首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The short-term effects of a simulated cattle dung pat on N2 fixation and total uptake of N in a perennial ryegrass/white clover mixture was studied in a container experiment using sheep faeces mixed with water to a DM content of 13%. We used a new 15N cross-labelling technique to determine the influence of dung-pat N on N2 fixation in a grass/clover mixture and the uptake of dung N in grass and clover. The proportion of N in clover derived from N2 fixation (%Ndfa) varied between 88–99% during the 16 weeks following application of the dung. There was no effect of dung on the %Ndfa in clover grown in mixture, whereas the %Ndfa in clover grown in pure stand decreased (nominal 2–3%) after dung application. Dung did not influence the amount of N2 fixed, and the uptake of dung N in grass and clover proceeded at an almost constant rate. After 16 weeks, 10% of the applied dung N was taken up by grass and clover, 57% had been incorporated in the soil by faunal activity and 27% remained in residual dung on the soil surface. The dung N unaccounted for (7%) was probably lost by ammonia volatilisation and denitrification. The uptake of dung N in grass/clover mixtures in the field was similarly followed by using simulated 15N-labelled dung pats. The total dry matter production and N yields increased in the 0–30 cm distance from the edge of the dung patch, but the proportion of clover decreased. Thirteen months after application of the dung 4% of the applied dung N was recovered in the harvested herbage, 78% was recovered from the soil and the residual dung, and 18% was not accounted for. It is concluded that N2 fixation in the dung patch border area in grass/clover mixtures is not influenced directly by the release of N from dung pats in the short term. However the amount of N2 fixed may be reduced, if the growth of clover is reduced in the patch border area.  相似文献   

2.
Dinitrogen fixation in white clover (Trifolium repens L.) grown in pure stand and mixture with perennial ryegrass (Lolium perenne L.) was determined in the field using 15N isotope dilution and harvest of the shoots. The apparent transfer of clover N to perennial ryegrass was simultaneously assessed. The soil was labelled either by immobilizing 15N in organic matter prior to establishment of the sward or by using the conventional labelling procedure in which 15N fertilizer is added after sward establishment. Immobilization of 15N in the soil organic matter has not previously been used in studies of N2 fixation in grass/clover pastures. However, this approach was a successful means of labelling, since the 15N enrichment only declined at a very slow rate during the experiment. After the second production year only 10–16% of the applied 15N was recovered in the harvested herbage. The two labelling methods gave, nonetheless, a similar estimate of the percentage of clover N derived from N2 fixation. In pure stand clover, 75–94% of the N was derived from N2 fixation and in the mixture 85–97%. The dry matter yield of the clover in mixture as percentage of total dry matter yield was relatively high and increased from 59% in the first to 65% in the second production year. The average daily N2 fixation rate in the mixture-grown clover varied from less than 0.5 kg N ha−1 day−1 in autumn to more than 2.6 kg N ha−1 day−1 in June. For clover in pure stand the average N2 fixation rate was greater and varied between 0.5 and 3.3 kg N ha−1 day−1, but with the same seasonal pattern as for clover in mixture. The amount of N fixed in the mixture was 23, 187 and 177 kg N ha−1 in the seeding, first and second production year, respectively, whereas pure stand clover fixed 28, 262 and 211 kg N ha−1 in the three years. The apparent transfer of clover N to grass was negligible in the seeding year, but clover N deposited in the rhizosphere or released by turnover of stolons, roots and nodules, contributed 19 and 28 kg N ha−1 to the grass in the first and second production year, respectively. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Lucero  D. W.  Grieu  P.  Guckert  A. 《Plant and Soil》2000,227(1-2):1-15
The combined effects of soil water deficit and above and below ground interspecific plant competition on the growth, water-use efficiency (WUE), and measured carbon isotopic composition (δ13C) values of white clover and ryegrass were studied. White clover and ryegrass were grown in specially designed crates 1) individually; 2) in shoot competition; or 3) in shoot + root competition and either well-watered or at a moderate or severe soil water deficit. The effects of shoot + root competition on shoot dry matter growth were substantial and benefited both white clover and ryegrass when well-watered or at a moderate soil water deficit, while severely reducing white clover shoot dry matter growth at severe soil water deficit. Plant competition did not affect the WUE of white clover or ryegrass. As soil water deficit increased, the WUE of white clover did not change whereas the WUE of ryegrass increased and was greater than that of white clover. This was attributed to the lower leaf water conductance of ryegrass which conserved water and maintained growth longer compared to white clover. A stronger correlation existed between soil water deficit and measured δ13C values for ryegrass at each plant competition level (P<0.001) than existed for white clover (individual: P<0.01; shoot + root: P<0.001; shoot: P<0.10). Unlike white clover, the relationship between measured δ13C values and shoot dry matter growth indicated that C assimilation for ryegrass was dependent on type of plant competition. That WUE remained constant for white clover while measured δ13C values increased as soil water deficit increased, suggests that the role below ground respiration rate played in determining δ13C values increased. The WUE of white clover appears to be independent of the nature of the competition between plants and the soil water deficit level at which it is grown, whereas for ryegrass, the addition of root competition to shoot competition should lead to increases in its WUE. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
An experiment is described in which the magnitude of N transferred from damaged white clover roots to perennial ryegrass was determined, using 15N labelling of the grass plant. There was no effect on the growth and N-fixation of the clover plants after removing part of the root system. The 15N data suggested that N had been acquired by all grass plants, even in plants grown alone with no further N supplied after labelling. However, after quantifying the mobile and stored N pools of the grass plants it was evident that significant transfer of N from clover to grass only took place from damaged clover roots. Dilution of the atom% 15N in the roots of the grass plants grown alone, and in association with undamaged clover roots, was explained by remobilisation of N within the plant.  相似文献   

5.
Summary Five genotypes of Trifolium repens and Lolium perenne were collected as neighbouring pairs along a fertility gradient in a natural pasture. After vegetative multiplication, the 25 possible combinations of Lolium genotype x Trifolium genotype were planted in the greenhouse in order to investigate competition between the genotypes. The comparison of the five combinations whose individual components had been neighbours with the combinations of genotypes that had not coexisted before disclosed no difference in total biomass production over 7 months. However, the yield of Trifolium increased when grown with the Lolium genotype which had been its natural neighbour, while the latter showed a decrease in yield. This neighbour specificity existed even when carryover effects from the sampling site had been eliminated (preconditioning period of 18 months) and when native Rhizobium strains were not present (inoculation with a non-native strain). The complex pattern of neighbour specificity with time indicated the importance of environmental conditions for its outcome. These results are a further confirmation of positive effects on the growth of Trifolium repens when grown together with its natural neighbour. They are discussed in the context of coexistence and coevolution  相似文献   

6.
Summary Sodium nitrate applications ranging from 0.36 to 22.84 mM N were shown to depress rates of nodule formation and reduce total nitrogen fixation (acetylene reduction) in white clover plants grown in aseptic test tube culture.Low nitrate levels gave an initial depression in symbiotic activity but the reduction was of short duration and these treatments were subsequently associated with enhanced rates of nodule formation and nitrogen fixation. As a result, phenotypic variation appeared to be strongly differentially affected by the amount of nitrate present. A subsequent experiment suggested that much of the variation was a consequence of early enhancement of plant growth rates by low levels of nitrate followed by rapid depletion thus giving a transitory inhibitory effect. This was confirmed in a third experiment in which the range of nitrate concentration was held constant. Differential effects on variability in nodule formation and nitrogen fixation were then greatly reduced but there was still a residual level of plant-to-plant variation. The results have clear implications for selecting genetic variants capable of fixing di-nitrogen in the presence of combined N. The provision of a single limiting dose of combined nitrogen to a population containing individuals with inherently different growth rates can bring about variations in the phenotypic expression of symbiotic characters. These variations are unlikely to be based on genetic factors which have a direct and stable effect on nodule development and nitrogenase activity. The implications of the results for plant breeding are discussed.  相似文献   

7.
Root exudates: a pathway for short-term N transfer from clover and ryegrass   总被引:16,自引:1,他引:15  
The short-term transfer of nitrogen (N) from legumes to grasses was investigated in two laboratory studies. One study was done in pots where the roots of white clover (Trifolium repens L.) and perennial ryegrass (Lolium perenne L.) were allowed to co-exist, and a second study was performed using a micro-lysimeter system designed to maintain nutrient flow from the clover to the grass, whilst removing direct contact between the root systems. The 15N-dilution technique was used to quantify the transfer of N between species. Levels of ammonia and amino acids were measured in root exudates. The amounts of N transferred were in the same order of magnitude in both the pot and micro-lysimeter experiments. In the micro-lysimeter experiment, 0.076 mg of N were transferred per plant from clover to ryegrass during the course of the experiment. Ammonium exudation was much higher than amino acid exudation. The most abundant amino acids in both clover and ryegrass root exudates were serine and glycine. However, there was no correlation between the free amino acid profile of root extracts and exudates for both plant species: Asparagine was the major amino acid in clover roots, while glutamine, glutamate and aspartate were the major amino acids in ryegrass roots. Comparison of exudates obtained from plants grown in non-sterile or axenic conditions provides evidence of plant origin of ammonium, serine and glycine.  相似文献   

8.
Three experiments are reported which examine the relative roles of host and Rhizobium genotypes as factors limiting clover (Trifolium repens L.) growth at low soil temperatures.In the first experiment un-nodulated clover and perennial ryegrass (Lolium perenne L.) were grown with non-limiting nitrate at root temperatures of 8, 10 and 12°C. The ryegrass had substantially better relative growth rates (RGR) than the clover with the biggest difference occurring at 8°C. Alterations in growth rate with temperature were more marked in clover than in ryegrass but the latter still produced several times more dry matter than clover at each temperature.In the subsequent experiments clover nodulated with different strains of rhizobia was grown with and without non-limiting additions of nitrate at root temperatures of 9, 12 and 15°C. Plants receiving nitrate generally produced more dry matter than those dependent upon Rhizobium for nitrogen but differences in yield between these treatments did not alter with temperature. This suggests that limitations imposed by nitrogen fixation are similar at both high and low temperatures. Indeed, there was some evidence that nitrogen limitations were rather more pronounced at the highest temperature. The first experiment clearly demonstrated that the clover genotype makes particularly poor use of nitrate at low root temperatures when compared to its common companion perennial ryegrass.It can be concluded that improvements in spring growth of clover will rest largely with alterations to the plant genotype and its ability to use combined nitrogen for growth at lower temperatures rather than with changes in rhizobia or any symbiotic characters.  相似文献   

9.
Summary Humidity, at the young nodes of white clover stolones, varied by enclosing nodes in the atmosphere above a range of saturated solutions, inhibited root initiation at 85% RH or less. The threshold humidity for root initiation increased to about 93% on young nodes subject to moisture stress or old nodes on well watered plants in which root initiation had been previously suppressed by low humidity.Roots at old nodes and at the three youngest on stolons were either subject to moisture stress or adequately watered. Growth of young roots and N2-fixation were more adversely affected by the direct effects of drought than by subjecting old roots to drought. Although old roots under stress affected new root growth and N2-fixation, length of roots and lateral root number were little affected. By contrast stolon growth was affected more by stress to old roots than to young nodes, although after 6 weeks the contribution made by young roots to stolon growth was almost as high as old roots.The data suggest that deep roots at old nodes will allow clover stolons to grow during drought due to the high acropetal movement of water but initiation of roots and functioning of young roots at the soil surface will be adversely affected, with possible implications on the persistence of clover.  相似文献   

10.
The ability of white clover (Trifolium repens L.) to undergo cold acclimation is an important determinant of its persistence in mixed swards since growth rate at low temperatures sustains higher clover contents at the start of spring. During a re-growth period following defoliation, a gradual exposure of the root system (cv. Grasslands Huia) led to some physiological and morphological changes of cold-adaptive significance, similar to those developed by clover ecotypes originating in northern areas of Europe. Thus, cold exposure of the root system resulted in small-leaved prostrate forms of white clover after one month of re-growth. Similarly, cold exposure increased the ability of plants to store nitrogen since the application of low temperatures to the root system enhanced soluble protein accumulation in roots and in stolons. More specifically, cold exposure of the roots induced gene expression of a vegetative storage protein (17.3 kDa VSP) in both organs. These results demonstrate that the root system of clover plants should be a site of perception of the low-temperature stimulus, and gave rise to the question of the transduction of the cold signal from the roots to the aerial parts. On the basis of this study and taking into account molecular aspects concerning the clover VSP, it is suggested that this protein could participate in cold acclimation in addition to its role in nitrogen storage.  相似文献   

11.
Summary White clover (Trifolium repens L.) plants grown in pots and supplied with the same concentration x days of15N labelled nitrate, but in contrasting patterns and doses had similar N concentrations but differed in the proportions devived from N2 fixation and nitrate. N2-fixation and nodule dry weight responded rapidly (2–3 days) to changes in nitrate availability. Plants exposed frequently to small doses of nitrate took up more nitrate (and hence relied less on N2-fixation) and had greater dry weights and shoot: root ratios than those exposed to larger doses less often. In mixed ryegrass (Lolium perenne L.)/clover communities clover's ability to either successfully compete for nitrate or fix N2 gave it consistently higher N concentrations than grass whether they were given high or low nitrate nutrient. This higher N concentration was accompanied by greater dry weights than grass in the low nitrate swards but not where high levels of nitrate were applied.  相似文献   

12.
An aluminium (Al) tolerant genotype of white clover was compared with an Al susceptible genotype in artificial soil profiles in which exchangeable Al increased with depth. The tolerant genotype had a greater proportion of its root mass deeper in the soil than the susceptible genotype. Nitrogenase activity showed a similar pattern. Shoot Al concentration did not vary between the genotypes but root Al in the susceptible line was twice that in the tolerant genotype. Plant potassium content in the susceptible line was relatively less, probably in response to higher aluminium content.  相似文献   

13.
The apparent transfer of N from clover to associated grass was evaluated over a four year period both on the basis of harvested herbage and by taking account of changes in N in stubble and root (to 10 cm depth) in swards with perennial ryegrass and three different white clover cultivars differing in leaf size. The large leaved Aran transferred 15% of its nitrogen while Huia transferred 24% and the small leaved Kent Wild White transferred 34%. When changes in stubble and root N were taken into account the percentage of N transferred was calculated to be 5% less than in harvested herbage only, as the small leaved types had proportionately more N in the roots and stolons, but the large leaved type was probably more competitive towards the grass.Loss of N from clover roots from July to October was compared to that from grass roots in a grass/white clover sward continuously stocked with steers using a method which incorporated tissue turnover and 15N dilution techniques. Less than 1 mg N m-2 d-1 was lost from the grass roots. In contrast 8 mg m-2 d-1 were estimated to be lost from clover roots while 12 mg N m-2 d-1 were assimilated.It is concluded that clover cultivar and competitive ability on grass have to be taken into account together with the relationship between N turnover in roots and N available for grass growth when modelling N transfer in grass/clover associations.  相似文献   

14.
Effects of polyethylene glycol (PEG)-induced water stress on the activities of total leaf superoxide dismutase (SOD) and chloroplast SOD (including thylakoid-bound SOD and stroma SOD) are described in white clover (Trifolium repens L.) grown in solution culture from rooted cuttings. Both leaf SOD and chloroplast SOD activities were markedly enhanced with increasing concentration of PEG stress, generating osmotic potentials around the roots 0, −0.5, −1.0, −1.5 MPa. The effects increased with time up to 72 h. Chloroplast Fe-containing SOD represented about 30% of the total leaf SOD activity in the control plants and a significant increase in chloroplast SOD activity was found during the stress period. This accounted for about 35.5–71.1% of the total leaf SOD activity. The proportion of chloroplast SOD in total leaf SOD not only increased with the decreasing of osmotic potential, but also increased with incubation time. Furthermore, the increase in thylakoid-bound SOD activity was much higher than that of stroma SOD in chloroplast of plants under water stress. The enhanced chloroplastic SOD activity, especially thylakoid-bound SOD activity, demonstrated in Trifolium repens suggests that Fe-SOD located in chloroplasts play a more important role than cytosolic Cu/Zn-containing SODs in scavenging O2 .  相似文献   

15.
Genotypes of white clover that exhibited divergent responses to P were identified in a glasshouse pot trial. Six high P-responding genotypes were selected from previously identified high P-responding cultivars and 5 low P-responding genotypes were selected from previously identified low P-responding cultivars. These were crossed in a full diallel design without selfing and reciprocals were kept separate. The P-response of progeny lines was compared with parents. High P-response was dominant over low P-response with progeny from crosses between high and low P-response genotypes being similar to the high P-response parent. Reciprocal effects were not significant. The general combining abilities of high P-response genotypes were generally greater than that of the low P-response genotypes, although there were significant specific combining abilities. Narrow sense heritabilities for P response were moderate, 0.46 based on the linear coefficient and 0.33 based on the quadratic coefficient of the fitted response curves.The mode of inheritance, feasibility of manipulating differences in P response by breeding and future directions of this work are discussed.Deceased.Deceased.  相似文献   

16.
A putative contribution of polyamines to the control of peptidase activity expression during re-growth was studied in source organs (roots and stolons) of defoliated white clover (Trifolium repens L.). Endopeptidase activity increased in roots during the first 6 days following complete defoliation, while exopeptidase expression seemed to be restricted to the early hours of re-growth. These changes correlated with an immediate 80% decline in the content of total free polyamines, mainly represented by the diamine cadaverine. The inhibitory capacities of cadaverine and spermine were tested on enzyme activity in vitro in order to elucidate whether the endogenous polyamine level was associated with the cut-induced endopeptidase expression. Cadaverine seemed to inhibit endopeptidase activity of stolons but not root endopeptidase activity. These data support the view that polyamines may play a role in the regulation of peptidase expression in source organs of white clover during post-clipping re-growth. The existence of different endopeptidase isoforms in roots and stolons is discussed in relation to the molecular mechanisms by which polyamines may regulate their activities.Abbreviations AP aminopeptidase - Cad cadaverine - CP carboxypeptidase - EP endopeptidase - PA(s) polyamine(s) - Spm spermine  相似文献   

17.
A field study was carried out near Zürich (Switzerland) to determine the yield of symbiotically fixed nitrogen (15N dilution) from white clover (Trifolium repens L.) grown with perennial ryegrass (Lolium perenne L) and from red clover (Trifolium pratense L.) grown with Italian ryegrass (Lolium multiflorum Lam.). A zero N fertilizer treatment was compared to a 30 kg N/ha per cut regime (90 to 150 kg ha−1 annually). The annual yield of clover N derived from symbiosis averaged 131 kg ha−1 (49 to 227 kg) without N fertilization and 83 kg ha−1 (21 to 173 kg) with 30 kg of fertilizer N ha−1 per cut in the seeding year. Values for the first production year were 308 kg ha−1 (268 to 373 kg) without N fertilization and 232 kg ha−1 (165 to 305 kg) with 30 kg fertilizer N ha−1 per cut. The variation between years was associated mainly with the proportion of clover in the mixtures. Apparent clover-to-grass transfer of fixed N contributed up to 52 kg N ha−1 per year (17 kg N ha−1 on average) to the N yield of the mixtures. Percentage N derived from symbiosis averaged 75% for white and 86% for red clover. These percentages were affected only slightly by supplemental nitrogen, but declined markedly during late summer for white clover. It is concluded that the annual yield of symbiotically fixed N from clover/grass mixtures can be very high, provided that the proportion of clover in the mixtures exceeds 50% of total dry mass yield.  相似文献   

18.
Elgersma  Anjo  Hassink  Jan 《Plant and Soil》1997,197(2):177-186
To increase our insight into the above- and belowground N flows in grass and grass-clover swards relations between crop and soil parameters were studied in a cutting trial with perennial ryegrass (Lolium perenne) monocultures and ryegrass–white clover (Trifolium repens) mixtures. The effects of clover cultivar on herbage yield, the amount of clover-derived nitrogen, apparent N transfer to companion grass, dynamics of N and organic matter in the soil were estimated.The grass monocultures had very low DM yields (<2.1 t ha-1) and a low N concentration in the harvested herbage. During 1992–1995 the annual herbage DM yield in the mixtures ranged from 7.0 to 14.3 t ha-1, the white clover DM yield from 2.4 to 11.2 t ha-1 and the mean annual clover content in the herbage DM harvested from 34 to 78%. Mixtures with the large-leaved clover cv. Alice yielded significantly more herbage and clover DM and had a higher clover content than mixtures with small/medium-leaved cvs. Gwenda and Retor. Grass cultivar did not consistently affect yield, botanical composition or soil characteristics.The apparent N2 fixation was very high, ranging from 150 to 545 kg N ha-1 in the different mixtures. For each tonne of clover DM in the harvested herbage 49 to 63 kg N was harvested, while the apparent N transfer from clover to grass varied between 55 and 113 kg N ha-1 year-1.The net N mineralization rate was lower under monocultures than under mixtures. The C mineralization and the amounts of C and N in active soil organic matter fractions were similar for monocultures and mixtures, but the C:N ratio of the active soil organic matter fractions were higher under grass than under mixtures. This explains the lower N mineralization under grass.  相似文献   

19.
It was the aim of this study to determine the way in which low temperature modifies the effect of a competing grass on nitrogen fixation of a forage legume. White clover (Trifolium repens L.) was grown in monoculture or in different planting ratios with timothy (Phleum pratense L.) or perennial ryegress (Lolium perenne L.) in growth chambers at either 7.5/5°C (LoT) or 15/10°C (HiT) average day/night temperatures, and with 2.5 or 7.5 mM 15N-labelled nitrate in the nutrient solution.Competition with grass led to a marked increase in the proportion of clover nitrogen derived from symbiosis (% Nsym). This increase was slower at LoT where % Nsym was reduced considerably; it was closely related to the reduction in the amount of available nitrate as a result of its being utilized by the grass.Nitrogen concentration in white clover herbage and dry matter yield per clover plant were reduced, for the most part, when a competing grass was present. The amount of nitrogen fixed per plant of white clover decreased markedly with temperature. Low temperature consequently accentuated competition for nitrate. The capacity of white clover to compete successfully was limited by its slower growth and nitrogen accumulation.  相似文献   

20.
Summary Transplants of white clover (Trifolium repens L.) were grown isolated from each other and in pairs placed at different distances apart. The paired plants developed asymmetrically and at the interface between paired clones both the density of nodes and of stolons appeared to reach ceiling values that were of the same order as those achieved in isolated clones. It is argued that the growth of plants of T. repens is controlled by the local conditions experienced by the plant parts and not by integrated growth of the whole. Transplants of three different genotypes of T. repens, which differed in growth form, were grown as neighbouring pairs and the calculated asymmetry of the plants was used to compare their mutual aggressivenes. The more compact (phalangeal) genotypes induced greater asymmetry in their neighbours than the more diffuse forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号