首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Summary Although spinose teeth of holly leaves have been widely cited as an example of a physical defense against herbivores, this assumption is based largely on circumstantial evidence and on general misinterpretation of a single, earlier experiment. We studied the response of third and fifth instar larvae of the fall webworm, Hyphantria cunea Drury, a generalist, edge-feeding caterpillar, to intact American holly leaves and to leaves that had been modified by blunting the spines, by removing sections of leaf margin between the spines, or by removing the entire leaf margin. The results suggest that the thick glabrous cuticle and tough leaf margin of Ilex opaca are more important than the spinose teeth in deterring edge-feeding caterpillars. Microscopic examination of mature leaves revealed that the epidermis is thickened at the leaf margin, and that the leaf is cirucumscribed by a pair of fibrous veins. In simple choice tests neither domesticated rabbits nor captive whitetailed deer discriminated between spinescent holly foliage and foliage from which spines were removed. Nevertheless, we found little evidence of herbivory by mammals in the field, either on small experimental trees or in the forest understory. While it is possible that spinose teeth contribute to defense by reducing acceptibility of holly relative to other palatable plant species, we suggest that the high concentrations of saponins and poor nutritional quality of holly foliage may be more important than spines in deterring vertebrate herbivores. The degree of leaf spinescence and herbivory was compared at different heights with the tree canopy to test the prediction that lower leaves should be more spinescent as a deterrent to browsers. Leaves on lower branches of mature forest trees were slightly more spinescent than were upper leaves, and juvenile trees were slightly more spinescent than were mature trees. However, there was no relationship between degree of spinescence and feeding damage. The greater spinescence of holly leaves low in the canopy is probably an ontogenetic phenomenon rather than a facultative defense against browsers.The investigation reported in this paper (No. 87-7-8-77) is in connection with a project of the Kentucky Agricultural Experiment Station and is published with the approval of the Dirctor  相似文献   

2.
Adams  Jonathan M.  Zhang  Yangjian  Basri  Md.  Shukor  Noraini 《Ecological Research》2009,24(6):1381-1392
It is generally believed that tropical forests suffer more herbivory, as a proportion of leaf area, than do temperate forests. Reviews so far have compared studies performed by different authors using very different methodologies. Here we carried out studies on 125 samples at 86 localities in eastern North America and on 75 samples taken at five localities in Malaysia and Singapore, including both mature secondary and primary forest. Samples in North America were spread over 3 years. In tropical Asia, the samples were taken at four time slices at least 8 months apart, scattered over a 4-year period. Total herbivore damage during the lifetime of tree leaves was estimated from the percentage area damaged in recently fallen, undecayed leaves from the forest floor, using scanner-linked software. In terms of percentage damage per leaf, the results suggest that lowland tropical forest has significantly higher leaf herbivory (5.82%) than temperate forest (5.48%). This is in accord with the general expectation that aseasonal tropical forests should have more herbivory damage. However, when percentage damage ‘per unit time of growing season’ is calculated based on an estimate of leaf lifetime in the tropics, tropical lowland herbivory damage turns out to be a fraction (about one half) of that in the temperate zone. Thus, these results tend to put in question the widely held view that herbivore damage is markedly more intense in the tropics. Over total leaf lifetime, the intensity of damage in the tropical area is only slightly higher than temperate regions. In terms of intensity of herbivory on leaves per unit of time, the opposite seems to be the case. It is uncertain which index should be taken as more significant in interpreting the selection pressure for anti-herbivore defenses in the tropics.  相似文献   

3.
Summary Tropical seaweeds in the genus Halimeda reduce losses to grazing by capitalizing on diel patterns of herbivore activity. These seaweeds produce new, more herbivoresusceptible growth at night when herbivorous reef fishes are inactive. Plant portions more than 48 h old are low in food value, well defended morphologically (calcified and high in ash content), and relatively resistant to herbivory. Younger plant portions represent 3–4.5 times the food value (nitrogen or organic content) of older portions but are only moderately more susceptible to herbivores due to their high concentrations of the terpenoid feeding deterrents halimedatrial and halimedatetraacetate. Halimedatrial significantly deters grazing by both parrotfishes (Scaridae) and surgeonfishes (Acanthuridae) and occurs in high concentrations (2–4.5% of plant ash-free dry mass) in plant portions that are 4–12 h old, intermediate concentrations (0.3–2.3%) in portions that are 16–26 h old, and low concentrations (0.3%) in older plant portions. The related compound halimedatetraacetate is absent from the youngest plant portions, shows a rapid increase in concentration (from 0 to 1%) in plant material that is approximately 16 h old, and then rapidly declines to low levels (0.1 to 0.2%) in older plant portions. Thus, newly produced tissues are nutritionally valuable but contain high concentrations of defensive chemicals. As these tissues age, morphological defenses increase, the tissue becomes less valuable as a food for herbivores, and chemical defenses decrease. Additionally, new growth of Halimeda remains unpigmented until just before sunrise. Thus, the valuable, nitrogen-containing molecules associated with photosynthesis are not placed in the new, and more herbivore susceptible, growth until lights is available and they can start producing income for the plant.Experiments in a coral-reef microcosm, where diel patterns of light and water chemistry could be altered, indicated that Halimeda's growth pattern is cued by the timing of light-dark cycles rather than by co-occurring diel changes in water chemistry. Although the growth patterns of Halimeda seem unusual, similar patterns appear to occur in numerous other seaweeds and in microalgae such as diatoms and dinoflagellates.  相似文献   

4.
The effects of foliar- and root-feeding insects on the dynamics of an early successional plant community, representing the first four years of colonisation, were examined. Subterranean insect herbivores were found to increase in density with increasing successional age of the plant community. In early succession, chewing insects mainly Coleoptera (Scarabaeidae) and Diptera (Tipulidae) were dominant. This was in direct contrast to the foliar-feeding insects, which were dominated by sap-feeders (mainly Auchenorrhynchan Hemiptera).Reduction of both foliar- and root-feeding insects with appropriate insecticides had different, but dramatic, consequences for the plant community. Reducing foliar herbivory resulted in large increases in perennial grass growth, with plant species richness being reduced as the grasses outcompeted the forbs. Reducing subterranean herbivory prolonged the persistence of annual forbs, greatly increased perennial forb colonisation and, as a consequence, plant species richness. Foliar-feeding insects thus act to delay succession by slowing grass colonisation. In contrast, root-feeding insects accelerate succession by reducing forb persistence and colonisation. The structure of early successional plant communities is therefore modified by the two modes of herbivory.This paper was presented at the Vth International Congress of Ecology (INTECOL), Japan, 1990, entitled Successional Communities of Plants and Insects.  相似文献   

5.
del-Val E  Crawley MJ 《Oecologia》2005,142(2):202-211
Competition and herbivory are two of the main forces shaping plant communities. Although several studies have investigated their impact on plant populations separately, few investigations have examined how they might interact. With the purpose of clarifying the combined roles of competition and herbivory on herb biomass in a grassland, we assessed the effects of different herbivores with reduced grass competition. We conducted a field experiment in 2000-2001 in a British acid grassland (Oak Mead), where we experimentally reduced grass biomass and excluded rabbits, insects and molluscs in a factorial design. Removing the grasses from Oak Mead dramatically increased herb biomass and total above-ground biomass. Herbivore exclusions (i.e. rabbits, insects and molluscs) did not affect total above-ground biomass, but they altered relative abundance of several species. Grass removal and rabbit exclusion had positive interactions on biomass of several herb species, and there were some subtle interactions between different herbivore groups: monocots benefitted when both rabbits and molluscs were excluded, and some herb species had greater biomass when insects and rabbits were absent. We then compared the results with a 10-year experiment that manipulated similar variables in neighbouring grassland (Nashs Field). The comparison between Oak Mead and Nashs Field showed that cessation of herbicide application returns the system to its previous state of grass dominance after 3 years. Therefore, even when herbs were more abundant, they could not prevent reinvasion of the grasses once external factors were removed.  相似文献   

6.
Deciduous trees recycle nitrogen within their tissues. The aim of this study was to test the hypothesis that reductions in plant growth, caused by competition and herbivory, reduce the sink strength for N during autumn nutrient withdrawal, and reduce the storage capacity and hence the amount of N remobilized in the following spring. We used (15)N-labelled fertilizer to quantify N uptake, leaf N withdrawal and remobilization. Betula pubescens saplings were grown with either Molinia caerulea or Calluna vulgaris, and subjected to simulated browsing damage. Competition reduced B. pubescens leaf N withdrawal and remobilization, with C. vulgaris having a greater effect than M. caerulea. However, simulated browsing had no significant effect on sapling N dynamics. The patterns of leaf N withdrawal and remobilization closely followed sapling dry mass. We conclude that the effect of competition on sapling mass reduces their N-storage capacity. This reduces sink strength for leaf N withdrawal and the source strength for remobilized N. The ability of saplings to compensate for browsing damage removed any potential effect of browsing on N dynamics.  相似文献   

7.
Studies on the effects of plant diversity on insect herbivory have produced conflicting results. Plant diversity has been reported to cause positive and negative responses of herbivores. Explanations for these conflicting responses include not only various population-level processes but also changes in plant quality that lead to changes in herbivore performance. In a tree diversity experiment, we investigated the effects of tree diversity on insect herbivory on oak in general and whether the effects of tree diversity on herbivore damage are reflected by the performance (leaf consumption, growth) of the generalist herbivore Lymantria dispar. Our study showed that the feeding damage caused by naturally occurring herbivores on oak trees decreased with increasing diversity of tree stands. The performance of L. dispar on oak leaves was not affected by tree diversity, neither in field nor laboratory experiments. Our results can be explained by the various processes behind the hypothesis of associational resistance.  相似文献   

8.
Körner  Sabine  Dugdale  Tony 《Hydrobiologia》2003,506(1-3):497-501
Hydrobiologia - Re-establishing a stable submerged vegetation is considered an important tool to restore shallow eutrophic lakes. Enhanced turbidity and sediment re-suspension as well as grazing by...  相似文献   

9.
The addition of nutrients has been shown to decrease the species richness of plant communities. Herbivores feed on dominant plant species and should release subdominant species from competitive exclusion at high levels of nutrient availability with a severe competitive regime. Therefore, the effects of nutrients and invertebrate herbivory on the structure and diversity of plant communities should interact. To test this hypothesis, we used artificial plant communities in microcosms with different levels of productivity (applying fertilizer) and herbivory (adding different numbers of the snail, Cepaea hortensis, and the grasshopper, Chorthippus parallelus). For analyses, we assigned species to three functional groups: grasses, legumes and (non-leguminous) herbs. With the addition of nutrients aboveground biomass increased and species richness of plants decreased. Along the nutrient gradient, species composition shifted from a legume-dominated community to a community dominated by fast-growing annuals. But only legumes showed a consistent negative response to nutrients, while species of grasses and herbs showed idiosyncratic patterns. Herbivory had only minor effects, and bottom–up control was more important than top–down control. With increasing herbivory the biomass of the dominant plant species decreased and evenness increased. We found no interaction between nutrient availability and invertebrate herbivory. Again, species within functional groups showed no consistent responses to herbivory. Overall, the use of the functional groups grasses, legumes and non-leguminous herbs was of limited value to interpret the effects of nutrients and herbivory during our experiments.  相似文献   

10.
Herbivory has many effects on plants, ranging from shifts in primary processes such as photosynthesis, growth, and phenology to effects on defense against subsequent herbivores and other species interactions. In this study, I investigated the effects of herbivory on seed and seedling characteristics of several families of wild radish (Raphanus raphanistrum) to test the hypothesis that herbivory may affect the quality of offspring and the resistance of offspring to plant parasites. Transgenerational effects of herbivory may represent adaptive maternal effects or factors that constrain or amplify natural selection on progeny. Caterpillar (Pieris rapae) herbivory to greenhouse-grown plants caused plants in some families to produce smaller seeds and those in other families to produce larger seeds compared with undamaged controls. Seed mass was positively associated with probability of emergence in the field. The number of setose trichomes, a putative plant defense, was higher in the progeny of damaged plants in some families and lower in the progeny of damaged plants in other families. In a field experiment, plant families varied in their resistance to several herbivores and pathogens as well as in growth rate and time to flowering. Seeds from damaged parent plants were more likely to become infested with a plant virus. Although herbivory on maternal plants did not directly affect interactions of offspring with other plant parasites, seed mass influenced plant resistance to several attackers. Thus, herbivory affected seed characters, which mediated interactions between plants and their parasites. Finally, irrespective of seed mass, herbivory on maternal plants influenced components of progeny fitness, which was dependent on plant family. Natural selection may act on plant responses to herbivory that affect seedling-parasite interactions and, ultimately, fitness.  相似文献   

11.
Plants that are subject to insect herbivory emit a blend of so‐called herbivore‐induced plant volatiles (HIPVs), of which only a few serve as cues for the carnivorous enemies to locate their host. We lack understanding which HIPVs are reliable indicators of insect herbivory. Here, we take a modelling approach to elucidate which physicochemical and physiological properties contribute to the information value of a HIPV. A leaf‐level HIPV synthesis and emission model is developed and parameterized to poplar. Next, HIPV concentrations within the canopy are inferred as a function of dispersion, transport and chemical degradation of the compounds. We show that the ability of HIPVs to reveal herbivory varies from almost perfect to no better than chance and interacts with canopy conditions. Model predictions matched well with leaf‐emission measurements and field and laboratory assays. The chemical class a compound belongs to predicted the signalling ability of a compound only to a minor extent, whereas compound characteristics such as its reaction rate with atmospheric oxidants, biosynthesis rate upon herbivory and volatility were much more important predictors. This study shows the power of merging fields of plant–insect interactions and atmospheric chemistry research to increase our understanding of the ecological significance of HIPVs.  相似文献   

12.
13.
Aquatic plants are thought to have fewer herbivore species than their terrestinal counterparts, and possibly to suffer less herbivory I examined herbivory on water mint Mentha aquatica growing in and out of water and tested possible processes determining the observed pattern of leaf damage Plants growing on land had much more herbivore damage than those growing in water The most common herbivore of Mentha at the site (a chrysomelid beetle) showed no p reference for leaves from terrestrial plants over those from aquatic plants Caging aquatic plants to exclude moorhens suggested that these predators were not having a strong effect in removing insect herbivores (though this conclusion is tentative due to low insect numbers) Transplanting aquatic plants to a terrestrial location, while keeping their roots in water, resulted in marked increases in herbivore damage, relative to control aquatic plants The results suggest that the water barrier may prevent effective exploitation of emergent aquatic plants by terrestrial herbivores This may have consequences for observed patterns of herbivore richness on such plants, plant fitness, and a more speculative suggestion, for the mode of reproduction in aquatic plants  相似文献   

14.
Predicted increases in atmospheric carbon dioxide (CO2) concentrations are expected to increase primary productivity in many terrestrial ecosystems, which could lead to plants becoming N limited. Studies suggest that legumes may partially overcome this by increasing biological nitrogen fixation. However, these studies have not yet considered how these changes may be affected by the altered dynamics of insect herbivores feeding on the plant. This study investigated how elevated CO2 (700 μl l?1) affected the clover root weevil (Sitona lepidus), a significant pest of white clover (Trifolium repens). Adults feed on leaves aboveground where they lay eggs; soil-dwelling larvae initially feed on root nodules that house N2-fixing bacteria. Foliar C:N ratios rose by 9% at elevated CO2, but the biggest responses were observed belowground, with increases in root mass (85% greater) and nodule abundance (220% more abundant). Root C:N ratios increased significantly from 10.95 to 11.60 under elevated CO2, which increased even further to 13.13 when nodules were attacked by larval S. lepidus. Adult S. lepidus consumed significantly more leaf tissue at elevated CO2 (0.47 cm2 day?1) compared with ambient CO2 (0.35 cm2 day?1), suggesting compensatory feeding, but laid 23% fewer eggs at elevated CO2. Even though fewer eggs were laid at elevated CO2, 38% more larvae were recovered suggesting that larval survival was much better under elevated CO2. Increased larval abundance and performance at elevated CO2 were positively correlated with the number of nodules available. In conclusion, reduced foliar quality at elevated CO2 was generally disadvantageous for adult S. lepidus living aboveground, but extremely beneficial for S. lepidus larvae living belowground, due to the enhanced nodulation. Climate change may, therefore, enhance biological nitrogen fixation by T. repens, but potential benefits (e.g. provision of N without chemical fertilizers) may be undermined by larger populations of S. lepidus larvae belowground.  相似文献   

15.
Abstract

Despite considerable interest in the factors affecting trophic cascades in terrestrial systems, there has been relatively little attention paid to the importance of the herbivore-plant link in explaining why some systems “cascade” (have strong top-down effects on plant survival and population growth) and others “trickle” (have top-down effects on plant damage, but little effect on plant fitness). This is despite the fact that herbivore guild identity has long been recognized as a major force affecting herbivore-plant interactions. We address the potential importance of herbivore guild identity in determining the strength of tritrophic interactions by reviewing literature concerning plant damage from and induced defenses against two “cryptic” herbivore guilds, predispersal seed predators and root/stem borers. Although both guilds are capable of strongly affecting plant fitness, the impact of root/stem borers on plants in natural systems seems far greater than that of predispersal seed predators. The large impact of root/stem borers occurs via their disruption of plant vascular systems, while a variety of factors (safe-site-limited plant populations, long-lived seed banks, temporal plant escape, etc.) each seem important in explaining the smaller effect of predispersal seed predators. While the lack of attention to herbivore guilds is understandable, given the (by necessity) single-species focus of much trophic cascade research, we suggest that predator suppression of root/stem borers and predispersal seed predators will, respectively, yield strong versus weak top-down effects on plant fitness. The potential tritrophic consequences of herbivore feeding mode highlight the importance of research on varied predator-herbivore chains that share a common basal resource.  相似文献   

16.
Spatial proximity between different plant species could modify the sign (positive or negative) of plant–herbivore interaction. The chance of a plant being detected and colonized by herbivorous insects depends not only on the plant's own traits but also on the identity of the neighbouring plants that grow with it. The closest proximity between plants occurs in climbers and their host. We conducted a field experiment to assess the effect of spatial association between a climber plant, Vicia nigricans (Fabaceae), and two host shrubs, Berberis buxifolia (Berberidaceae) and Schinus patagonica (Anacardiaceae), on insect herbivory levels, reproductive output and growth. The presence and identity of the host shrubs affected the herbivory levels of the climber V. nigricans, but not the reproductive output. For the climber, the probability of being attacked by insects could depend on the characteristics of the host shrub. Taking the opposite perspective, climber association affected different traits of the host shrubs. The association with the climber decreased leaf damage (positive), tended to decrease leaf production (negative) and did not affect reproductive output (neutral). Our findings suggest that spatial association between plant species could change the sign of the interactions between plants and insects affecting different traits. By taking into account the perspective of both plants involved in the association, this study shows and emphasizes that plant–animal interactions strongly depend on the community context.  相似文献   

17.
T. M. Tibbets  S. H. Faeth 《Oecologia》1999,118(3):297-305
Endophytic fungi, particularly in the genus Neotyphodium, are thought to interact mutualistically with host grasses primarily by deterring herbivores and pathogens via production of alkaloidal mycotoxins. Little is known, however, about how these endophytes interact with host plants and herbivores outside the realm of agronomic forage grasses, such as tall fescue, and their livestock grazers or invertebrate pest herbivores. We tested the effects of Neotyphodium inhabiting introduced tall fescue and native Arizona fescue on preference, survival, and performance of the leaf-cutting ant, Acromyrmex versicolor, an important generalist herbivore in the southwestern United States. In a choice experiment, we determined preferences of foraging queens and workers for infected and uninfected tall fescue and Arizona fescue. In a no-choice experiment, we determined queen survival, worker production, and size of fungal gardens for foundress queens reared on diets of infected and uninfected tall fescue and Arizona fescue. Foraging workers and queens did not significantly prefer either uninfected tall fescue or Arizona fescue relative to infected grasses, although ants tended to harvest more uninfected than infected tall fescue and more infected than uninfected Arizona fescue. Queen survivorship and length of survival was greater on uninfected tall fescue, uninfected Arizona fescue, and infected Arizona fescue than on infected tall fescue or the standard diet of palo verde and mesquite leaves. No queens survived beyond 6 weeks of the study when fed the infected tall fescue diet, in contrast to the effects of the other diets. Likewise, worker production was much lower and fungal garden size much smaller on infected tall fescue than in all other treatments, including the standard diet. In general, ant colonies survived and performed better on uninfected tall fescue and infected and uninfected Arizona fescue than standard diets of palo verde and mesquite leaves. The interaction of Neotyphodium with its host grasses is highly variable and these endophytes may increase, not alter, or even decrease resistance to herbivores. The direction of the interaction depends on host and fungal genotype, herbivore species, and environmental factors. The presence of endophytes in most, if not all, host plants suggests that endophytes may alter foraging patterns, performance, and survival of herbivores, such as leaf-cutting ants, but not always in ways that increase host plant fitness. Received: 27 October 1998 / Accepted: 19 October 1998  相似文献   

18.
19.
The co-evolution theory for red leaf colors considers redness as a handicap signal against herbivory. We have examined whether the assumed signal is honest and, accordingly, costly, by seeking a correlation between anthocyanin and total phenolic levels in 11 plants exhibiting variation in the expression of the red character either between individuals or between modules on the same individual. Selection of total phenolics as a variable was based on their assumed anti-herbivore function and on their common biosynthetic origin with anthocyanins. Plants with young or senescing red leaves were tested. Confirming evidence was found in senescing leaves, where in three out of the four studied species a significant and strongly positive correlation between signal strength (redness) and actual defensive potential (total phenolics) was found, rendering the signal both honest and costly. In young, developing leaves a significant, yet weakly positive correlation was found only in three out the seven examined species. Accordingly, the handicap signal hypothesis may be questioned in the case of young leaves. Hence, young leaf redness fits more to the alternative hypotheses that red leaf color is less easily perceived by folivorous insect photoreceptors or that red leaf color undermines insect camouflage. These hypotheses do not demand an increased chemical defensive potential.  相似文献   

20.
The lamina area damaged and biomass per leaves removed by invertebrate herbivores were measured across seasons on water hyacinth, Eichhornia crassipes (Mart.) Solms (Pontederiaceae). The amount of the leaf biomass per meter square lost through herbivory was also assessed in different sampling dates in the plant population. Ten leaves of water hyacinth were sampled in each of 18 site-habitat-date combinations. Sampling dates were chosen to follow the plant phenology. The lamina area damaged (surface abrasions and holes) was measured with the visual estimation method; biomass removed by herbivores (surface abrasions and holes) was calculated indirectly from the damaged lamina area. Significant differences in total damaged area and removed biomass per lamina were found between sampling dates at each site, with highest values in March (end of growth period). Total damaged area per lamina (surface abrasions + holes) varied between 11% in March and 6% in July (decay period). Total removed biomass (surface abrasions + holes) varied between 27% in March and 13% in July. Significant differences in biomass removed by herbivory were found between sampling dates at each site. Biomass of lamina removed by herbivores per m−2 varied between 26 and 13% in different seasons. The herbivore damage of discrete samples and the indirect method to calculate the biomass removed is useful in sites with aquatic free floating plants, where experimental exclusion of insects may be difficult to carry out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号