首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibition of Ca2+ uptake by the sarcoplasmic reticulum decreases cytosolic Ca2+ clearance and also triggers Ca2+ influx in response to Ca2+ store depletion. The role of extracellular Ca2+ in the contractures evoked by cyclo-piazonic acid (CPA) and thapsigargin (TG), Ca2+ pump inhibitors, was assessed in mouse diaphragm. At 3-100 microM, CPA elicited a rapid-onset contracture followed by a large elevation of muscle tone, which corresponded temporally to the monophasic slow contracture evoked by TG (1-30 microM). Irrespective of the differences in profiles, contractures were prevented and inhibited by the removal of extracellular Ca2+, but not by nicardipine and SK&F96365, blockers of voltage-gated (L-type) and receptor-operated Ca2+ channels. Mn2+ and Ni2+ preferentially depressed the fast-phase contracture, whereas long-term pretreatment with LY294002, U73122, and 2-aminoethoxydiphenylborance, inhibitors of phosphatidylinositol kinase, phospholipase C, and inositol trisphosphate receptors, suppressed the slow-phase contracture. When contracture was inhibited, the twitch response remained augmented and prolonged by CPA and TG, indicating that the inhibition was not due to malfunction of the contractile apparatus. For preparations incubated in Ca2+-free medium containing CPA, a monophasic fast upstroke of muscle tone developed as extracellular Ca2+ was restored. The results suggest that the bimodal contracture induced by CPA is mediated by the recruitment of distinct Mn2+- and U73122-sensitive Ca2+ entries. The ongoing two-component Ca2+ entries might merge if the muscle preparation was preconditioned with CPA in Ca2+-free medium to deplete cellular Ca2+ stores.  相似文献   

2.
To determine theeffect of plasma growth hormone (GH) on skeletal muscle function, wemeasured the free Ca2+concentration-tension relationship of slow-twitch (soleus) and fast-twitch (peroneus longus) muscles isolated from rats undergoing acromegaly in response to implanted, GH-secreting tumors. Muscles fromadult (9 mo) and aged rats (24 mo) were studied after the tumor-bearingrats weighed over 50% more than their age-matched controls.Ca2+-activated isometric tensionwas recorded from skinned muscle fibers. For soleus muscles, the freeCa2+ concentration producing 50%of maximal tension([Ca2+]50)was 2.0 µM for rats with tumors and 3.4-3.6 µM for controls. For peroneus longus fibers,[Ca2+]50shifted from 6.1-6.7 µM in controls to 3.5 µM after tumors were introduced into either adult or aged rats. Soleus muscle fibersfrom neonatal rats (14 days) were less sensitive toCa2+ than those isolated fromadult rats, having a[Ca2+]50of 7.3 µM. The Ca2+ sensitivityof peroneus longus fibers did not change with age. We conclude thatsignificant increases in myofibrillarCa2+ sensitivity occur in skeletalmuscles undergoing rapid growth induced by GH-secreting tumors.

  相似文献   

3.
Functionally separate intracellular Ca2+ stores in smooth muscle   总被引:8,自引:0,他引:8  
In smooth muscle, release via the inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)R) and ryanodine receptors (RyR) on the sarcoplasmic reticulum (SR) controls oscillatory and steady-state cytosolic Ca(2+) concentrations ([Ca(2+)](c)). The interplay between the two receptors, itself determined by their organization on the SR, establishes the time course and spatial arrangement of the Ca(2+) signal. Whether or not the receptors are co-localized or distanced from each other on the same store or whether they exist on separate stores will significantly affect the Ca(2+) signal produced by the SR. To date these matters remain unresolved. The functional arrangement of the RyR and Ins(1,4,5)P(3)R on the SR has now been examined in isolated single voltage-clamped colonic myocytes. Depletion of the ryanodine-sensitive store, by repeated application of caffeine, in the presence of ryanodine, abolished the response to Ins(1,4,5)P(3), suggesting that Ins(1,4,5)P(3)R and RyR share a common Ca(2+) store. Ca(2+) release from the Ins(1,4,5)P(3)R did not activate Ca(2+)-induced Ca(2+) release at the RyR. Depletion of the Ins(1,4,5)P(3)-sensitive store, by the removal of external Ca(2+), on the other hand, caused only a small decrease ( approximately 26%) in caffeine-evoked Ca(2+) transients, suggesting that not all RyR exist on the common store shared with Ins(1,4,5)P(3)R. Dependence of the stores on external Ca(2+) for replenishment also differed; removal of external Ca(2+) depleted the Ins(1,4,5)P(3)-sensitive store but caused only a slight reduction in caffeine-evoked transients mediated at RyR. Different mechanisms are presumably responsible for the refilling of each store. Refilling of both Ins(1,4,5)P(3)-sensitive and caffeine-sensitive Ca(2+) stores was inhibited by each of the SR Ca(2+) ATPase inhibitors thapsigargin and cyclopiazonic acid. These results may be explained by the existence of two functionally distinct Ca(2+) stores; the first expressing only RyR and refilled from [Ca(2+)](c), the second expressing both Ins(1,4,5)P(3)R and RyR and dependent upon external Ca(2+) for refilling.  相似文献   

4.
The effects of the voltage-sensitive, calcium channel blocking agents, D-600 and verapamil, on twitches and K+-induced contractures were studied using frog's toe muscles. K+-contracture tension was reduced by concentrations as low as 10(-8) M and the contractures were blocked by 10(-6) M. There was no significant difference in the effects of the two drugs. Twitches were potentiated by 5 X 10(-5) M D-600 and blocked only at 3 X 10(-4) M. The latter concentration also produced contractures in the toe muscles. As shown by other workers, the higher concentration also blocks action potential production and this is probably the way in which it blocks the twitch. Raising the bathing solution Ca2+ concentration from 1.08 to 10 or 20 mM, produced only a small, inconsistent, noncompetitive antagonism of the D-600 block of K+ contractures.  相似文献   

5.
Changes in cytoplasmic Ca2+ concentration and in Lii-Nao countertransport activity have been shown to be associated with essential hypertension. Elevated intracellular free [Ca2+], as well as abnormalities of Ca2+ binding and transport have been reported in cells from different tissues of hypertensive laboratory animals and essential hypertensive patients. Similarly, enhanced rates of Lii-Nao countertransport and the modified pattern of the temperature dependence of this activity in red blood cells from essential hypertensive patients have been previously demonstrated. The aim of the present study was to investigate possible interaction between changes in intracellular free [Ca2+] and the Lii-Nao exchange in human red blood cells. The ionophore ionomycin was used to allow Ca2+ incorporation into the cells in a dose-dependent manner. The elevation of intracellular [Ca2+], in turn, resulted in enhanced Li+ efflux from the cells. At 3 microM, ionomycin selectively and significantly enhanced the Lii-Nao countertransport but not Li+ leakage from the cells. EGTA totally abolished the effect of ionomycin, indicating that the effect is directly related to Ca2+. As low as 0.4 microM Ca2+ caused a statistically significant effect. The maximal effect of Ca2+ on the Lii-Nao countertransport was achieved around the external pH range of 6.8-7.5. In contrast, the leakage of Li+ was significantly enhanced by Ca2+ at a pH of 7.4 and above. Ca2+ did not affect the Km of the Lii-Nao countertransport for Li+. Amiloride, which inhibits Na+/H+ exchange, inhibited only 10% of the Ca2+-enhanced countertransport. It is concluded that Ca2+ may play a role in the regulation of Lii-Nao countertransport in erythrocytes.  相似文献   

6.
M Iino  T Yamazawa  Y Miyashita  M Endo    H Kasai 《The EMBO journal》1993,12(13):5287-5291
Neurotransmitters induce contractions of smooth muscle cells initially by mobilizing Ca2+ from intracellular Ca2+ stores through inositol 1,4,5-trisphosphate (InsP3) receptors. Here we studied roles of the molecules involved in Ca2+ mobilization in single smooth muscle cells. A slow rise in cytoplasmic Ca2+ ([Ca2+]i) in agonist-stimulated smooth muscle cells was followed by a wave of rapid regenerative Ca2+ release as the local [Ca2+]i reached a critical concentration of approximately 160 nM. Neither feedback regulation of phospholipase C nor caffeine-sensitive Ca(2+)-induced Ca2+ release was found to be required in the regenerative Ca2+ release. These results indicate that Ca(2+)-dependent feedback control of InsP3-induced Ca2+ release plays a dominant role in the generation of the regenerative Ca2+ release. The resulting Ca2+ release in a whole cell was an all-or-none event, i.e. constant peak [Ca2+]i was attained with agonist concentrations above the threshold value. This finding suggests a possible digital mode involved in the neural control of smooth muscle contraction.  相似文献   

7.
8.
This study was done to examine the effects of corticosterone, a glucocorticoid, on Ca2+ uptake, proteolysis, and Ca2+ channels in primary cultures of chick muscle cells, to clarify the mechanism of glucocorticoid action on muscle proteolysis. Chick muscle cells were incubated for 24 h in a medium containing corticosterone (30 ng/ml) when the cells were confluent (6 days). To examine the contribution of Ca2+ channels, nifedipine, a Ca2+ channels antagonist, was used. Ca2+ uptake measured with 45CaCl2 was increased three-fold by corticosterone, with a peak at 12 h after the treatment started. The growth of the cells estimated from the protein content and creatine kinase activity was not affected by corticosterone. Proteolysis, evaluated with [3H]tyrosine as a label of the protein and Ntau-methylhistidine release, was unchanged by corticosterone. However, the amount of easily releasable myofilament as a measure of myofibrillar disassembly in the muscle cells was increased by corticosterone, and prevented by nifedipine. These results show that corticosterone increases Ca2+ uptake and starts myofibrillar protein breakdown.  相似文献   

9.
The effect of neuropeptide Y (NPY) on cytosolic free Ca2+ concentration ([Ca2+]i) was studied in cultured smooth muscle cells from porcine aorta (PASMC) and compared with the effect of bradykinin (BK) and angiotensin II (ATII) on [Ca2+]i. All peptides induced dose-dependent and transient rises in [Ca2+]i which were not blocked by extracellular EGTA, but the NPY response was different from the others' as follows. First, the [Ca2+]i rise induced by NPY was not as rapid as that induced by BK or ATII. Second, pertussis toxin abolished the [Ca2+]i rise induced by NPY, but not by BK or ATII. Third, following initial treatment with BK, PASMC were able to respond to NPY, but not to ATII. Finally, BK and ATII, but not NPY, significantly increased inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) generation. Although NPY attenuated forskolin-induced accumulation of cyclic AMP, forskolin- and 3-isobutyl-1-methyl-xanthine-induced alterations in intracellular cyclic AMP did not affect the NPY-induced [Ca2+]i rise. These results suggest that NPY increases [Ca2+]i by a pertussis toxin-sensitive GTP binding protein-involved mechanism which is not mediated by the intracellular messengers such as Ins(1,4,5)P3 and cyclic AMP.  相似文献   

10.
Neurotrophins [e.g., brain-derived neurotrophic factor (BDNF), neurotrophin 4 (NT4)], known to affect neuronal structure and function, are expressed in nonneuronal tissues including the airway. However, their function is unclear. We examined the effect of acute vs. prolonged neurotrophin exposure on regulation of airway smooth muscle (ASM) intracellular Ca(2+) concentration ([Ca(2+)](i)): sarcoplasmic reticulum (SR) Ca(2+) release and Ca(2+) influx (specifically store-operated Ca(2+) entry, SOCE). Human ASM cells were incubated for 30 min in medium (control) or 1 or 10 nM BDNF, NT3, or NT4 (acute exposure) or overnight in 1 nM BDNF, NT3, or NT4 (prolonged exposure) and imaged after loading with the Ca(2+) indicator fura-2 AM. [Ca(2+)](i) responses to ACh, histamine, bradykinin, and caffeine and SOCE following SR Ca(2+) depletion were compared across cell groups. Force measurements were performed in human bronchial strips exposed to neurotrophins. Basal [Ca(2+)](i), peak responses to all agonists, SOCE, and force responses to ACh and histamine were all significantly enhanced by both acute and prolonged BDNF exposure (smaller effect of NT4) but decreased by NT3. Inhibition of the BDNF/NT4 receptor trkB by K252a prevented enhancement of [Ca(2+)](i) responses. ASM cells showed positive immunostaining for BDNF, NT3, NT4, trkB, and trkC (NT3 receptor). These novel data demonstrate that neurotrophins influence ASM [Ca(2+)](i) and force regulation and suggest a potential role for neurotrophins in airway diseases.  相似文献   

11.
12.
The relationship between Ca2+ current amplitudes and myoplasmic Ca2+ transients was studied in single muscle fibers. Segments of muscle fibers were voltage-clamped in a double Vaseline gap chamber. Ca2+ transients were measured as an optical signal derived from the interaction between Ca2+ and the dye antipyrylazo III. The cells were maintained at -90 mV. Ca2+ currents were detected at pulse potentials to -50 mV, reached a maximum value at 0 mV, were reduced in size for larger depolarizations, and reversed at about 40 mV. Ca2+ transients were also detected at -50 Mv and progressively increased in size with larger pulse potentials up to 10 mV. Depolarizations to voltages greater than 10 mV did not further increase the size of the transient. The magnitude and time course of transients from 10 to 70 mV were almost identical Ca2+ fluxes into the myoplasm (Ca2+ input fluxes) were calculated from the Ca2+ transients applying a removal model. The size of the input fluxes increased with depolarization up to 0 mV. Between 0 and 70 mV the peak input flux slightly increased, while the flux measured at 200 ms remained unchanged. In conclusion, Ca2+ transients and input fluxes were not reduced during pulses to large positive potentials, even though a drastic reduction of Ca2+ current occurred at these potentials. These observations make it very unlikely that a voltage-dependent Ca2+ entry is the triggering signal for contraction.  相似文献   

13.
In isolated, aequorin-injected ferret cardiac muscle we measured the apparent myofilament Ca2+ sensitivity and its relationship to twitch relaxation time in the presence of autonomic perturbations. The Ca2+-tension relation was determined from the peak aequorin luminescence and peak twitch tension measured in muscles across a broad range of bathing [Ca2+] in the presence and absence of acetylcholine (ACh) (1 microM) or isoproterenol (ISN) (1 microM), or both drugs. ACh shifted the relationship of peak tension to (peak) aequorin light leftward, which suggests an increase in myofilament Ca2+ sensitivity, but it did not alter relaxation, which was measured as the time for peak tension to decay by 50% (t 1/2 R). ISN produced its previously documented effects, i.e., a rightward shift of the relationship of peak tension to peak aequorin light and a decrease in t1/2R. ACh abolished the ISN effect on the peak tension-aequorin light relationship but did not reverse the effect of ISN to decrease t1/2R. The effects of ACh and ISN of modulating the apparent myofilament Ca2+ sensitivity in intact muscles, corroborate findings of previous studies in isolated myofibrillar preparations. However, these perturbations of myofilament Ca2+ sensitivity in the intact muscle do not relate to twitch relaxation, measured as t1/2R, since (a) ACh affects the former but not the later and (b) the effect of ISN on the Ca2+-tension relationship is abolished by ACh, while the relaxant effect persists.  相似文献   

14.
In the present study, we evaluated proapoptotic protein Bax on mitochondria and Ca2+ homeostasis in primary cultured astrocytes. We found that recombinant Bax (rBax, 10 and 100 ng/ml) induces a loss in mitochondrial membrane potential (Delta Psi m). This effect might be related to the inhibition of respiratory rates and a partial release of cytochrome c, which may change mitochondrial morphology. The loss of Delta Psi m and a selective permeabilization of mitochondrial membranes contribute to the release of Ca2+ from the mitochondria. This was inhibited by cyclosporin A (5 microM) and Ruthenium Red (1 microg/ml), indicating the involvement of mitochondrial Ca2+ transport mechanisms. Bax-induced mitochondrial Ca2+ release evokes Ca2+ waves and wave propagation between cells. Our results show that Bax induces mitochondrial alteration that affects Ca2+ homeostasis and signaling. These changes show that Ca2+ signals might be correlated with the proapoptotic activities of Bax.  相似文献   

15.
Changes in [Ca2+]i are essential in modulating a variety of cellular functions. In no other cell type does the regulation of [Ca2+]i reach the level of sophistication observed in cells of neuronal origin. Because of its physicochemical characteristics, the fluorescent Ca2+ indicator Fura-2 has become extremely popular among neuroscientists. The use of this probe, however, has generated a number of problems, in particular, extracytosolic trapping and leakage from intact cells. In the first part of this contribution we briefly discuss the practical application of Fura-2 to the study of [Ca2+]i in primary cultures of neurons and astrocytes. In the second part, we review some recent data (mainly from our laboratories) obtained in neurons and neuroendocrine cells, concerning the regulation of different types of Ca2+ channels and the role and mechanism of intracellular Ca2+ mobilization. The experimental evidence supporting the existence of a previously unrecognised organelle, the calciosome, that we hypothesize represents the functional equivalent in non-muscle cells of sarcoplasmic reticulum, will also briefly be discussed.  相似文献   

16.
In order to elucidate the role of tyrosine phosphorylation in vasoconstriction, we investigated the effects of inhibitors of tyrosine kinase (genistein, 30 microM) and phosphatase (sodium o-vanadate, 5 microM) on the contraction of aorta isolated from guinea pig. Genistein significantly inhibited norepinephrine-induced contraction, but it did not affect that induced by KCI. Thus, tyrosine phosphorylation may not be involved in the contractile response to KCI alone. The aortic contraction elicited by KCl was significantly augmented by sodium o-vanadate, which increased both the maximum force and pD2 values of KCl contraction. In the presence of verapamil, KCl-induced contraction was abolished even after pretreatment with sodium o-vanadate. Sodium o-vanadate also augmented Ca2+-induced contraction in the aortic strips depolarized with KCl, increasing both its maximum force and pD2 values. Neither basal 45Ca2+ uptake nor verapamil-sensitive 45Ca2+ uptake induced by KCl were affected by pretreatment with sodium o-vanadate. These results suggest that tyrosine phosphorylation is involved in the contraction of guinea-pig aorta not through transplasmalemmal Ca2+ entry but through increased Ca2+ sensitivity of the intracellular contractile pathway.  相似文献   

17.
18.
We observed the effects of ryanodine on the aequorin luminescence, membrane potential, and contraction of canine cardiac Purkinje fibers and ferret ventricular muscle. In canine Purkinje fibers, ryanodine (10 nM to 1 microM) abolished the spontaneous spatiotemporal fluctuations in [Ca2+] that occur as a result of Ca2+-induced Ca2+ release from the sarcoplasmic reticulum (SR) during exposure to low-Na+ solutions. Ryanodine strongly reduced the twitch and both components of the intracellular aequorin luminescence signal (L1 and L2), which normally accompanies contraction. The small luminescence signals that remained in ryanodine could be abolished by a Ca2+ channel blocker (nitrendipine, 10 microM). The plateau phase of the action potential was reduced by nitrendipine in the presence of ryanodine, which suggests that Ca2+ current was not blocked by ryanodine. In ferret ventricular tissue, ryanodine (1 microM) prolonged the action potential and reduced the peak amplitudes of both the aequorin transient and the twitch, while greatly prolonging the time-to-peak of both signals. Increases in extracellular [Ca2+] restored the peak amplitudes of the twitch and the aequorin luminescence, but did not restore the normal time-to-peak. The results show that in both tissues, the negative inotropic effect of ryanodine is due to the reduction of the intracellular [Ca2+] transient. Inasmuch as neither Ca2+ entry via surface membrane Ca2+ channels nor Na+-Ca2+ exchange appears to be blocked by ryanodine, the most probable cause of reduction of the [Ca2+] transient is an inhibition of Ca2+ release by the SR.  相似文献   

19.
20.
Alloxan is widely used to induce diabetes mellitus in experimental animals. Recent studies have provided evidence that alloxan has direct actions on cardiac muscle contraction. The aim of this study was to further investigate the mechanisms underlying the effects of alloxan on ventricular myocyte shortening and intracellular Ca2+ transport. Amplitude of myocyte shortening was reduced in a dose-dependent manner as the concentration of alloxan was increased in the range 10?7–10?4 M. Amplitude of shortening was reduced (56.8 ± 6.6%, n = 27) by 10?6 M alloxan and was partially reversed during a 10 min washout. Amplitude of the Ca2+ transient was also reduced (79.7 ± 2.9%, n = 29) by 10?6 M alloxan. Caffeine-evoked sarcoplasmic reticulum Ca2+ release, fractional release of Ca2+, assessed by comparing the amplitude of electrically evoked with that of caffeine-evoked Ca2+ transients, and fura-2-cell length trajectory during the late stages of relaxation of myocyte twitch contraction were not significantly altered by alloxan. The amplitude of L-type Ca2+ current was not altered by alloxan. Alterations in sarcoplasmic reticulum Ca2+ transport, myofilament sensitivity to Ca2+, and L-type Ca2+ current do not appear to underlie the negative inotropic effects of alloxan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号