首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rabbit antibodies raised against bovine kidney aldose reductase (ALR2) were shown to be monospecific by Western blot analysis of kidney homogenates. In addition, the antiserum (alpha-BKALR2) reacts with a single electrophoretic species in homogenates from rabbit, porcine, and human kidney. ALR2 has been detected in homogenates of bovine kidney, heart, brain and lens, and estimation of the enzyme level in these tissues was accomplished by densitometric analysis of Western blots. Standard curves using highly purified bovine kidney ALR2 were linear in the range of 5-100 ng; a similar sensitivity was seen in tissue homogenates. The results presented here for the ALR2 level in bovine tissues (kidney greater than heart greater than brain greater than lens) are in agreement with literature values for those tissues from which the enzyme has previously been purified. The interspecies similarity in electrophoretic mobility and the retention of antibody reactivity suggest extensive phylogenetic epitope conservation in mammalian aldose reductase.  相似文献   

2.
The biotransformation of isosorbide dinitrate (ISDN) by various tissues of the rabbit and rat was examined. Incubation of 2 X 10(-7) M ISDN at 37 degrees C with tissue homogenates of liver, lung, kidney, intestine, skeletal muscle, aorta, and erythrocytes from the rabbit and rat resulted in a significant disappearance of ISDN after a 30-min incubation (also, 5-min incubation for liver). The disappearance of ISDN in each tissue homogenate was accompanied by an equimolar production of the mononitrate metabolites, isosorbide-2-mononitrate (2-ISMN) and isosorbide-5-mononitrate (5-ISMN), with the exception of liver homogenates where the loss of ISDN could not be accounted for by mononitrate formation. The relative rate of ISDN disappearance in various tissue homogenates was for the male rabbit, liver greater than lung approximately intestine greater than kidney greater than erythrocytes approximately skeletal muscle approximately aorta; for the female rabbit, liver greater than kidney approximately lung approximately intestine greater than erythrocytes approximately skeletal muscle approximately aorta; and for the male rat, liver greater than intestine greater than erythrocytes greater than skeletal muscle greater than lung approximately kidney. A sex difference in the percent disappearance of ISDN was observed in homogenates of lung and intestine from male and female rabbits. In addition, a sex difference in the ratio of metabolite (2-ISMN/5-ISMN) formed by denitration of ISDN was seen in homogenates of lung, skeletal muscle, and erythrocyte lysate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Using immunoblots and an affinity-purified antibody prepared against human erythrocyte protein 4.9, we have demonstrated and quantified the presence of an immunoreactive form of this protein in avian and bovine brain and lens tissues, avian heart, as well as in human platelets and mammalian, avian, piscine, and amphibian erythrocytes. Both the 48 kDa and the 52 kDa variants were observed in human erythrocytes, whereas 50 kDa and 54 kDa immunoreactive forms were observed in human platelets. As reported for erythroid protein 4.9, platelet protein 4.9 was phosphorylated in response to treatment with phorbol ester. Bovine brain showed five cross-reactive polypeptides in the 47 to 52 kDa range while avian brain and avian and bovine lens exhibited predominantly a 49-kDa band. Cross-reactivity was not observed in a number of cell lines and tissues including leukocytes, liver, kidney, pancreas, and skeletal muscle. Immunofluorescence indicated that protein 4.9 was present in cortical fiber cells of avian lens and in neurons of avian cerebrum.  相似文献   

4.
Nitric oxide (NO) is generated from L-arginine by NO synthases. Localization of the brain enzyme has been carried out in the rat; however, despite data suggesting that NO is a major regulator of vascular and neural functions in man, there is no information about the localization of NO synthase in human tissues. Rabbit antisera to NO synthase purified from rat brain (antisera A and B) were raised, tested by Western blotting, affinity purification and enzyme immunoprecipitation assay, and used to investigate the distribution of the enzyme in a variety of human tissues by immunohistochemistry. Antisera to two synthetic peptides from cloned neural NO synthase were used to aid specificity testing. Anti-sera A and B reacted with a approximately 160-kDa protein in Western blots of human brain extracts, gave immunostaining of nerves, and precipitated enzyme activity from rat brain homogenates. Antiserum B to NO synthase also reacted with proteins of M(r) between 125 and 140 kDa in extracts of well-vascularised tissues, and immunostained vascular endothelium; the neural and vascular immunoreactivity persisted after affinity purification of antiserum B with the approximately 160 kDa protein. Endothelial staining with antiserum B was seen in respiratory tract, liver, skin and umbilicus; syncytial trophoblasts stained in the placenta. Neural staining with antiserum A and B was seen in the myenteric and submucous plexus, and in nerve fibres in smooth muscle of the gut and in many areas of the central nervous system, particularly cortex, hippocampus, hypothalamus, cerebellum, brain stem and spinal cord.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We have proposed earlier a three gene loci model to explain the expression of the aldo-keto reductases in human tissues. According to this model, aldose reductase is a monomer of alpha subunits, aldehyde reductase I is a dimer of alpha, beta subunits, and aldehyde reductase II is a monomer of delta subunits. Using immunoaffinity methods, we have isolated the subunits of aldehyde reductase I (alpha and beta) and characterized them by immunocompetition studies. It is observed that the two subunits of aldehyde reductase I are weakly held together in the holoenzyme and can be dissociated under high ionic conditions. Aldose reductase (alpha subunits) was generated from human placenta and liver aldehyde reductase I by ammonium sulfate (80% saturation). The kinetic, structural and immunological properties of the generated aldose reductase are similar to the aldose reductase obtained from the human erythrocytes and bovine lens. The main characteristic of the generated enzyme is the requirement of Li2SO4 (0.4 M) for the expression of maximum enzyme activity, and its Km for glucose is less than 50 mM, whereas the parent enzyme, aldehyde reductase I, is completely inhibited by 0.4 M Li2SO4 and its Km for glucose is more than 200 mM. The beta subunits of aldehyde reductase I did not have enzyme activity but cross-reacted with anti-aldehyde reductase I antiserum. The beta subunits hybridized with the alpha subunits of placenta aldehyde reductase I, and aldose reductase purified from human brain and bovine lens. The hybridized enzyme had the characteristic properties of placenta aldehyde reductase I.  相似文献   

6.
Immunochemical characterizations of aldose reductase and aldehyde reductases I and II, partially purified by DEAE-cellulose (DE-52) column chromatography from human tissues, were carried out by immunotitration, using antisera raised against the homogenous preparations of human and bovine lens aldose reductase and human placenta aldehyde reductase I and aldehyde reductase II. Anti-aldose reductase antiserum cross-reacted with aldehyde reductase I, anti-aldehyde reductase I antiserum cross-reacted with aldose reductase and anti-aldehyde reductase II antiserum precipitated aldehyde reductase II, but did not cross-react with aldose reductase or aldehyde reductase I from all the tissues examined. DE-52 elution profiles, substrate specificity and immunochemical characterization indicate that aldose reductase is present in human aorta, brain, erythrocyte and muscle; aldehyde reductase I is present in human kidney, liver and placenta; and aldehyde reductase II is present in human brain, erythrocyte, kidney, liver, lung and placenta. Monospecific anti-α and anti-β antisera were purified from placenta anti-aldehyde reductase I antiserum, using immunoaffinity techniques. Anti-α antiserum precipitated both aldehyde reductase I and aldose reductase, whereas anti-β antibodies cross-reacted with only aldehyde reductase I. Based on these studies, a three gene loci model is proposed to explain the genetic interrelationships among these enzymes. Aldose reductase is a monomer of α subunits, aldehyde reductase I is a dimer of α and β subunits and aldehyde reductase II is a monomer of δ subunits.  相似文献   

7.
Lens neutral endopeptidase (EC 3.4.24.5) was previously thought to be unique to the eye lens. We report here the finding of a neutral endopeptidase, in a variety of bovine and human tissues, which is very similar both biochemically and immunologically to the lens endopeptidase. SDS/polyacrylamide-gel electrophoresis of partially purified enzyme fractions from various bovine tissues shows the characteristic pattern of at least eight bands with Mr values ranging from 24,000 to 32,000 which was described for the bovine-lens neutral endopeptidase. The relative activity of the enzyme varies from tissue to tissue with lung having the highest activity. Partially purified enzyme fractions from these tissues cross-react with antiserum raised in rabbit against bovine lens endopeptidase showing apparent identity when examined side by side in Ouchterlony double-diffusion tests. The human enzyme also cross-reacts with the antiserum but when tested by double-diffusion against the bovine enzyme the precipitin lines show spurring at the joining edges indicating a structural difference between the human and the bovine enzymes. It was also found by Western blot experiments, after denaturing polyacrylamide-gel electrophoresis of the enzyme, that the polypeptide components of the human and bovine enzymes show somewhat different banding patterns.  相似文献   

8.
Tyrosine hydroxylase (TH) was purified from the soluble fraction of human adrenal glands. The enzyme in human adrenal glands that was purified to apparent homogeneity had an apparent Mr of about 280,000. Sodium dodecyl sulfate (SDS) gel electrophoresis gave a single band with a Mr of 60,000 similar to the Mr of bovine adrenal enzyme. The enzyme is considered to be composed of four identical subunits. The specific activity of the final preparation was approximately 310 nmol 3,4-dihydroxyphenylalanine (DOPA) formed/min/mg protein. The use of the “Western Blot” method showed that human adrenal TH did not aggregate as rapidly as bovine adrenal TH.  相似文献   

9.
Aldose reductase (ALR2) is susceptible to oxidative inactivation by copper ion. The mechanism underlying the reversible modification of ALR2 was studied by mass spectrometry, circular dichroism, and molecular modeling approaches on the enzyme purified from bovine lens and on wild type and mutant recombinant forms of the human placental and rat lens ALR2. Two equivalents of copper ion were required to inactivate ALR2: one remained weakly bound to the oxidized protein whereas the other was strongly retained by the inactive enzyme. Cys(303) appeared to be the essential residue for enzyme inactivation, because the human C303S mutant was the only enzyme form tested that was not inactivated by copper treatment. The final products of human and bovine ALR2 oxidation contained the intramolecular disulfide bond Cys(298)-Cys(303). However, a Cys(80)-Cys(303) disulfide could also be formed. Evidence for an intramolecular rearrangement of the Cys(80)-Cys(303) disulfide to the more stable product Cys(298)-Cys(303) is provided. Molecular modeling of the holoenzyme supports the observed copper sequestration as well as the generation of the Cys(80)-Cys(303) disulfide. However, no evidence of conditions favoring the formation of the Cys(298)-Cys(303) disulfide was observed. Our proposal is that the generation of the Cys(298)-Cys(303) disulfide, either directly or by rearrangement of the Cys(80)-Cys(303) disulfide, may be induced by the release of the cofactor from ALR2 undergoing oxidation. The occurrence of a less interactive site for the cofactor would also provide the rationale for the lack of activity of the disulfide enzyme forms.  相似文献   

10.
The concentration of cytoplasmic NADP(+)-dependent isocitrate dehydrogenase increased 20.2-fold during gonadotropin-induced development of the immature rat ovary. Measurement was by protein (Western) blotting using polyclonal antibodies raised against purified enzyme from the porcine corpus luteum. The increase in enzyme concentration during development correlated well with the 18.5-fold increase observed for the specific activity of the enzyme in the cytosolic fraction. An immunochemical similarity was demonstrated between the cytoplasmic enzyme from the ovary, testes, placenta, skeletal muscle, brain, liver, kidney, mammary and adrenal gland. However the mitochondrial NADP(+)-dependent isocitrate dehydrogenase from these tissues was found to be immunochemically distinct from the cytoplasmic enzyme. The concentration of the substrate D(+/-)-threo-isocitrate in the ovaries was measured by fluorometry and found to increase 3.1-fold during hormone-induced development. The intracellular concentration of substrate was estimated to be of the same order of magnitude as the enzyme concentration. We conclude that the increase in cytoplasmic NADP(+)-dependent isocitrate dehydrogenase activity observed during the gonadotropin-stimulated development of the rat ovary is due to increased concentration of enzyme rather than to an activation of the enzyme. The activity of the enzyme in vivo appears to be regulated by the availability of the substrate D(+/-)-threo-isocitrate.  相似文献   

11.
12.
Precipitating monospecific antibodies against purified bovine retinal rod outer segment phosphodiesterase (EC 3.1.4.17) were obtained from rabbit blood serum. These antibodies do not form precipitating complexes with phosphodiesterase isolated from rat or ox brain tissues or from the heart, lung, liver, kidney, testes and uterus of the rat. The antibodies inhibit the activity of retinal rod outer segment phosphodiesterase or that of rat brain, liver, heart and uterus enzyme (despite the lack of precipitation) but have no effect on the phosphodiesterase activity of preparations obtained from rat lungs, kidney or testes. The same effect on the phosphodiesterase activity of all these tissues is exerted by monovalent fragments of the antibodies. Using partially purified preparations of phosphodiesterase from retinal rod outer segments and brain of the ox and from human myometrium, the mechanisms of inhibition of the enzyme catalytic activity by the antibodies was studied. In the presence of the antibodies, the Km and V values appeared to be different, depending on the preparation. It was assumed that a certain site in the phosphodiesterase molecule is characterized by great structural rigidity. Taking into account the shifts in the Km values induced by the antibodies, the differences in the localization of the antigenic determinant in relation to the enzyme active center are discussed.  相似文献   

13.
Properties of inositol polyphosphate 1-phosphatase   总被引:8,自引:0,他引:8  
We recently described inositol polyphosphate 1-phosphatase, an enzyme which cleaves the 1-phosphate from inositol 1,4-bisphosphate (Ins(1,4)P2) and inositol 1,3,4-trisphosphate (Ins(1,3,4)P3) (Inhorn, R. C., and Majerus, P. W. (1987) J. Biol. Chem. 262, 15946-15952). We have now purified the enzyme to homogeneity from calf brain. The enzyme hydrolyzes 50.3 mumol of Ins(1,4)P2/min/mg protein. The enzyme has an apparent mass of 44,000 daltons as determined both by gel filtration chromatography and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, suggesting that it is monomeric. Lithium ions inhibit Ins(1,3,4)P3 hydrolysis uncompetitively with an apparent Ki of approximately 0.3 mM LiCl. Calcium inhibits hydrolysis of Ins(1,4)P2 and Ins(1,3,4)P3 equally, with approximately 40% inhibition occurring at 1 microM free Ca2+. Rabbit polyclonal antiserum against purified inositol polyphosphate 1-phosphatase was prepared which immunoprecipitates approximately 0.3 milliunits of activity/microliter serum (1 unit = 1 mumol of Ins(1,4)P2 hydrolyzed per min). This antiserum was used to determine the enzyme content in several bovine tissues, all of which had a similar intrinsic specific activity (i.e. approximately 0.3 milliunits/microliter antiserum). Tissues studied included brain, heart, kidney, liver, lung, parotid, spleen, testis, and thymus. Approximately 10-15% of the total inositol polyphosphate 1-phosphatase activity in calf brain homogenates remains in a particulate fraction; antiserum also binds 0.3 milliunits of membrane-associated activity/microliter antiserum. Thus, a single enzyme can account for Ins(1,4)P2 hydrolytic activity in the bovine tissues. Ins(1,3,4)P3 metabolism was also investigated in bovine tissue homogenates. Inositol polyphosphate 1-phosphatase accounts for greater than 80% of the hydrolytic activity in all tissues studied except brain, where inositol polyphosphate 4-phosphatase is the major enzyme that hydrolyzes Ins(1,3,4)P3. The apparent Km of inositol polyphosphate 1-phosphatase for Ins(1,3,4)P3 varies approximately 3-4-fold among the bovine tissues.  相似文献   

14.
The existence of a nucleoside triphosphate pyrophosphohydrolase specific for ITP has been demonstrated in the cytosol fraction of a variety of rat tissues. The enzyme, stable to moderate heat treatment, was present in erythrocytes as well as brain, heart, kidney, liver, lung, muscle, ovaries, spleen, testes and thymus. The specific activity of the enzyme ranges from 26 to 150 mumoles/min/g protein. In addition, evidence is given for a heat labile nucleoside diphosphate (IDP) phosphohydrolase present in most rat tissues, and particularly high in the adrenal (137 mumoles/min/g protein). An "ITP-IMP cycle" is proposed as a rgulating mechanism for intracellular levels of ATP.  相似文献   

15.
We have performed a combined biochemical and immunochemical study on the identity of peptidylarginine deiminases (EC 3.5.3.15) present in various mammalian tissues. First, we purified peptidylarginine deiminase from rat skeletal muscle. It gave a single band of molecular weight 83,000 in sodium dodecyl sulfate polyacrylamide gel electrophoresis. Next we immunized rabbits with the purified enzyme. The resulting antibodies reacted specifically with the antigen in Western blot assay. Most of the enzyme activities present in rat skeletal muscle, brain, spinal cord, submaxillary gland and spleen could be characterized as the same muscle-type enzyme by immunoprecipitation and Western blot assay. The antibodies did not react with enzyme samples obtained from rat hair follicles and bovine epidermis. The lack of immunoreactivity of the epidermal enzyme could not be accounted for by the species difference, since the antibodies reacted with a 83 kDa polypeptide of bovine brain, which was thought to represent a bovine counterpart of the muscle-type enzyme. The epidermal enzyme could be distinguished from the other enzyme samples by its high activity towards benzoylarginine. These data suggest the existence of at least three types of peptidylarginine deiminase in mammalian tissues, i.e., a muscle type, a hair follicle type, and an epidermal type.  相似文献   

16.
The immunological cross-reactivity of heterogeneous acid phosphatase isozymes from different human tissues has been studied using monospecific antisera prepared against four homogeneous acid phosphatases. The enzyme characterized as tartrate-inhibitable, prostatic acid phosphatase is also found to be present in leukocytes, kidney, spleen, and placenta. The tartrate-inhibitable (liver) lysosomal enzyme is also found in kidney, fibroblasts, brain, placenta, and spleen, but it is not detectable in erythrocytes and prostate. In several tissues, 10–20% of the tartrate-inhibitable enzyme is not precipitated by any of the antisera used; an exceptionally high amount (54%) of such an enzyme is present in human brain. Antiserum against a low molecular weight tartrate-resistant liver enzyme (14 kDa) does not cross-react with the erythrocyte enzyme. (10–20 kDa). All other tissues except placenta, prostate, and fibroblast cells show a cross-reactivity with the 14-kDa acid phosphatase antiserum. Thus, the low molecular weight human liver acid phosphatase is distinct from the erythrocyte enzyme, and there are also at least three different tartrate-inhibitable acid phosphatases in human tissues. Chromosomal assignments have been made for only two of the (at least) five acid phosphatases that are present in adult human tissues.This study was supported by DHHS Research Grant GM 27003 from the U.S. National Institute of General Medical Sciences and by Grant SFB-104 from the Deutsche Forschungsgemeinschaft.  相似文献   

17.
We have propsed earlier a three gene loci model to explain the expression of the aldo-keto reductases in human tissues. According to this model, aldose reductase is a monomer of α subunits, aldehyde reductase I is a dimer of α, β subunits, and aldehyde reductase II is a monomer of δ subunits. Using immunoaffinity methods, we have isolated the subunits of aldehyde reductase I (α and β) and characterized them by immunocompetition studies. It is observed that the two subunits of aldehyde reductase I are weakly held together in the holoenzyme and can be dissociated under high ionic conditions. Aldose reductase (α subunits) was generated from human placenta and liver aldehyde reductase I by ammonium sulfate (80% saturation). The kinetic, structural and immunological properties of the generated aldose reductase are similar to the aldose reductase obtained from the human erythrocytes and bovine lens. The main characteristic of the generated enzyme is the requirement of Li2SO4(0.4 M) for the expression of maximum enzyme activity, and its Km for glucose is less than 50 mM, whereas the parent enzyme, aldehyde reductase I, is completely inhibited by 0.4 M Li2SO4 and its Km for glucose is more than 200 mM. The β subunits of aldehyde reductase I did not have enzyme activity but cross-reacted with anti-aldehyde reductase I antiserum. The β subunits hybridized with the α subunits of placenta aldehyde I, and aldose reductase purified from human brain and bovine lens. The hybridized enzyme had the characteristics properties of placenta aldehyde reductase I.  相似文献   

18.
[14C]Arachidonic acid was converted to several lipoxygenase products by homogenates of human fetal tissues as determined by thin-layer chromatography. The net conversions of [14C]arachidonic acid to radiolabeled lipoxygenase products were high (greater than or equal to 5%) in the case of fetal liver and brain, and low (less than or equal to 2%) in the case of fetal adrenal, heart, and kidney.  相似文献   

19.
1. The distribution of thiol:protein-disulphide oxidoreductase (disulphide interchange enzyme) in 17 bovine tissue extracts was determined by rocket immunoelectrophoresis and by measuring the reductive cleavage of insulin. 2. The relative concentration (per mg total protein) was found to be in the order: Pancreas greater than liver greater than lymph node greater than testes, fat tissue greater than parotid gland, brain, spleen, lung greater than small intestine, spinal cord, large intestine, kidney greater than paunch, aorta greater than skeletal muscle greater than heart. 3. The distribution of specific activity showed a similar pattern, irrespectively of whether glutathione or L-cysteine was used as cosubstrate. 4. The concentration varied 200-fold and the specific activity 400-fold between pancreas and heart muscle, respectively. 5. Crossed immunoelectrophoresis demonstrated that a fast-migrating form of the enzyme was the only one present in almost all tissues, but 15% of the enzyme in liver was a slow-migrating form and 50% in heart muscle a medium-migrating form. 6. The lung contains a species having partial immunological identity to the enzyme. 7. Purified enzyme from bovine liver has a somewhat lower mobility than the fast-migrating form in extract. 8. The results seem to support the general view that the enzyme is involved in synthesis of disulphide-bonded extracellular proteins, although the presence of the enzyme in tissues like fat, brain, spinal cord, skeletal muscle and heart indicates other cellular functions as well.  相似文献   

20.
Conventional rabbit antibodies and mouse monoclonal antibodies were raised to alpha-L-fucosidase purified from human placenta. Four monoclonal antibodies were studied, of which only one (A) was able to immunoprecipitate the fucosidase activity completely. Two antibodies (B and C) precipitated 65% and one (D) 35% of the activity. The enzyme precipitated by the monoclonal antibodies remained fully active, whereas the enzyme precipitated by conventional antibodies was partly inactivated. As shown by the method of successive immunoprecipitations, the monoclonal antibodies B and C recognized the same set of placental fucosidase molecules, and D a subset thereof. The purified fucosidase also yielded two components after gel electrophoresis in nondenaturing conditions, and the slower component corresponded to the set recognized by antibodies B and C. The fucosidase extracted from different tissues and serum was studied by immunoprecipitation. In all cases, the enzyme was completely precipitated by monoclonal antibody A. Two patterns were found with B, C and D: either part of the activity was precipitated by these antibodies (leucocytes, placenta, brain, liver, spleen, thymus) or B, C and D failed to precipitate any of the enzyme (serum, heart, kidney, testes).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号