubating it with a very low concentration of [14C]sucrose or it was first charged with nonlabeled sucrose and then labeled with a very low concentration of [14C]sucrose. After extensive washings with buffer, the 14C label remained attached to BGD. This labeled material was previously shown to be [14C]dextran and was postulated to be attached covalently at the reducing end to the active site of the enzyme. When the labeled BGD was incubated with a low molecular weight nonlabeled dextran (acceptor dextran) all of the BGD-bound label was released as [14C]dextran whereas essentially no [14C]dextran was released when the labeled BGD was incubated in buffer alone under comparable conditions. The released [14C]dextran was shown to be a slightly branched dextran by hydrolysis with an exodextranase. Acetolysis of the released dextran gave 7.3% of the radioactivity in nigerose. Reduction with sodium borohydride, followed by acid hydrolysis, gave all of the radioactivity in glucose, indicating that the nigerose was exclusively labeled in the nonreducing glucose unit. These results indicated that [14C]dextran was being released from BGD by virtue of the action of the low molecular weight dextran and that this action gave the formation of a new α-1 → 3 branch linkage. A mehanism for branching is proposed in which a C3-OH on an acceptor dextran acts as a nucleophile on C1 of the reducing end of a dextranosyl-dextransucrase complex, thereby displacing dextran from dextransucrase and forming an α-1 → 3 branch linkage. It is argued that the biosynthesis of branched linkages does not require a separate branching enzyme but can take place by reactions of an acceptor dextran with a dextranosyl-dextransucrase complex.  相似文献   

19.
Abstract

A photoaffinity derivative of highly purified 125I-labelled epidermal growth factor (125I-EGF) has been synthesized. The heterobifunctional crosslinking reagent p-azidophenylglyoxal (PAPG) was bound to arginine residues in 125I-EGF. PAPG-125I-EGF bound to EGF receptors on rat fibroblasts and human A431 epidermoid carcinoma cells in culture. An apparent decreased affinity of PAPG-125I-EGF for the EGF receptor is in accord with at least one arginine being at or near the EGF receptor binding site. The PAPG-125I-EGF:EGF receptor complexes on rat cells were internalized to the same extent as control EGF:receptor complexes. A431 cells treated with PAPG-125I-EGF were irradiated with ultraviolet light and the labelled proteins were analyzed by SDS-polyacrylamide gel electrophoresis. The 3 major labelled proteins had apparent molecular weights ranging from 75,000 to 200,000. Only the labelling of the 200,000-Mr protein was prevented by the addition of excess unlabelled EGF with the PAPG-125I-EGF. This molecular weight is in agreement with the reported size of the EGF receptor plus EGF. A protein with apparent molecular weight of 100,000 was labelled by 125I-EGF by an unknown mechanism which was dependent on the dose of UV light and blocked by the addition of excess unlabelled EGF.  相似文献   

20.
Bovine lens α-crystallin has recently been shown to function as a molecular chaperone by stabilizing proteins against heat denaturation (Horwitz, J. (1992) Proc. Natl. Acad. Sci. USA, 89, 10449–10453). An investigation, using a variety of physico-chemical methods, is presented into the mechanism of stabilization. α-Crystallin exhibits properties of a surfactant. Firstly, a plot of conductivity of α-crystallin versus concentration shows a distinct inflection in its profile, i.e., a critical micelle concentration (cmc), over a concentration range from 0.15 to 0.17 mM. Gel chromatographic and 1H-NMR spectroscopic studies spanning the cmc indicate no change in the aggregated state of α-crystallin implying that a change in conformation of the aggregate occurs at the cmc. Secondly, spectrophotometric studies of the rate of heat-induced aggregation and precipitation of alcohol dehydrogenase (ADH), βL- and γ-crystallin in the presence of α-crystallin and a variety of synthetic surfactants show that stabilization against precipitation results from hydrophobic interactions with α-crystallin and monomeric anionic surfactants. Per mole of subunit or monomer, α-crystallin is the most efficient at stabilization. α-Crystallin, however, does not preserve the activity of ADH after heating. After heat inactivation, gel permeation HPLC indicates that ADH and α-crystallin form a high molecular weight aggregate. Similar results are obtained following incubation of βL- and γ-crystallin with α-crystallin. 1H-NMR spectroscopy of mixtures of α- and βL-crystallin, in their native states, reveals that the C-terminus of βB2-crystallin is involved in interaction with α-crystallin. In the case of γ- and α-crystallin mixtures, a specific interaction occurs between α-crystallin and the C-terminal region of γB-crystallin, an area which is known from the crystal structure to be relatively hydrophobic and to be involved in intermolecular interactions. The short, flexible C-terminal extensions of α-crystallin are not involved in specific interactions with these proteins. It is concluded that α-crystallin interacts with native proteins in a weak manner. Once a protein has become denatured, however, the soluble complex with α-crystallin cannot be readily dissociated. In the aging lens this finding may have relevance to the formation of high molecular weight crystallin aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号