首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The effects of thrombin and histamine on protein phosphorylation in intact cultured human umbilical vein endothelial cells (HUVEC) prelabeled with 32PO4 were investigated. Incubation of HUVEC with either thrombin or histamine, agonists known to induce rapid transient increases in intracellular calcium levels in HUVEC, caused a rapid reversible increase in the phosphorylation of a protein with a Mr = 100,000 independent of the presence of extracellular calcium. Immunological and biochemical studies demonstrated that this Mr = 100,000 protein is elongation factor 2 (EF-2), a substrate previously shown to be phosphorylated by calcium/calmodulin-dependent protein kinase III (Nairn, A. C., and Palfrey, H. C. (1987) J. Biol. Chem. 262, 17299-17303). EF-2 is crucial for protein synthesis because it catalyzes the translocation of peptidyl-tRNA on the ribosome. Phosphoamino acid analysis of the EF-2 immunoprecipitated from HUVEC revealed that all of the thrombin-stimulated phosphorylation occurred on threonine. EF-2 was also phosphorylated when HUVEC were treated with the calcium ionophore, ionomycin. Phosphorylation of EF-2 was not increased by treatment with D-Phe-Pro-Arg-chloromethyl ketone thrombin, phorbol dibutyrate, forskolin, or 8-bromo-cGMP. The transient nature of the phosphorylation of EF-2 is consistent with it having a role in mediating some of the transient effects of thrombin and histamine on endothelial cell protein synthesis and functional capabilities.  相似文献   

2.
The effects of phorbol esters, dioctanoylglycerol (DiC8), and micromolar Ca2+ on protein phosphorylation and catecholamine secretion in digitonin-treated chromaffin cells were investigated. [gamma-32P]ATP was used as a substrate for phosphorylation in the permeabilized cells. 12-O-Tetradecanoylphorbol-13-acetate (TPA) enhanced Ca2+-dependent catecholamine secretion from digitonin-permeabilized cells. The enhancement required MgATP. Only those phorbol esters which activate protein kinase C in vitro enhanced both catecholamine secretion and protein phosphorylation. DiC8, which activates protein kinase C in vitro and mimics phorbol ester effects in situ, also enhanced both catecholamine secretion and protein phosphorylation. Preincubation of intact cells with TPA or DiC8 was necessary for maximal effects on both catecholamine secretion and protein phosphorylation in subsequently digitonin-treated chromaffin cells. The TPA-induced enhancement of protein phosphorylation was almost entirely Ca2+-independent, whereas DiC8-induced enhancement of protein phosphorylation was mainly Ca2+-dependent. Micromolar Ca2+ alone also enhanced the phosphorylation of a large number of proteins. Most of the proteins phosphorylated in response to TPA or potentiated by DiC8 in combination with Ca2+ were also phosphorylated by micromolar Ca2+ in the absence of exogenous protein kinase C activators. In intact cells, 1,1-dimethyl-4-phenylpiperazinium (DMPP) induced Ca2+-dependent phosphorylation of at least 17 proteins which were detected by two-dimensional gel electrophoresis. All of the proteins phosphorylated upon incubation with 1,1-dimethyl-4-phenylpiperazinium were phosphorylated upon incubation with micromolar Ca2+ in digitonin-treated cells. These results demonstrate that TPA- or DiC8-enhanced Ca2+-dependent catecholamine secretion is associated with enhanced protein phosphorylation which is probably mediated by protein kinase C and that activation of protein kinase C modulates catecholamine secretion from digitonin-treated chromaffin cells.  相似文献   

3.
Human alpha-thrombin and histamine each stimulates protein phosphorylation in human umbilical vein endothelial cells (HUVEC). We have identified the most prominent of these phosphoproteins by immunoprecipitation as the human homolog of the widely distributed myristoylated alanine-rich C-kinase substrate (MARCKS). Stimulation by 0.1-10 U/ml of alpha-thrombin produces a time-dependent, sustained (plateau 3-5 min) level of MARCKS phosphorylation. MARCKS phosphorylation requires thrombin catalytic activity but not receptor binding and is also seen in response to stimulation by a peptide, TR (42-55), that duplicates a portion of the thrombin receptor tethered ligand created by thrombin proteolytic activity. One micromolar histamine, like alpha-thrombin, produces sustained phosphorylation of MARCKS (plateau 3-5 min). In contrast, 100 microM histamine results in rapid but transient MARCKS phosphorylation (peak 1-3 min). HUVEC treated with 100 microM histamine for 5 min can be restimulated by alpha-thrombin but not fresh histamine, suggesting that the histamine receptor was desensitized. MARCKS phosphorylation can also be induced by several exogenous protein kinase C (PKC) activators and both alpha-thrombin- and histamine-induced MARCKS phosphorylation are inhibited by the PKC antagonist staurosporine. However, while prolonged PMA pretreatment ablates histamine-induced MARCKS phosphorylation, the ability of thrombin to induce MARCKS phosphorylation is retained. These findings provide evidence for agonist-specific pathways of protein kinase activation in response to thrombin and histamine in HUVEC.  相似文献   

4.
Treatment of M5076 tumor cells with the phorbol estes 12-O-tetradecanoylphorbol 13-acetate (TPA) and phorbol 12,13 dibutyrate (PdBu) inhibited cellular proliferation, whereas 1,2-dioctanoyl-glycerol (DiC8) and 1-oleoyl2-acetyl-glycerol (OAG) did not affect cell growth. Inhibition of cellular proliferation in this cell line appears to be a consequence of protein kinase C (PKC) down-regulation since phorbol esters, but not a single application of diacylglycerols (DGs) down-regulated cellular PKC levels. By repeated application of DGs, PKC down-regulation was achieved and correlated with inhibition of proliferation. Phorbol ester-induced PKC down-regulation was reversible, upon removal of the phorbol ester, and the reappearance of PKC was associated with resumption of proliferation. The mitogenic responsiveness of these cells to added serum depended upon cellular PKC levels. Phorbol esters also caused the phosphorylation of two proteins which were not phosphorylated in response to DG treatment. Inhibition of growth of M5076 cells appears to be associated with phosphorylation of two novel proteins and/or PKC down-regulation.  相似文献   

5.
Adrenaline or UK 14304 (a specific alpha 2-adrenoceptor agonist) and phorbol ester (phorbol 12,13-dibutyrate; PdBu) or bioactive diacylglycerols (sn-1,2-dioctanoylglycerol; DiC8) synergistically induced platelet aggregation and ATP secretion. The effect on aggregation was more pronounced than the effect on secretion, and it was observed in aspirinized, platelet-rich plasma or suspensions of washed aspirinized platelets containing ADP scavengers. No prior shape change was found. In the presence of adrenaline, DiC8 induced reversible aggregation and PdBu evoked irreversible aggregation that correlated with the different kinetics of DiC8- and PdBu-induced protein kinase C activation. Adrenaline and UK 14304 did not induce or enhance phosphorylation induced by DiC8 or PdBu of myosin light chain (20 kDa), the substrate of protein kinase C (47 kDa), or a 38 kDa protein. Immunoprecipitation studies using a Gcommon alpha antiserum or a Gi alpha antiserum showed that Gi alpha is not phosphorylated after exposure of platelets to PdBu or PdBu plus adrenaline. Adrenaline, PdBu or adrenaline plus PdBu did not cause stimulation of phospholipase C as reflected in production of [32P]phosphatidic acid. Adrenaline caused a small increase of Ca2+ in the platelet cytosol of platelets loaded with Indo-1; this effect was also observed in the absence of extracellular Ca2+. However, under conditions of maximal aggregation induced by adrenaline plus PdBu, no increase of cytosolic Ca2+ was observed. Platelet aggregation induced by PdBu plus adrenaline was not inhibited by a high intracellular concentration of the calcium chelator Quin-2. These experiments indicate that alpha 2-adrenoceptor agonists, known to interact with Gi, and protein kinase C activators synergistically induced platelet aggregation through a novel mechanism. The synergism occurs distally to Gi protein activation and protein kinase C-dependent protein phosphorylation and does not involve phospholipase C activation or Ca2+ mobilization.  相似文献   

6.
IL-1 treatment of human endothelial cells leads to the rapid phosphorylation of a Mr = 29,000 (P29) set of proteins to 18 times that of control cultures. Approximately 80% of the phosphorylated P29 (pP29) disappeared within 60 min although the remaining component was stable and remained for at least another 2 h. IL-1R antagonist protein blocked phosphorylation completely. Secondary treatment of IL-1 failed to increase the level of pP29 above that remaining after 1 h although other unrelated agonists that stimulated pP29 generation could. Removal of the cytokine and incubation of the cells in agonist-free medium for 2 h resulted in the total loss of the remaining pP29. Readdition of IL-1 2 h after washout restimulated P29 phosphorylation but only back to the lower level. Maximum rephosphorylation could not be attained until 16 h after IL-1 removal. Protein kinase inhibitors 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine and staurosporine, the calcium chelators bis(2-amino-5-methylphenoxy)ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester and EGTA, and the calmodulin inhibitor N-(6-aminohexyl)-1-naphthalene-sulfonamide had no effect on IL-I-induced phosphorylation. However, when cultures were treated with the protein phosphatase inhibitor okadaic acid alone, the level of pP29 increased after 1 h and the presence of okadaic acid during prolonged IL-1 treatment blocked the decline in pP29. The protein synthesis inhibitors puromycin, emetine, and cycloheximide also blocked the decline in pP29 during IL-1 treatment. These data suggest that IL-1-stimulated P29 phosphorylation is made up of two components, one susceptible to prolonged down-regulation even in the absence of the cytokine and one refractory to desensitization but that remains active only in the presence of IL-1. IL-1-induced changes in pP29 levels may be dependent on the relative activities of protein kinase and protein phosphatase activities.  相似文献   

7.
Tumor-promoting phorbol esters and histamine induce tissue plasminogen activator (tPA) release from human endothelial cells in a dose- and time-dependent manner. Phorbol myristate acetate (PMA) and phorbol dibutyrate (PDBu) increased tPA concentration in the culture medium by eight to 12 times after 24 h with half-maximal stimulation at 13 and 55 nM, respectively. Maximum release by histamine was only half that of the phorbol esters and required 18 microM for half-maximal response. Kinetics of enhanced release was similar with both types of agonists: a 4-h lag period followed by a period of rapid release (4 h in PMA-treated and 10 h in histamine-treated cultures) followed by a decline toward pretreatment rates. The PMA and histamine effects were additive while histamine and thrombin, which also stimulates tPA release in human endothelial cells, were no more effective together than they were alone. Exposure of the cells to PMA, PDBu, or phorbol 12,13-didecanoate caused a loss of responsiveness to second treatment of the homologous agent that was time- and dose-dependent, sustained, and specific to active tumor promoters (half-maximal desensitization = 52 nM PDBu). A partial desensitized state was also established by histamine which resulted in a 60% lower response to a second challenge dose. Histamine-induced desensitization did not interfere with the PMA response. However, PMA-induced desensitization caused a 75% loss of the histamine and a 67% loss of the thrombin effects. These studies indicate that tumor promoters are potent agonists of tPA release from human endothelial cells and establish a desensitized state to further stimulation. Treatment of these cells with histamine has similar effects which may be mediated at least in part by pathways common to phorbol ester stimulation.  相似文献   

8.
Platelet-activating factor (PAF) is a potent phospholipid mediator involved in several diseases such as allergic asthma, atherosclerosis and psoriasis. The human PAF receptor (PAFR) is a member of the G-protein-coupled receptor family. Following stimulation, PAFR becomes rapidly desensitized; this refractory state is dependent on PAFR phosphorylation, internalization and down-regulation. In this report, we show that the PAFR inverse agonist, WEB2086, can induce phosphorylation and down-regulation of PAFR. Using selective inhibitors, we determined that the agonist, PAF, and WEB2086 could induce phosphorylation of PAFR by PKC. Moreover, dominant-negative (DN) mutant of PKC isoforms beta inhibited WEB2086-stimulated PAFR phosphorylation, whereas PAF-stimulated phosphorylation was inhibited by DN PKCalpha and delta. WEB2086 also induced PAFR down-regulation which could be blocked by PKC inhibitors and by DN PKCbeta. WEB2086-induced down-regulation was dynamin-dependent but arrestin-independent. Unlike PAF, WEB2086-stimulated intracellular trafficking of PAFR was independent of Rab5. Specific inhibitors of lysosomal proteases and of proteasomes were both effective in reducing WEB2086-induced PAFR down-regulation, indicating the importance of receptor targeting to both lysosomes and proteasomes in long-term cell desensitization to WEB2086. These results indicate that although both agonists and inverse agonists induce receptor PAFR down-regulation, this may be accomplished through different signal transduction and trafficking pathways.  相似文献   

9.
We have studied the phosphorylation of progesterone receptors (PR) in T47Dco human breast cancer cells using a monoclonal antibody directed against human PR called AB-52. This antibody recognizes both the A- (Mr approximately 94,000) and B- (Mr approximately 120,000) hormone binding proteins of PR, and was used to immunoprecipitate phosphorylated receptors isolated from cells incubated in vivo with [32P]orthophosphate. The specific activity, or phosphorylation levels, relative to protein levels was quantified by combined immunoblotting and autoradiography followed by densitometry. We find that immunopurified untransformed hormone-free receptors, which have a characteristic triplet B, singlet A structure, are phosphoproteins with similar levels of phosphate incorporation in all protein bands. If PR are first transformed to the nuclear binding form by treatment of cells with progesterone, and then labeled with [32P]orthophosphate, the receptor proteins are additionally phosphorylated. These chromatin-bound hormone occupied receptors incorporate five to 10 times more labeled phosphate per total receptor protein than do PR from untreated cells during the same [32P]incubation time. The second round of phosphorylation may also account for mobility shifts of transformed A- and B-receptors observed in sodium dodecyl sulfate-polyacrylamide gels. Both untransformed and transformed species of A- and B-receptors are phosphorylated only on serine residues, and neither the extent of phosphorylation, nor the phosphoamino acids, are affected by treatment of the cells with epidermal growth factor or insulin. We previously reported that after hormone binding and transformation of receptors to the tight chromatin binding state, PR undergo processing, or nuclear down-regulation. AB-52 was used to compare PR protein and phosphorylation levels when cells were treated for 0.5-48 h with progesterone or the synthetic progestin R5020. Both agonists lead to hyperphosphorylation of nuclear PR before phosphorylation levels decrease, in parallel with the drop in protein levels as receptors down-regulate. Treatment of cells with RU 486, an antiprogestin, leads to PR transformation as determined by immunoblotting, but subsequent down-regulation does not occur. After transformation, chromatin-bound RU 486-occupied receptors become intensely phosphorylated however, with specific activities 15 times greater than those of untransformed PR. Since these receptors are phosphorylated but not processed, the hormone-induced nuclear phosphorylation of PR is unlikely to be a signal for receptor processing.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
R59022 is an inhibitor of the enzyme 1,2-diacylglycerol (DAG) kinase, which, by inhibiting the conversion of DAG to phosphatidic acid, causes an increase in endogenous DAG levels and the activity of the DAG-dependent enzyme protein kinase C. This property of the drug was utilized in the present study to assess the role of DAG, i.e., its relative importance as a potentiatory versus inhibitory mediator, in agonist-induced platelet activation. The phosphorylation of the 40-47-kDa protein by protein kinase C was monitored as an indicator of endogenous DAG levels and correlated with other agonist-induced platelet responses such as platelet aggregation, 5-hydroxytryptamine (5HT) secretion and arachidonate release, the agonists used being those that induce DAG formation, e.g., thrombin and collagen. Pretreatment of platelets with R59022 before agonist addition resulted in the potentiation of 5HT secretion as well as 45 kDa protein phosphorylation induced by thrombin and the DAG analogue, 1,2-dioctanoylglycerol (DiC8). However, collagen-induced 5HT secretion was significantly inhibited (70%) in the presence of R59022, which also had strong inhibitory effects on aggregation induced by collagen, as well as by thrombin and DiC8. The inhibition of collagen-induced secretion by R59022 was in contrast to the potentiatory effects of DiC8 on the same, suggesting that even although DAG acts as a potentiatory signal in this system, the inhibitory effects of R59022 on collagen-induced aggregation can mask any effects of endogenous DAG. This inhibitory effect of R59022 on agonist-induced platelet aggregation makes it unsuitable as a tool in studying the role of DAG in platelet activation induced by agonists such as collagen as well as the 'weak' agonists (ADP, adrenaline and platelet-activating factor), where aggregation mediates other responses such as arachidonate release and secretion. Furthermore, potentiatory effects of R59022 on 5HT secretion induced by phorbol 12-myristate 13-acetate and ionomycin, which are effects unlikely to be related to inhibition of DAG kinase was observed, and these effects further underline the non-specificity in the actions of R59022 and its limitations as a tool in studying platelet stimulus-response coupling.  相似文献   

11.
The vast majority of G protein-coupled receptors are desensitized by a uniform two-step mechanism: phosphorylation of an active receptor followed by arrestin binding. The arrestin x receptor complex is then internalized. Internalized receptor can be recycled back to the plasma membrane (resensitization) or targeted to lysosomes for degradation (down-regulation). The intracellular compartment where this choice is made and the molecular mechanisms involved are largely unknown. Here we used two arrestin2 mutants that bind with high affinity to phosphorylated and unphosphorylated agonist-activated beta 2-adrenergic receptor to manipulate the receptor-arrestin interface. We found that mutants support rapid internalization of beta 2-adrenergic receptor similar to wild type arrestin2. At the same time, phosphorylation-independent arrestin2 mutants facilitate receptor recycling and sharply reduce the rate of receptor loss, effectively protecting beta 2-adrenergic receptor from down-regulation even after very long (up to 24 h) agonist exposure. Phosphorylation-independent arrestin2 mutants dramatically reduce receptor phosphorylation in response to an agonist both in vitro and in cells. Interestingly, co-expression of high levels of beta-adrenergic receptor kinase restores receptor down-regulation in the presence of mutants to the levels observed with wild type arrestin2. Our data suggest that unphosphorylated receptor internalized in complex with mutant arrestins recycles faster than phosphoreceptor and is less likely to get degraded. Thus, targeted manipulation of the characteristics of an arrestin protein that binds to a G protein-coupled receptors can dramatically change receptor trafficking and its ultimate fate in a cell.  相似文献   

12.
Histamine can cause the release of catecholamines from bovine adrenal medullary chromaffin cells by a mechanism distinct from that of the depolarizing agents nicotine or high K+ buffer. It was the aim of this study to determine the protein phosphorylation responses to histamine in these cells and to compare them with those induced by depolarization. A number of proteins showed increases in phosphorylation in response to histamine especially when analyzed on two-dimensional polyacrylamide gel electrophoresis or by phosphopeptide mapping; one protein of 20,000 daltons was markedly dephosphorylated. Emphasis was given to the effects of histamine on tyrosine hydroxylase (TOH) phosphorylation, because this protein showed the most prominent changes on one-dimensional gels. Histamine acted via H1 receptors to increase TOH phosphorylation; the response was blocked by the H1 antagonist mepyramine and could be mimicked by the H1 agonist thiazolylethylamine, but not by the H2 agonist dimaprit. The H3 agonist (R) alpha-methylhistamine increased TOH phosphorylation at high concentrations, but the response was blocked entirely by mepyramine. Histamine rapidly increased the phosphorylation of TOH, with a maximum reached within 5 s and maintained for at least 30 min. This was in marked contrast to nicotine-stimulated protein phosphorylation of TOH, which was rapidly desensitized. The initial phosphorylation response to histamine was independent of extracellular Ca2+ for at least 3 min, but the sustained response required extracellular Ca2+. This was in contrast to the situation with both nicotine and high K+ buffer, which under the conditions used here caused a response which was dependent on extracellular Ca2+ at all times investigated. In the presence of histamine, the phosphopeptide profiles for TOH were essentially the same with or without Ca2+, suggesting that the same protein kinases were involved, but at longer times there was evidence of new phosphorylation sites. The mechanism or mechanisms whereby histamine modulates TOH phosphorylation are discussed with emphasis on the differences from depolarizing agents.  相似文献   

13.
Vasodilators such as sodium nitroprusside, nitroglycerin and various prostaglandins are capable of inhibiting platelet aggregation associated with an increase of either cGMP or cAMP. In our studies with intact platelets, prostaglandin E1 and sodium nitroprusside stimulated the phosphorylation of several proteins which could be distinguished from proteins known to be phosphorylated by a calmodulin-regulated protein kinase or by protein kinase C. Prostaglandin E1 (10 microM) or dibutyryl cAMP (2 mM) stimulated the phosphorylation of proteins with apparent relative molecular masses, Mr, of 240,000, 68,000, 50,000, and 22,000 in intact platelets. These proteins were also phosphorylated in response to low concentrations (1-2 microM) of cAMP in a particulate fraction of platelets. In intact platelets, sodium nitroprusside (100 microM) and the 8-bromo derivative of cGMP (2 mM) increased the phosphorylation of one protein of Mr 50,000 which was also phosphorylated in response to low concentrations (1-2 microM) of cGMP in platelet membranes. An additional protein (Mr 24,000) appeared to be phosphorylated to a lesser degree in intact platelets by prostaglandin E1 and sodium nitroprusside. Since the phosphorylation of the protein of Mr 50,000 was stimulated both in intact platelets by cyclic-nucleotide-elevating agents and cyclic nucleotide analogs, as well as in platelet membranes by cyclic nucleotides, this phosphoprotein was analyzed by limited proteolysis, tryptic fingerprinting and phosphoamino acid analysis. These experiments indicated that the 50-kDa proteins phosphorylated by sodium nitroprusside and prostaglandin E1 were identical, and that the peptide of the 50-kDa protein phosphorylated by both agents was also the same as the peptide derived from the 50-kDa protein phosphorylated in platelet membranes by cGMP- and cAMP-dependent protein kinases, respectively. Regulation of protein phosphorylation mediated by cAMP- and cGMP-dependent protein kinases may be the molecular mechanism by which those vasodilators, capable of increasing either cAMP or cGMP, inhibit platelet aggregation.  相似文献   

14.
Platelet function is inhibited by agents such as prostaglandin E1 (PGE1) that elevate the cytoplasmic concentration of cyclic AMP. Inhibition presumably results from the cyclic AMP-stimulated phosphorylation of intracellular proteins. Polypeptides that become phosphorylated are actin-binding protein, P51 (Mr = 51,000), P36 (Mr = 36,000), P24 (Mr = 24,000), and P22 (Mr = 22,000). Recently, we identified P24 as the beta-chain of glycoprotein (GP) Ib, a component of the plasma membrane GP Ib.IX complex. The existence of Bernard-Soulier syndrome, a hereditary disorder in which platelets selectively lack the GP Ib.IX complex, enabled us to examine whether the phosphorylation of GP Ib beta (P24) is responsible for any of the inhibitory effects of elevated cyclic AMP on platelet function. Exposure of control platelets to PGE1 increased phosphorylation of actin-binding protein, P51, P36, GP Ib beta, and P22. Prostaglandin E1 induced the same phosphorylation reactions in Bernard-Soulier platelets, except that of GP Ib beta, which is absent. In control platelets, PGE1 inhibited collagen-induced phosphorylation of myosin light chain, phosphorylation of P47 (an unidentified Mr 47,000 cytoplasmic protein that is phosphorylated by protein kinase C in stimulated platelets), aggregation, and the secretion of granule contents. Despite the absence of GP Ib beta, PGE1 also inhibited these collagen-induced responses in Bernard-Soulier platelets. However, while PGE1 inhibited collagen-induced polymerization of actin in control platelets, it did not inhibit actin polymerization in Bernard-Soulier platelets. These results suggest that cyclic AMP-induced phosphorylation of GP Ib inhibits collagen-induced actin polymerization in platelets. Because actin polymerization is required for at least some of the functional responses of platelets to an agonist, phosphorylation of Gp Ib beta may be one way in which cyclic AMP inhibits platelet function.  相似文献   

15.
Stimulation of platelets by thrombin causes an increase in the amount of cytoskeleton proteins insoluble in 1% Triton X-100, i.e. myosin, actin, actin-binding protein, an alpha-actinin-like protein of Mr = 105,000, unidentified polypeptides of Mr = 150,000, 31,00, and under some conditions, 56,000. Concurrently the Mr = 20,000 light chains of myosin and a cytoplasmic Mr = 42,000 polypeptide are phosphorylated, presumably by calmodulin-Ca2+-dependent myosin light chain kinase and a phospholipid-Ca2+-dependent kinase, respectively. The adenylate cyclase stimulators prostaglandin D2 (PGD2) and forskolin increased platelet cyclic AMP and prevented the phosphorylation of these polypeptides and the increase in Triton-insoluble cytoskeleton proteins. When added to platelets after stimulation by thrombin they caused rapid complete reversal of myosin light chain and Mr = 42,000 polypeptide phosphorylation; simultaneously the association of myosin with the cytoskeleton proteins and the increase in the content of each of the Triton-insoluble cytoskeleton proteins (except the Mr = 56,000 polypeptide) was reversed. The amount of Triton-insoluble myosin was affected more readily by PGD2 or forskolin than were the other proteins. Increasing thrombin from 0.1 to 1.0 unit/ml inhibited all the responses to PGD2 and forskolin possibly due to concentration-dependent effects of thrombin that inhibit adenylate cyclase. These results suggest that cytoskeleton assembly and activation of the contractile apparatus in intact platelets are readily reversible by cyclic AMP-dependent reactions.  相似文献   

16.
Platelet function is inhibited by prostaglandin E1, prostaglandin I2, or forskolin, agents that increase the intracellular concentration of cyclic AMP. The inhibition appears to result from cyclic AMP-stimulated phosphorylation of specific intracellular proteins. One of the major increases in phosphorylation occurs in a polypeptide of Mr = 24,000 (P24). In this study, an effort was made to identify P24. Platelets prelabeled with [32P]phosphate were incubated with prostaglandin E1, prostaglandin I2, or forskolin. Proteins that became phosphorylated were detected by autoradiography of sodium dodecyl sulfate-polyacrylamide gels. Several lines of evidence indicated that P24 was the beta-subunit of the plasma membrane glycoprotein (GP) Ib, a glycoprotein that is essential for the adhesion of platelets to damaged subendothelium, for the rapid response of platelets to thrombin, and for the attachment of the membrane skeleton to the cytoplasmic face of the plasma membrane. P24 co-migrated with GP Ib beta on reduced gels (Mr = 24,000) and also on nonreduced gels (when GP Ib beta is disulfide-linked to GP Ib alpha and migrates with Mr = 170,000). Like GP Ib beta, P24 was associated with actin filaments in Triton X-100 lysates. Like GP Ib beta, it was selectively associated with filaments of the membrane skeleton and was released from filaments when the Ca2+-dependent protease was active. Antibodies against GP Ib immunoprecipitated P24 from platelet lysates. Finally, exposure of Bernard-Soulier platelets (which lack GP Ib) to prostaglandin E1 resulted in phosphorylation of other polypeptides, but not of P24. These studies show that P24, one of the major polypeptides phosphorylated when platelets are exposed to agents that inhibit platelet function by increasing the concentration of cyclic AMP, is the beta-subunit of GP Ib.  相似文献   

17.
The G protein-coupled thrombin receptor, protease-activated receptor 1 (PAR1), mediates many of the actions of thrombin on cells including chemotaxis. In contrast to the reversible agonist binding that regulates signaling by most G protein-coupled receptors (GPCRs), PAR1 is activated by an irreversible proteolytic mechanism. Although activated PAR1 is phosphorylated, uncoupled, and internalized like typical GPCRs, signal termination is additionally dependent on lysosomal degradation of cleaved and activated receptors. In the present study we exploit two PAR1 mutants to examine the link between chemotaxis and receptor shutoff. One, a carboxyl tail deletion mutant (Y397Z), is defective in phosphorylation and internalization. The other, a carboxyl tail chimeric receptor (P/S), is phosphorylated and internalized upon activation but recycles to the plasma membrane like reversibly activated GPCRs. Expression of these receptors in a hematopoietic cell line disrupted cell migration along thrombin gradients. Thrombin activation of cells expressing P/S or Y397Z resulted in persistent signaling independent of the continued presence of thrombin. Signaling in response to the soluble agonist peptide SFLLRN was reversible for P/S but persisted for Y397Z. Strikingly, cells expressing P/S responded chemokinetically to thrombin but chemotactically to SFLLRN. In contrast, Y397Z-mediated migration was largely chemokinetic to both agonists. These studies suggest that termination of PAR1 signaling at the level of the receptor is necessary for gradient detection and directional migration.  相似文献   

18.
Recent electrophysiological studies with cell membrane patches of cardiac myocytes and an electrically excitable cell line derived from rat pituitary tumor suggested that voltage activated calcium channels must be phosphorylated to respond to membrane depolarization (Armstrong and Eckert 1986; Trautwein and Kameyama 1986). In view of the "phosphorylation hypothesis" we investigated the adenylate-cyclase activity, the characteristics of beta-adrenergic and calcium channel agonist binding sites in control and desensitized (exposure to isoproterenol) human embryonal cells (HEC), and in fragmented membrane preparations of canine coronary smooth muscle. Our results suggest that down-regulation of the membrane-bound beta-adrenergic receptors, induced by isoproterenol in human embryonal cells and also in adult canine vascular tissue, results in physical translocation of beta-adrenergic binding sites into the light membrane fraction. This phenomenon is accompanied with an increased intracellular concentration of cAMP in and an increased binding of the calcium channel agonist (3H) BAYK 8644 to both HEC and canine smooth muscle membrane preparations. It could be concluded that phosphorylation of beta-adrenergic receptors regulates not only the beta subcellular distribution of the beta receptors but also the availability of calcium channel agonist binding sites in the cellular membrane.  相似文献   

19.
When exposed to vasoactive intestinal peptide (VIP), the human wild type VPAC1 receptor expressed in Chinese hamster ovary (CHO) cells is rapidly phosphorylated, desensitized, and internalized in the endosomal compartment and is not re-expressed at the cell membrane within 2 h after agonist removal. The aims of the present work were first to correlate receptor phosphorylation level to internalization and recycling, measured by flow cytometry and in some cases by confocal microscopy using a monoclonal antibody that did not interfere with ligand binding, and second to identify the phosphorylated Ser/Thr residues. Combining receptor mutations and truncations allowed identification of Ser250 (in the second intracellular loop), Thr429, Ser435, Ser448 or Ser449, and Ser455 (all in the distal part of the C terminus) as candidates for VIP-stimulated phosphorylation. The effects of single mutations were not additive, suggesting alternative phosphorylation sites in mutated receptors. Replacement of all of the Ser/Thr residues in the carboxyl-terminal tail and truncation of the domain containing these residues completely inhibited VIP-stimulated phosphorylation and receptor internalization. There was, however, no direct correlation between receptor phosphorylation and internalization; in some truncated and mutated receptors, a 70% reduction in phosphorylation had little effect on internalization. In contrast to results obtained on the wild type and all of the mutated or truncated receptors that still underwent phosphorylation, internalization of the severely truncated receptor was reversed within 2 h of incubation in the absence of the agonist. Receptor recovery was blocked by monensin, an endosome inhibitor.  相似文献   

20.
We examined the mechanism by which protease-activated receptor (PAR)-1 is desensitized by comparing the effect of thrombin and the soluble agonist peptide SFLLRN on Ca(2+)responses in HSY-EA1 cells. Thrombin-induced increases in cytosolic Ca(2+)concentrations ([Ca(2+)](i)) returned to basal levels within 60 s, but SFLLRN generated a sustained [Ca(2+)](i)elevation. Interestingly, thrombin-desensitized cells partially retained their ability to respond to SFLLRN. We desensitized PAR-2 by pretreating cells with SLIGKV to confirm that this response was not due to PAR-2, which can recognize SFLLRN. The highly specific PAR-1 agonist peptide TFLLR also increased [Ca(2+)](i)in PAR-2-desensitized cells pretreated with thrombin. These observations indicate that thrombin disarms PAR-1 from further proteolytic activation, but leaves the receptor responsive for non-tethered ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号