首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The marine archaebacterium Methanococcus jannaschii was studied at high temperatures and hyperbaric pressures of helium to investigate the effect of pressure on the behavior of a deep-sea thermophile. Methanogenesis and growth (as measured by protein production) at both 86 and 90°C were accelerated by pressure up to 750 atm (1 atm = 101.29kPa), but growth was not observed above 90°C at either 7.8 or 250 atm. However, growth and methanogenesis were uncoupled above 90°C, and the high-temperature limit for methanogenesis was increased by pressure. Substantial methane formation was evident at 98°C and 250 atm, whereas no methane formation was observed at 94°C and 7.8 atm. In contrast, when argon was substituted for helium as the pressurizing gas at 250 atm, no methane was produced at 86°C. Methanogenesis was also suppressed at 86°C and 250 atm when the culture was pressurized with a 4:1 mix of H2 and CO2, although limited methanogenesis did occur when the culture was pressurized with H2.  相似文献   

2.
Crustaceans comprise an ecologically and morphologically diverse taxonomic group. They are typically considered resilient to many environmental perturbations found in marine and coastal environments, due to effective physiological regulation of ions and hemolymph pH, and a robust exoskeleton. Ocean acidification can affect the ability of marine calcifying organisms to build and maintain mineralized tissue and poses a threat for all marine calcifying taxa. Currently, there is no consensus on how ocean acidification will alter the ecologically relevant exoskeletal properties of crustaceans. Here, we present a systematic review and meta‐analysis on the effects of ocean acidification on the crustacean exoskeleton, assessing both exoskeletal ion content (calcium and magnesium) and functional properties (biomechanical resistance and cuticle thickness). Our results suggest that the effect of ocean acidification on crustacean exoskeletal properties varies based upon seawater pCO2 and species identity, with significant levels of heterogeneity for all analyses. Calcium and magnesium content was significantly lower in animals held at pCO2 levels of 1500–1999 µatm as compared with those under ambient pCO2. At lower pCO2 levels, however, statistically significant relationships between changes in calcium and magnesium content within the same experiment were observed as follows: a negative relationship between calcium and magnesium content at pCO2 of 500–999 µatm and a positive relationship at 1000–1499 µatm. Exoskeleton biomechanics, such as resistance to deformation (microhardness) and shell strength, also significantly decreased under pCO2 regimes of 500–999 µatm and 1500–1999 µatm, indicating functional exoskeletal change coincident with decreases in calcification. Overall, these results suggest that the crustacean exoskeleton can be susceptible to ocean acidification at the biomechanical level, potentially predicated by changes in ion content, when exposed to high influxes of CO2. Future studies need to accommodate the high variability of crustacean responses to ocean acidification, and ecologically relevant ranges of pCO2 conditions, when designing experiments with conservation‐level endpoints.  相似文献   

3.
Growth of a Bacterium Under a High-Pressure Oxy-Helium Atmosphere   总被引:3,自引:3,他引:0       下载免费PDF全文
Growth of a barotolerant marine organism, EP-4, in a glutamate medium equilibrated with an oxy-helium atmosphere at 500 atmospheres (atm; total pressure) (20°C) was compared with control cultures incubated at hydrostatic pressures of 1 and 500 atm. Relative to the 1-atm control culture, incubation of EP-4 at 500 atm in the absence of an atmosphere resulted in an approximately fivefold reduction in the growth rate and a significant but time variant reduction in the rate constants for the incorporation of substrate into cell material and respiration. Distinct from the pressurized control and separate from potential effects of dissolution of helium upon decompression of subsamples, exposure of the organism to high-pressure oxy-helium resulted in either a loss of viability of a large fraction of the cells or the arrest of growth for one-third of the experimental period. After these initial effects, however, the culture grew exponentially at a rate which was three times greater than the 500-atm control culture. The rate constant for the incorporation of substrate into cell material was also enhanced twofold in the presence of high-pressure oxy-helium. Dissolved oxygen was well controlled in all of the cultures, minimizing any potential toxic effects of this gas.  相似文献   

4.
High-pressure CO2 treatment has been studied as a promising method for inactivating bacterial spores. In the present study, we compared this method with other sterilization techniques, including heat and pressure treatment. Spores of Bacillus coagulans, Bacillus subtilis, Bacillus cereus, Bacillus licheniformis, and Geobacillus stearothermophilus were subjected to CO2 treatment at 30 MPa and 35°C, to high-hydrostatic-pressure treatment at 200 MPa and 65°C, or to heat treatment at 0.1 MPa and 85°C. All of the bacterial spores except the G. stearothermophilus spores were easily inactivated by the heat treatment. The highly heat- and pressure-resistant spores of G. stearothermophilus were not the most resistant to CO2 treatment. We also investigated the influence of temperature on CO2 inactivation of G. stearothermophilus. Treatment with CO2 and 30 MPa of pressure at 95°C for 120 min resulted in 5-log-order spore inactivation, whereas heat treatment at 95°C for 120 min and high-hydrostatic-pressure treatment at 30 MPa and 95°C for 120 min had little effect. The activation energy required for CO2 treatment of G. stearothermophilus spores was lower than the activation energy for heat or pressure treatment. Although heat was not necessary for inactivationby CO2 treatment of G. stearothermophilus spores, CO2 treatment at 95°C was more effective than treatment at 95°C alone.  相似文献   

5.
The short-term effects of temperature on methanogenesis from acetate or CO2 in a thermophilic (58°C) anaerobic digestor were studied by incubating digestor sludge at different temperatures with 14C-labeled methane precursors (14CH3COO or 14CO2). During a period when Methanosarcina sp. was numerous in the sludge, methanogenesis from acetate was optimal at 55 to 60°C and was completely inhibited at 65°C. A Methanosarcina culture isolated from the digestor grew optimally on acetate at 55 to 58°C and did not grow or produce methane at 65°C. An accidental shift of digestor temperature from 58 to 64°C during this period caused a sharp decrease in gas production and a large increase in acetate concentration within 24 h, indicating that the aceticlastic methanogens in the digestor were the population most susceptible to this temperature increase. During a later period when Methanothrix sp. was numerous in the digestor, methanogenesis from 14CH3COO was optimal at 65°C and completely inhibited at 75°C. A partially purified Methanothrix enrichment culture derived from the digestor had a maximum growth temperature near 70°C. Methanogenesis from 14CO2 in the sludge was optimal at 65°C and still proceeded at 75°C. A CO2-reducing Methanobacterium sp. isolated from the digestor was capable of methanogenesis at 75°C. During the period when Methanothix sp. was apparently dominant, sludge incubated for 24 h at 65°C produced more methane than sludge incubated at 60°C, and no acetate accumulated at 65°C. Methanogenesis was severely inhibited in sludge incubated at 70°C, but since neither acetate nor H2 accumulated, production of these methanogenic substrates by fermentative bacteria was probably the most temperature-sensitive process. Thus, there was a correlation between digestor performance at different temperatures and responses to temperature by cultures of methanogens believed to play important roles in the digestor.  相似文献   

6.
We have investigated the growth of Escherichia coli, a mesophilic bacterium, as a function of pressure (P) and temperature (T). Escherichia coli can grow and divide in a wide range of pressure (1–400 atm) and temperature (23–40°C). For T > 30°C, the doubling time of E. coli increases exponentially with pressure and exhibits a departure from exponential behavior at pressures between 250 and 400 atm for all the temperatures studied in our experiments. The sharp change in doubling time is followed by a sharp change in phenotypic transition of E. coli at high pressures where bacterial cells switch to an elongating cell type. We propose a model that this phenotypic change in bacteria at high pressures is an irreversible stochastic process, whereas the switching probability to elongating cell type increases with increasing pressure. The model fits well the experimental data. We discuss our experimental results in the light of structural and thus functional changes in proteins and membranes.  相似文献   

7.

Background

Heat stress induces various physiological changes and so could influence ocular circulation. This study examined the effect of heat stress on ocular blood flow.

Findings

Ocular blood flow, end-tidal carbon dioxide (PETCO2) and blood pressure were measured for 12 healthy subjects wearing water-perfused tube-lined suits under two conditions of water circulation: (1) at 35°C (normothermia) for 30 min and (2) at 50°C for 90 min (passive heat stress). The blood-flow velocities in the superior temporal retinal arteriole (STRA), superior nasal retinal arteriole (SNRA), and the retinal and choroidal vessels (RCV) were measured using laser-speckle flowgraphy. Blood flow in the STRA and SNRA was calculated from the integral of a cross-sectional map of blood velocity. PETCO2 was clamped at the normothermia level by adding 5% CO2 to the inspired gas. Passive heat stress had no effect on the subjects’ blood pressures. The blood-flow velocity in the RCV was significantly lower after 30, 60 and 90 min of passive heat stress than the normothermic level, with a peak decrease of 18 ± 3% (mean ± SE) at 90 min. Blood flow in the STRA and SNRA decreased significantly after 90 min of passive heat stress conditions, with peak decreases of 14 ± 3% and 14 ± 4%, respectively.

Conclusion

The findings of this study suggest that passive heat stress decreases ocular blood flow irrespective of the blood pressure or arterial partial pressure of CO2.  相似文献   

8.
The dependence of the CO2 compensation concentration on O2 partial pressure and the dependence of differential uptake of 14CO2 and 12CO2 on CO2 and O2 partial pressures are analyzed in illuminated white clover (Trifolium repens L.) leaves. The data show a deviation of the photosynthetic gas exchange from ribulose bisphosphate carboxylase oxygenase kinetics at 10°C but not at 30°C. This deviation is due to an effect of CO2 partial pressure on the ratio of photosynthesis to photorespiration which can be explained if active inorganic carbon transport is assumed.  相似文献   

9.
The ocean is undergoing warming and acidification. Thermal tolerance is affected both by evolutionary adaptation and developmental plasticity. Yet, thermal tolerance in animals adapted to simultaneous warming and acidification is unknown. We experimentally evolved the ubiquitous copepod Acartia tonsa to future combined ocean warming and acidification conditions (OWA approx. 22°C, 2000 µatm CO2) and then compared its thermal tolerance relative to ambient conditions (AM approx. 18°C, 400 µatm CO2). The OWA and AM treatments were reciprocally transplanted after 65 generations to assess effects of developmental conditions on thermal tolerance and potential costs of adaptation. Treatments transplanted from OWA to AM conditions were assessed at the F1 and F9 generations following transplant. Adaptation to warming and acidification, paradoxically, reduces both thermal tolerance and phenotypic plasticity. These costs of adaptation to combined warming and acidification may limit future population resilience.  相似文献   

10.
Effect of Temperature on Composting of Sewage Sludge   总被引:9,自引:1,他引:8       下载免费PDF全文
The effect of temperature on the composting reaction of sewage sludge was investigated at 50, 60, and 70°C. The total amount of CO2 evolved and the final conversion of volatile matter were maximum at 60°C., suggesting that the optimal temperature for composting was around 60°C. The specific CO2 evolution rate (moles of CO2 evolved per hour per viable cell) was maximum at 70°C. The isolated thermophilic bacterium which was dominant at 60°C but did not grow at 70°C showed that the rate of O2 consumption measured on the agar plate at 70°C was four times higher than that at 60°C. This showed that the energy yielded from catabolism is rather uncoupled with the anabolism at 70°C in the metabolism of microorganisms indigenous in the compost. A higher respiratory quotient was observed at 70°C than at any other temperature.  相似文献   

11.
Spores of Bacillus anthracis are known to be extremely resistant to heat treatment, irradiation, desiccation, and disinfectants. To determine inactivation kinetics of spores by high pressure, B. anthracis spores of a Sterne strain-derived mutant deficient in the production of the toxin components (strain RP42) were exposed to pressures ranging from 280 to 500 MPa for 10 min to 6 h, combined with temperatures ranging from 20 to 75°C. The combination of heat and pressure resulted in complete destruction of B. anthracis spores, with a D value (exposure time for 90% inactivation of the spore population) of approximately 4 min after pressurization at 500 MPa and 75°C, compared to 160 min at 500 MPa and 20°C and 348 min at atmospheric pressure (0.1 MPa) and 75°C. The use of high pressure for spore inactivation represents a considerable improvement over other available methods of spore inactivation and could be of interest for antigenic spore preparation.  相似文献   

12.
Acetate oxidation in Italian rice field at 50 °C is achieved by uncultured syntrophic acetate oxidizers. As these bacteria are closely related to acetogens, they may potentially also be able to synthesize acetate chemolithoautotrophically. Labeling studies using exogenous H2 (80%) and 13CO2 (20%), indeed demonstrated production of acetate as almost exclusive primary product not only at 50 °C but also at 15 °C. Small amounts of formate, propionate and butyrate were also produced from 13CO2. At 50 °C, acetate was first produced but later on consumed with formation of CH4. Acetate was also produced in the absence of exogenous H2 albeit to lower concentrations. The acetogenic bacteria and methanogenic archaea were targeted by stable isotope probing of ribosomal RNA (rRNA). Using quantitative PCR, 13C-labeled bacterial rRNA was detected after 20 days of incubation with 13CO2. In the heavy fractions at 15 °C, terminal restriction fragment length polymorphism, cloning and sequencing of 16S rRNA showed that Clostridium cluster I and uncultured Peptococcaceae assimilated 13CO2 in the presence and absence of exogenous H2, respectively. A similar experiment showed that Thermoanaerobacteriaceae and Acidobacteriaceae were dominant in the 13C treatment at 50 °C. Assimilation of 13CO2 into archaeal rRNA was detected at 15 °C and 50 °C, mostly into Methanocellales, Methanobacteriales and rice cluster III. Acetoclastic methanogenic archaea were not detected. The above results showed the potential for acetogenesis in the presence and absence of exogenous H2 at both 15 °C and 50 °C. However, syntrophic acetate oxidizers seemed to be only active at 50 °C, while other bacterial groups were active at 15 °C.  相似文献   

13.
Differences in the photosynthetic performance between pairs of heat tolerant (HT) and heat sensitive (HS) accessions of tuber-bearing Solanum species were measured at 40 °C, after treating plants at 40/30 °C. After 1 to 9 days of heat treatment, both HT and HS accessions showed progressive inhibitory effects, primarily decreased rates of CO2 fixation, and loss of leaf chlorophyll. These effects were most pronounced in the HS accessions. Stomatal conductivity and internal CO2 concentrations were lower for both accessions at 40 °C especially for the HS accessions, suggesting that at ambient CO2 concentrations, stomatal conductance was limiting CO2 availability at the higher temperature. In the HT accessions, stomatal limitations were largely attributed to differences in vapor pressure deficit between 25° and 40 °C, while the HS accessions exhibited significant nonstomatal limitations. The young expanding leaves of the HS accession showed some HT characteristics, while the oldest leaves showed severe senescence symptoms after 9 days at 40/30 °C. The data suggest that differences in heat sensitivity between HT and HS accessions are the result of accelerated senescence, chlorophyll loss, reduced stomatal conductance, and inhibition of dark reactions at high temperature.  相似文献   

14.
Ocean acidification threatens organisms that produce calcium carbonate shells by potentially generating an under‐saturated carbonate environment. Resultant reduced calcification and growth, and subsequent dissolution of exoskeletons, would raise concerns over the ability of the shell to provide protection for the marine organism under ocean acidification and increased temperatures. We examined the impact of combined ocean acidification and temperature increase on shell formation of the economically important edible mussel Mytilus edulis. Shell growth and thickness along with a shell thickness index and shape analysis were determined. The ability of M. edulis to produce a functional protective shell after 9 months of experimental culture under ocean acidification and increasing temperatures (380, 550, 750, 1000 μatm pCO 2, and 750, 1000 μatm pCO 2 + 2°C) was assessed. Mussel shells grown under ocean acidification conditions displayed significant reductions in shell aragonite thickness, shell thickness index, and changes to shell shape (750, 1000 μatm pCO 2) compared to those shells grown under ambient conditions (380 μatm pCO 2). Ocean acidification resulted in rounder, flatter mussel shells with thinner aragonite layers likely to be more vulnerable to fracture under changing environments and predation. The changes in shape presented here could present a compensatory mechanism to enhance protection against predators and changing environments under ocean acidification when mussels are unable to grow thicker shells. Here, we present the first assessment of mussel shell shape to determine implications for functional protection under ocean acidification.  相似文献   

15.
Ocean acidification and warming are both primarily caused by increased levels of atmospheric CO2, and marine organisms are exposed to these two stressors simultaneously. Although the effects of temperature on fish have been investigated over the last century, the long-term effects of moderate CO2 exposure and the combination of both stressors are almost entirely unknown. A proteomics approach was used to assess the adverse physiological and biochemical changes that may occur from the exposure to these two environmental stressors. We analysed gills and blood plasma of Atlantic halibut (Hippoglossus hippoglossus) exposed to temperatures of 12°C (control) and 18°C (impaired growth) in combination with control (400 µatm) or high-CO2 water (1000 µatm) for 14 weeks. The proteomic analysis was performed using two-dimensional gel electrophoresis (2DE) followed by Nanoflow LC-MS/MS using a LTQ-Orbitrap. The high-CO2 treatment induced the up-regulation of immune system-related proteins, as indicated by the up-regulation of the plasma proteins complement component C3 and fibrinogen β chain precursor in both temperature treatments. Changes in gill proteome in the high-CO2 (18°C) group were mostly related to increased energy metabolism proteins (ATP synthase, malate dehydrogenase, malate dehydrogenase thermostable, and fructose-1,6-bisphosphate aldolase), possibly coupled to a higher energy demand. Gills from fish exposed to high-CO2 at both temperature treatments showed changes in proteins associated with increased cellular turnover and apoptosis signalling (annexin 5, eukaryotic translation elongation factor 1γ, receptor for protein kinase C, and putative ribosomal protein S27). This study indicates that moderate CO2-driven acidification, alone and combined with high temperature, can elicit biochemical changes that may affect fish health.  相似文献   

16.
In vivo room temperature chlorophyll a fluorescence coupled with CO2 and O2 exchange was measured to determine photosynthetic limitation(s) for spring and winter wheat (Triticum aestivum L.) grown at cold-hardening temperatures (5°C/5°C, day/night). Plants of comparable physiological stage, but grown at nonhardening temperatures (20°C/16°C, day/night) were used in comparison. Winter wheat cultivars grown at 5°C had light-saturated rates of CO2 exchange and apparent photon yields for CO2 exchange and O2 evolution that were equal to or greater than those of winter cultivars grown at 20°C. In contrast, spring wheat cultivars grown at 5°C showed 35% lower apparent photon yields for CO2 exchange and 25% lower light-saturated rates of CO2 exchange compared to 20°C grown controls. The lower CO2 exchange capacity is not associated with a lower efficiency of photosystem II activity measured as either the apparent photon yield for O2 evolution, the ratio of variable to maximal fluorescence, or the level of reduced primary quinone electron acceptor maintained at steady-state photosynthesis, and is most likely associated with carbon metabolism. The lower CO2 exchange capacity of the spring cultivars developed following long-term exposure to low temperature and did not occur following over-night exposure of nonhardened plants to 5°C.  相似文献   

17.
Ocean acidification (OA) is occurring across a backdrop of concurrent environmental changes that may in turn influence species'' responses to OA. Temperature affects many fundamental biological processes and governs key reactions in the seawater carbonate system. It therefore has the potential to offset or exacerbate the effects of OA. While initial studies have examined the combined impacts of warming and OA for a narrow range of climate change scenarios, our mechanistic understanding of the interactive effects of temperature and OA remains limited. Here, we use the blue mussel, Mytilus galloprovincialis, as a model species to test how OA affects the growth of a calcifying invertebrate across a wide range of temperatures encompassing their thermal optimum. Mussels were exposed in the laboratory to a factorial combination of low and high pCO2 (400 and 1200 µatm CO2) and temperatures (12, 14, 16, 18, 20, and 24°C) for one month. Results indicate that the effects of OA on shell growth are highly dependent on temperature. Although high CO2 significantly reduced mussel growth at 14°C, this effect gradually lessened with successive warming to 20°C, illustrating how moderate warming can mediate the effects of OA through temperature''s effects on both physiology and seawater geochemistry. Furthermore, the mussels grew thicker shells in warmer conditions independent of CO2 treatment. Together, these results highlight the importance of considering the physiological and geochemical interactions between temperature and carbonate chemistry when interpreting species'' vulnerability to OA.  相似文献   

18.
Temperature effects on nocturnal carbon gain and nocturnal acid accumulation were studied in three species of plants exhibiting Crassulacean acid metabolism: Mamillaria woodsii, Opuntia vulgaris, and Kalanchoë daigremontiana. Under conditions of high soil moisture, nocturnal CO2 gain and acid accumulation had temperature optima at 15 to 20°C. Between 5 and 15°C, uptake of atmospheric CO2 largely accounted for acid accumulation. At higher tissue temperatures, acid accumulation exceeded net carbon gain indicating that acid synthesis was partly due to recycling of respiratory CO2. When plants were kept in CO2-free air, acid accumulation based on respiratory CO2 was highest at 25 to 35°C. Net acid synthesis occurred up to 45°C, although the nocturnal carbon balance became largely negative above 25 to 35°C. Under conditions of water stress, net CO2 exchange and nocturnal acid accumulation were reduced. Acid accumulation was proportionally more decreased at low than at high temperatures. Acid accumulation was either similar over the whole temperature range (5-45°C) or showed an optimum at high temperatures, although net carbon balance became very negative with increasing tissue temperatures. Conservation of carbon by recycling respiratory CO2 was temperature dependent. At 30°C, about 80% of the dark respiratory CO2 was conserved by dark CO2 fixation, in both well irrigated and water stressed plants.  相似文献   

19.
The total CO2 produced by aseptic Drosophila cultures during the entire duration of life has been determined at 15°, 26°, and 30°C. in the dark and at 22–26°C. in the light. The total amount of CO2 produced is not constant but is greater at 15° than at 26° or 30°, and is much greater in the light than in the dark. The total duration of life, therefore, is not determined by the time required to produce a limiting amount of CO2.  相似文献   

20.
1. An optimum of environmental temperature is to be expected for the utilization of food energy in warm blooded animals if their food intake is determined by their appetite. 2. Baby chicks were kept in groups of five chicks in a climatic cabinet at environmental temperatures of 21°, 27°, 32°, 38°, and 40°C. during the period of 6 to 15 days of age. The intake of qualitatively complete food was determined by their appetite. Food intake, excretion, and respiratory exchange were measured. Control chicks from the same hatch as the experimental groups were raised in a brooder and were given the same food as the experimental chicks. The basal metabolism of each experimental group was determined from 24 to 36 hours without food at the age of 16 days. 3. The daily rate of growth increased with decreasing environmental temperature from 2.74 gm. at 40°C. to 4.88 gm. at 21°C. This was 4.2 to 6.5 per cent of their body weight. 4. The amount of food consumed increased in proportion to the decrease in temperature. 5. The availability of the food, used for birds instead of the digestibility and defined as See PDF for Structure showed an optimum at 38°C. 6. The CO2 production increased from 2.95 liters CO2 per day per chick at 40°C. to 6.25 liters at 21°C. Per unit of the 3/4 power of the body weight, 23.0 liters CO2 per kilo3/4 was produced at 40°C. and 43.4 liters per kilo3/4 at 21°C. The CO2 production per unit of 3/4 power of the weight increased at an average rate of approximately 1 per cent per day increase in age. The R.Q. was, on the average, 1.04 during the day and 0.92 during the night. 7. The net energy is calculated on the basis of C and N balances. A maximum of 11.8 Cal. net energy per chick per day was found at 32°C. At 21°C. only 6.9 Cal. net per day per chick was produced and at 40°C. an average of 6.7 Cal. 8. The composition of the gained body substance changed according to the environmental temperature. The protein stored per gram increase in body weight varied from 0.217 to 0.266 gm. protein and seemed unrelated to the temperature. The amount of fat per gram gain in weight dropped from a maximum of 0.153 gm. at 32°C. to 0.012 gm. at 21°C. and an average of 0.107 gm. at 40°C. The energy content per gram of gain in weight had its maximum of 2.95 Cal. per gm. at 38°C. and its minimum of 1.41 Cal. per gm. at 21°C. at which temperature the largest amount of water (0.763 gm. per gm. increase in body weight) was stored. 9. The basal metabolism increased from an average of 60 Cal. per kilo3/4 at an environmental temperature of 40°C. to 128 Cal. per kilo3/4 at 21°C. No indication of a critical temperature was found. 10. The partial efficiency, i.e. the increase in net energy per unit of the corresponding increase in food energy, seemed dependent on the environmental temperature, reaching a maximum of 72 per cent of the available energy at 38°C. and decreasing to 57 per cent at 21°C. and to an average of 60 per cent at 40°C. 11. The total efficiency, i.e. the total net energy produced per unit of food energy taken in, was maximum (34 per cent of the available energy) at 32°C., dropped to 16 per cent at 21°C., and to an average of 29 per cent at 40°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号