首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protective effect of Vitamins C, E and beta-carotene against gamma-ray-induced DNA damage in human lymphocytes in vitro was investigated. Cultured lymphocytes were exposed to increasing concentration of these vitamins either before or after irradiation with 2Gy of gamma-rays and DNA damage was estimated using micronucleus assay. A radioprotective effect was observed when antioxidant vitamins were added to cultured cells before as well after irradiation; the strongest effect was observed when they were added no later than 1h after irradiation. The radioprotective effect of vitamins also depended on their concentration; Vitamins C added at low concentration (1 microg/ml) before exposure of the cells to radiation prevented induction of micronuclei. Vitamin E at the concentration above 2 microg/ml decreased the level of radiation-induced micronuclei when compared to the cells irradiated without vitamin treatment. beta-Carotene was effective at all tested concentrations from 1 to 5 microg/ml and reduced the number of micronuclei in irradiated cells. The vitamins had no effect on radiation-induced cytotoxicity as measured by nuclear division index. The radioprotective action of antioxidant Vitamins C, E and beta-carotene was dependent upon their concentration as well as time and sequence of application.  相似文献   

2.
BACKGROUND: Epidemiological studies show that high intake of food-bound vitamin C and E reduces the risk of gastric cancer. Whether dietary supplementation with antioxidant micronutrients interferes with Helicobacter pylori infection and associated diseases is unclear. The aim of this study was to investigate if dietary vitamin C or E supplementation influences the progression of gastritis, gastric mucosal nitrosative and oxidative protein damage, gastric mucosal lipid peroxidation, or gastric mucosal oxidative DNA damage in H. pylori-infected Mongolian gerbils. MATERIALS AND METHODS: Gerbils were divided into four groups: H. pylori-infected animals fed with vitamin C- or vitamin E-supplemented food, and infected and uninfected animals given standard rodent food. Subgroups of animals were killed at different time-points until 52 weeks postinfection. Concentrations of 3-nitrotyrosine and thiobarbituric acid-reactive substances (TBARS) in the gastric mucosa were determined with an immunodot blot and a fluorometric method, respectively. Mucosal concentrations of carbonyl carbons on proteins and 8-hydroxydeoxyguanosine were determined by enzyme-linked immunosorbent assay. Gastritis was scored semiquantitatively. RESULTS: Vitamin supplements had no effect on the colonization with H. pylori. Vitamin C as well as vitamin E supplements reduced mucosal 3-nitrotyrosine concentrations to normal levels in infected animals. Vitamin E supplements decreased mucosal protein carbonyls and TBARS in short-term gastritis. In addition, vitamin C supplements caused attenuated mucosal oxidative DNA damage and milder mucosal inflammation in short-term gastritis. CONCLUSION: Vitamin C or vitamin E supplementation leads to some short-term protective effects on H. pylori-induced gastritis in Mongolian gerbils. These effects seem to subside over time when the infection persists.  相似文献   

3.
Ferric nitrilotriacetate (Fe-NTA) is a potent renal and hepatic tumor promoter, which acts through a mechanism involving oxidative stress. Fe-NTA when injected intraperitoneally into rats induces hepatic ornithine decarboxylase activity as well as hepatic DNA synthesis. Vitamin E is a well-known, lipid-soluble and chain-breaking antioxidant which protects cell membranes from peroxidative damage. In this study, we investigated the protective effect of vitamin E, a major fat-soluble antioxidant, against Fe-NTA-mediated hepatic oxidative stress, toxicity and hyperproliferation in Wistar rats. Animals were treated with two different doses of vitamin E for 1 week prior to Fe-NTA treatment. Vitamin E at a higher dose of 2.0 mg/animal/day showed significant reduction in Fe-NTA-induced hepatic ornithine decarboxylase activity, DNA synthesis, microsomal lipid peroxidation and hydrogen peroxide generation. Fe-NTA treatment alone caused depletion of glutathione, glutathione metabolizing and antioxidant enzymes in rat liver, whereas pretreatment of animals with vitamin E reversed these changes in a dose-dependent manner. Taken together, our results suggest that vitamin E may afford substantial protection against the damage caused by Fe-NTA exposure and can serve as a potent preventive agent to suppress oxidant-induced tissue injury.  相似文献   

4.
Abstract

Ferric nitrilotriacetate (Fe-NTA) is a potent renal and hepatic tumor promoter, which acts through a mechanism involving oxidative stress. Fe-NTA when injected intraperitoneally into rats induces hepatic ornithine decarboxylase activity as well as hepatic DNA synthesis. Vitamin E is a well-known, lipid-soluble and chain-breaking antioxidant which protects cell membranes from peroxidative damage. In this study, we investigated the protective effect of vitamin E, a major fat-soluble antioxidant, against Fe-NTA-mediated hepatic oxidative stress, toxicity and hyperproliferation in Wistar rats. Animals were treated with two different doses of vitamin E for 1 week prior to Fe-NTA treatment. Vitamin E at a higher dose of 2.0 mg/animal/day showed significant reduction in Fe-NTA-induced hepatic ornithine decarboxylase activity, DNA synthesis, microsomal lipid peroxidation and hydrogen peroxide generation. Fe-NTA treatment alone caused depletion of glutathione, glutathione metabolizing and antioxidant enzymes in rat liver, whereas pretreatment of animals with vitamin E reversed these changes in a dose-dependent manner. Taken together, our results suggest that vitamin E may afford substantial protection against the damage caused by Fe-NTA exposure and can serve as a potent preventive agent to suppress oxidant-induced tissue injury.  相似文献   

5.
INTRODUCTION: N-Nitrosomorpholine (NMOR), present in the workplace of tyre chemical factories, is a known hepatocarcinogen. This compound belongs to the group of N-nitrosamines, which are indirect-acting and require metabolic activation. However, the mechanism of its carcinogenic effect is not completely clear. AIMS: The objective of this study was (i) to compare the DNA-damaging and clastogenic effects of NMOR in three cell lines (HepG2, V79 and VH10) with different levels of metabolizing enzymes and (ii) to determine the protective effects of Vitamins A, C and E against deleterious effects of NMOR. METHODS: The exponentially growing cells were pre-treated with Vitamins A, C and E and treated with NMOR. Genotoxic effects of NMOR were evaluated by single-cell gel electrophoresis (SCGE, comet assay), while the chromosomal aberration assay was used for the study of clastogenic effects. KEY RESULTS: NMOR-induced a significant dose-dependent increase of DNA damage as analyzed by SCGE, but the extent of DNA migration in the electric field was unequal in the different cell lines. Although the results obtained by SCGE confirmed the genotoxicity of NMOR in all cell lines studied, the number of chromosomal aberrations was significantly increased only in HepG2 and V79 cells, while no changes were observed in VH10 cells. In HepG2 cells pre-treated with Vitamins A, C and E we found a significant decrease of the percentage of tail DNA induced by NMOR. The reduction of the clastogenic effects of NMOR was observed only after pretreatment with Vitamins A and E; Vitamin C did not alter the frequency of NMOR-induced chromosomal aberrations under the experimental conditions of this study. CONCLUSIONS: The fat-soluble Vitamins A and E, which are dietary constituents, reduce the harmful effects of N-nitrosomorpholine in human hepatoma cells HepG2, which are endowed with the maximal capacity for metabolic activation of several drugs.  相似文献   

6.
Introduction: N-Nitrosomorpholine (NMOR), present in the workplace of tyre chemical factories, is a known hepatocarcinogen. This compound belongs to the group of N-nitrosamines, which are indirect-acting and require metabolic activation. However, the mechanism of its carcinogenic effect is not completely clear. Aims: The objective of this study was (i) to compare the DNA-damaging and clastogenic effects of NMOR in three cell lines (HepG2, V79 and VH10) with different levels of metabolizing enzymes and (ii) to determine the protective effects of Vitamins A, C and E against deleterious effects of NMOR. Methods: The exponentially growing cells were pre-treated with Vitamins A, C and E and treated with NMOR. Genotoxic effects of NMOR were evaluated by single-cell gel electrophoresis (SCGE, comet assay), while the chromosomal aberration assay was used for the study of clastogenic effects. Key results: NMOR-induced a significant dose-dependent increase of DNA damage as analyzed by SCGE, but the extent of DNA migration in the electric field was unequal in the different cell lines. Although the results obtained by SCGE confirmed the genotoxicity of NMOR in all cell lines studied, the number of chromosomal aberrations was significantly increased only in HepG2 and V79 cells, while no changes were observed in VH10 cells. In HepG2 cells pre-treated with Vitamins A, C and E we found a significant decrease of the percentage of tail DNA induced by NMOR. The reduction of the clastogenic effects of NMOR was observed only after pretreatment with Vitamins A and E; Vitamin C did not alter the frequency of NMOR-induced chromosomal aberrations under the experimental conditions of this study. Conclusions: The fat-soluble Vitamins A and E, which are dietary constituents, reduce the harmful effects of N-nitrosomorpholine in human hepatoma cells HepG2, which are endowed with the maximal capacity for metabolic activation of several drugs.  相似文献   

7.
This study aims at exploring the oxidative stress in keratinocytes induced by UVB irradiation and the protective effect of nutritional antioxidants. Cultured Colo-16 cells were exposed to UVB in vitro followed by measurement of reactive oxygen species (ROS), endogenous antioxidant enzyme activity, as well as cell death in the presence or absence of supplementation with vitamin C, vitamin E, or Ginsenoside Panoxatriol. Intracellular ROS content was found significantly reduced 1 h after exposure, but increased at later time points. After exposure to 150–600 J m−2 UVB, reduction of ROS content was accompanied by increased activity of catalase and CuZn-superoxide dismutase at early time points. Vitamins C and E, and Ginsenoside Panoxatriol counteracted the increase of ROS in the Colo-16 cells induced by acute UVB irradiation. At the same time, Ginsenoside Panoxatriol protected the activity of CuZn-superoxide dismutase, while vitamin E showed only a moderate protective role. Vitamins C and E, and Ginsenoside Panoxatriol in combination protected the Colo-16 cells from UVB-induced apoptosis, but not necrosis. These findings suggest that vitamins C and E as well as Ginsenoside Panoxatriol are promising protective agents against UVB-induced damage in skin cells.  相似文献   

8.
Increased bile acid secretion, as a consequence of a high fat diet, results in the increased production of bile acids that may escape the enterohepatic circulation, and be subsequently metabolised by the colonic micro-flora to form the co-mutagenic and cwarcinogenic secondary bile acids. The potential of the secondary bile acids lithocholate (LOC) and deoxycholate (DOC), to induce DNA damage, in the colonocyte cell line HT29, at physiological concentrations both individually and in a 2:l ratio was assessed. Results indicated significant levels of DNA damage induced by both bile acids, with LOC having the greater DNA damaging capacity. The potential role of vitamin A, and the antioxidant vitamin E, in reducing this damage was determined, over a range of vitamin concentrations. Both vitamins reduced the bile acid induced DNA damage. Vitamin A displayed a dose response relationship, whereas vitamin E reduced DNA damage close to negative control values at all concentrations above 50 μM. These results indicate a protective role for Vitamins A and E, against the DNA damaging capacity of LOC and DOC.  相似文献   

9.
We elucidated the protective effect of quercetin, a polyphenolic flavonoid, on lipid peroxidation, endogenous antioxidant status and DNA damage during nicotine-induced toxicity in cultured rat peripheral blood lymphocytes as compared to N-acetylcysteine (NAC), a well-known antioxidant. Lymphocytes were exposed to nicotine (3 mM) with and without quercetin and NAC (1 mM) in RPMI-1640 medium for 1 h. In preliminary experiments to fix the effective dose of quercetin, different doses of quercetin (25, 50, 75, 100 and 200 microM) were administered to lymphocytes with nicotine, and lipid peroxidation markers (thiobarbituric acid reactive substances and hydroperoxides) were analysed. A 75 microM dose of quercetin was found to be effective as evidenced by decreased lipid peroxidation. To evaluate the protective potential of quercetin against genotoxic effects of nicotine we used comet and micronucleus assays, which are valid parameters to assess genetic damage. In addition, biochemical changes including lipid peroxidation and antioxidant status were assessed. There were significant increases in the levels of lipid peroxidation, comet parameters and micronuclei frequencies, followed by decrease in the endogenous antioxidant status, in nicotine-treated lymphocytes, which were brought back to near normal by quercetin or NAC treatment. The protective effect of quercetin against nicotine toxicity was comparable to that of NAC. These findings suggest that quercetin can be as effective as NAC in protecting rat peripheral lymphocytes against nicotine-induced cellular and DNA damage.  相似文献   

10.
Abstract

We elucidated the protective effect of quercetin, a polyphenolic flavonoid, on lipid peroxidation, endogenous antioxidant status and DNA damage during nicotine-induced toxicity in cultured rat peripheral blood lymphocytes as compared to N-acetylcysteine (NAC), a well-known antioxidant. Lymphocytes were exposed to nicotine (3 mM) with and without quercetin and NAC (1 mM) in RPMI-1640 medium for 1 h. In preliminary experiments to fix the effective dose of quercetin, different doses of quercetin (25, 50, 75, 100 and 200 μM) were administered to lymphocytes with nicotine, and lipid peroxidation markers (thiobarbituric acid reactive substances and hydroperoxides) were analysed. A 75 μM dose of quercetin was found to be effective as evidenced by decreased lipid peroxidation. To evaluate the protective potential of quercetin against genotoxic effects of nicotine we used comet and micronucleus assays, which are valid parameters to assess genetic damage. In addition, biochemical changes including lipid peroxidation and antioxidant status were assessed. There were significant increases in the levels of lipid peroxidation, comet parameters and micronuclei frequencies, followed by decrease in the endogenous antioxidant status, in nicotine-treated lymphocytes, which were brought back to near normal by quercetin or NAC treatment. The protective effect of quercetin against nicotine toxicity was comparable to that of NAC. These findings suggest that quercetin can be as effective as NAC in protecting rat peripheral lymphocytes against nicotine-induced cellular and DNA damage.  相似文献   

11.
The objective of this work was to examine the time-dependent pro-oxidant versus antioxidant effect of various doses of vitamin E used commonly in experimental studies. Erythrocyte activity of superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase (CAT) and plasma lipid peroxidation levels were investigated following biweekly intramuscular administration of 100, 300 and 600 mg/kg of vitamin E at a baseline time point, and additionally at 2, 4 and 6 weeks after initiating treatment. Vitamin E had an antioxidant effect when administered at low doses over short time periods, and increased the activity of antioxidant enzymes. At higher doses and over longer time periods, it increased the level of lipid peroxidation, and attenuated the activity of antioxidant enzymes. These results suggest that time-dependent variations in vitamin E effects should be considered in design and interpretation of experimental antioxidant studies, as well as during clinical trials.  相似文献   

12.
Eicosapentaenoic acid protects against UV-radiation-induced immunosuppression and photocarcinogenesis, but it is also prone to oxidative degradation, which may reduce or abolish its beneficial effects. The protective effect of topically applied vitamin E, vitamin C, or both against UVB-radiation-induced lipid peroxidation in the presence of eicosapentaenoic acid was investigated using an ex vivo pig skin model. Changes in the bioavailability of both antioxidants induced by UV radiation were studied in different skin compartments. The UVB-radiation dose used (25 kJ/m2) was similar to that required to induce immunosuppression in BALB/c mice. Exposure of pig skin with an epidermal eicosapentaenoic acid content of 1.0 +/- 0.3 mol% to UVB radiation resulted in an 85% increase of epidermal lipid peroxidation (P < 0.005). Topical application of vitamin E or vitamin C 60 min prior to UVB irradiation resulted in a major increase in both antioxidants in the stratum corneum and viable epidermis (P < 0.05). Vitamin E and vitamin C completely protected against UVB-radiation-induced lipid peroxidation (P < 0.005), but compared to vitamin E, a 500-fold higher vitamin C dose was needed. UVB irradiation induced a vitamin E consumption of up to 100% in the stratum corneum and viable epidermis, and a vitamin C consumption of only 21% in the stratum corneum. Simultaneously applied vitamin E and vitamin C also completely protected against UVB-radiation-induced lipid peroxidation (P < 0.05), and lower antioxidant doses were needed compared to vitamin E or vitamin C alone. In the presence of vitamin C, epidermal vitamin E was more stable upon UVB irradiation (P < 0.05), suggesting interaction between vitamin E and vitamin C. In conclusion, topically applied vitamin E and/or vitamin C efficiently protect against UVB-radiation-induced lipid peroxidation in the presence of eicosapentaenoic acid. The beneficial biological effects of eicosapentaenoic acid may therefore be improved if vitamin E and/or vitamin C are present in sufficient amounts. The ex vivo pig skin model provides a useful tool for assessing short-term biochemical effects related to UVB radiation, without the use of living experimental animals.  相似文献   

13.
Cells under aerobic condition are always threatened with the insult of reactive oxygen species, which are efficiently taken care of by the highly powerful antioxidant systems of the cell. The erythrocytes (RBCs) are constantly exposed to oxygen and oxidative stress but their metabolic activity is capable of reversing the injury under normal conditions. In vitro hemolysis of RBCs induced by 5, 10 and 20 mM glucose was used as a model to study the free radical induced damage of biological membranes in hyperglycemic conditions and the protection rendered by vitamin E on the same. RBCs are susceptible to oxidative damage, peroxidation of the membrane lipids, release of hemoglobin (hemolysis) and alteration in activity of antioxidant enzymes catalase and superoxide dismutase. The glucose induced oxidative stress and the protective effect of vitamin E on cellular membrane of human RBCs manifested as inhibition of membrane peroxidation and protein oxidation and restoration of activities of superoxide dismutase and catalase, was investigated.Thiobarbituric acid reactive substances are generated from decomposition of lipid peroxides and their determination gives a reliable estimate of the amount of lipid peroxides present in the membrane. Vitamin E at 18 μg/ml (normal serum level) strongly enhanced the RBC resistance to oxidative lysis leading to only 50–55% hemolysis in 24 h, whereas RBCs treated with 10 and 20 mM glucose without vitamin E leads to 70–80% hemolysis in 24 h. Levels of enzymic antioxidants catalase, superoxide dismutase and nonenzymic antioxidants glutathione showed restoration to normal levels in presence of vitamin E. The study shows that vitamin E can protect the erythrocyte membrane exposed to hyperglycemic conditions and so a superior antioxidant status of a diabetic patient may be helpful in retarding the progressive tissue damage seen in chronic diabetic patients.  相似文献   

14.
The preventive effect of antioxidant vitamins A, C, E and their analogues against DNA damage induced by a hepatocarcinogen p-dimethylaminoazobenzene (DAB) was assessed by comet assay. For genotoxicity (DNA damage) study, male albino rats were divided into 11 groups, consisting of four rats each. Group I served as control. Group II to VII received 1, 10, 100, 200, 300 and 400 mg per kg body wt of DAB respectively; group VIII to XI received 500 mg/kg body wt of DAB. They were sacrificed by cervical decapitation 3, 6, 12 and 24 h after treatment; livers were excised immediately and subjected to comet assay to measure DNA damage. To study the effect of vitamins, experiments were conducted on a group of 275 rats divided into 3 sets of 25 rats each. First set served as control; second set received 0.06% DAB and third set received 0.06% DAB, along with analogues of vitamins A, C and E. Rats fed with 0.06% DAB were provided water ad libitum for a period of 4 months, followed by a normal (basal) diet for further 2 months. Vitamins A (10,000-50,000 IU), C (75-1000 mg) and E (50-500 mg) and their analogues were given (per kg body wt) to the third set of rats by gavage route once in a week for a period of 6 months. The DAB induced DNA damage only at the highest tested dose of 500 mg/kg body wt. Administration of high doses of vitamin A acid, L-ascorbic acid and vit. E succinate individually prevented the DNA damage. However, administration of a mixture of these vitamins at low doses prevented the DAB-induced DNA damage, which may be due to their synergistic effect. The results indicate that there is a significant advantage in mixed vitamins therapy at low dose over the treatment with individual vitamins.  相似文献   

15.
Abstract

The objective of this work was to examine the time-dependent pro-oxidant versus antioxidant effect of various doses of vitamin E used commonly in experimental studies. Erythrocyte activity of superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase (CAT) and plasma lipid peroxidation levels were investigated following biweekly intramuscular administration of 100, 300 and 600 mg/kg of vitamin E at a baseline time point, and additionally at 2, 4 and 6 weeks after initiating treatment. Vitamin E had an antioxidant effect when administered at low doses over short time periods, and increased the activity of antioxidant enzymes. At higher doses and over longer time periods, it increased the level of lipid peroxidation, and attenuated the activity of antioxidant enzymes. These results suggest that time-dependent variations in vitamin E effects should be considered in design and interpretation of experimental antioxidant studies, as well as during clinical trials.  相似文献   

16.
Some anticancer compounds are pro-drugs which give rise to toxic species through enzymatic reduction. The quinoxaline-di-N-oxide derivative Q-85 HCl (7-chloro-3-[[(N,N-dimethylamino)propyl]amino]-2-quinoxalinecarbonitrile 1,4-di-N-oxide hydrochloride) is a bioreductive compound selectively toxic in hypoxia. Due to the possibility of secondary tumors the study of the genotoxic capability of antitumoral drugs is very important. The aim of this study was to assess the ability of Q-85 HCl to produce reactive oxygen species (ROS) and oxidative DNA damage in Caco-2 cells, both in hypoxia and in well-oxygenated conditions. Secondly, we attempted to evaluate the effect of vitamins C and E under hypoxic and normoxic conditions, in order to determine if these antioxidant substances modify Q-85 HCl effect in hypoxic cells or possibly exert a protective action in normal cells. Caco-2 cells were treated with Q-85 HCl for 2h, at high concentrations in normoxia (0.1-5 microM) and at low concentrations in hypoxia (0.002-0.1 microM). In normoxia, a dose-related significant increase in intracellular ROS level was evident; in hypoxia all the concentrations produced very high level of ROS. Just after the treatment and 24h later, oxidative DNA damage was evaluated by the modified comet assay after post-digestion of the cells with formamidopyrimidine-DNA glycosylase (FPG) and endonuclease III (Endo III). Q-85 HCl treatment evoked a significant dose-dependent increase in the total comet score of the cells both in hypoxia and normoxia, indicating that this compound or some metabolite is able to oxidize purine and pyrimidine bases. After 24h DNA damage caused by the compound was completely repaired with only one exception: cells treated with the highest concentration of Q-85 HCl in hypoxia and post-digested with FPG. Vitamin C (5-100 microM) and vitamin E (500-400 microM) did not have a pro-oxidant effect in Caco-2 cells. Treatment of cells with vitamin C (10 microM) or vitamin E (100 microM) did not significantly reduce oxidative DNA damage in hypoxia and normoxia. In conclusion, the use of these vitamins would not hinder toxicity against hypoxic cells, but a protective effect in normoxic cells was not evident.  相似文献   

17.
The lipid peroxidation level and the antioxidant system status have been studied by the amount of alpha-tocopherol and the antioxidant activity of homogenates in the brain, liver, heart and somatic muscle of rats given Vitamins A and E, as physiological additives, before and after gamma-irradiation. It has been shown that a new dynamic balance between the parameters under study is rapidly set up after irradiation, which represents a mechanism of rapid adaptation. The radioprotective effect of alpha-tocopherol is more pronounced than that of Vitamin A (particularly in the brain). In most cases, Vitamin A produces, upon irradiation, an unfavourable effect on antioxidative homeostasis.  相似文献   

18.
A vegetarian diet results in higher intake of vitamins and micronutrients, which - although providing antioxidant defence - may lead to deficiency in other micronutrients involved in DNA metabolism and stability (such as vitamins belonging to the B group). The principal difference among various vegetarian diets is the extent to which animal products are avoided. We have performed a pilot study to determine the relationship between the micronucleus frequency in lymphocytes and diet, and we compared the levels of Vitamins C and E, beta-carotene, B(12), folic acid, homocysteine and total antioxidant capacity in healthy vegetarians and non-vegetarians. The vegetarian group, consisting of 24 volunteers (13 women and 11 men), were matched for age and sex with 24 volunteers (12 women and 12 men) with a traditional dietary habit. Among the vegetarians were 13 lacto-ovo-vegetarians with average duration of vegetarian diet 10.8 years (ranging from 5 to 26 years) and 11 lacto-vegetarians with average duration of vegetarian diet 8.2 years (ranging from 3 to 15 years). Homocysteine, Vitamins C and E and beta-carotene levels in plasma were assayed by HPLC, and serum folate and Vitamin B(12) were determined with Elecsys Immunoassay tests. The total antioxidant capacity of plasma was estimated by measuring the ferric-reducing activity in a spectrophotometric assay. Micronuclei were measured in cytokinesis-blocked lymphocytes. Vegetarians had significantly higher levels of Vitamin C and beta-carotene (but not Vitamin E) in plasma compared with non-vegetarians (P<0.001). There were no significant differences in serum levels of folic acid and Vitamin B(12) between the monitored groups. Levels of folic acid in vegetarians correlated with length of vegetarianism (r=0.62, P=0.001, N=24). Vegetarians had elevated levels of homocysteine compared with non-vegetarians (P=0.007), as did vegetarian women compared with non-vegetarian women (P=0.031). We did not find any differences in total antioxidant capacity or in micronucleus frequency between the groups. Micronuclei correlated with age (r=0.62, P<0.001, N=48), women having higher frequencies than men. Multifactorial regression analysis showed significant effects of age, sex and total antioxidant capacity on micronucleus frequency (N=48, P<0.001).  相似文献   

19.
20.
Exposure to either ionizing radiation or certain transition metals results in generation of reactive oxygen species that induce DNA damage, mutation, and cancer. Vitamin C (a reactive oxygen scavenger) is considered to be a dietary radioprotective agent. However, it has been reported to be genotoxic in the presence of certain transition metals, including copper. In order to explore the capacity of vitamin C to protect DNA from radiation-induced damage, and the influence of the presence of copper on this protection, we investigated vitamin C-mediated protection against radiation-induced damage to calf thymus DNA in vitro in the presence or absence of copper(II). Vitamin C (0.08-8.00 mM, pH 7.0) significantly reduced DNA damage induced by gamma-irradiation (30-150 Gy) by 30-50%, similar to the protective effect of glutathione. However, vitamin C plus copper (50 microM) significantly enhanced gamma-radiation-induced DNA damage. Low levels of added copper (5 microM), or chelation of copper with 1-N-benzyltriethylenetetraine tetrahydrochloride (BzTrien) and bathocuprinedisulfonic acid (BCSA), abolished the enhanced damage without diminishing the protective effect of vitamin C. These results indicate that vitamin C can act as: (1) an antioxidant to protect DNA damage from ionizing radiation; and (2) a reducing agent in the presence of copper to induce DNA damage. These effects are important in assessing the role of vitamin C, in the presence of mineral supplements or radioprotective therapeutic agents, particularly in patients with abnormally high tissue copper levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号