首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To identify the surface features of Holospora obtusa during its differentiation from the reproductive short form to the infectious long form, bacteria of four different buoyant densities were isolated by Percoll density gradient centrifugation of homogenates of host cells or isolated macronuclei, and examined with a scanning electron microscope. Bacteria of buoyant density 1.09 g/ml were reproductive short forms as well as cells at various stages in the elongation process including fully elongated ones. Bacteria of buoyant densities 1.11 g/ml and 1.13 g/ml were premature long forms and those of 1.16 g/ml were mature infectious long forms. Bacteria of buoyant density 1.09 g/ml had an entirely rough surface while those of buoyant densities 1.11 g/ml and 1.13 g/ml were smooth and had wale-like stripes on their surface. A small tapered tip was observed at one end of the bacteria of buoyant density 1.13 g/ml. Bacteria of buoyant density 1.16 g/ml had an entirely smooth surface, but one end always showed a rough surface; this locally differentiated surface of the special tip of the infectious long form may be responsible for both the nuclear and species specificities of the infectivity of H. obtusa. These observations indicate that the surface of H. obtusa changes during differentiation and the special tip develops in bacteria of buoyant density 1.13 g/ml.  相似文献   

2.
Holospora obtusa is a macronucleus-specific bacterium of the ciliate Paramecium caudatum. Three types of P. caudatum cells (H. obtusa-free cells, cells bearing the reproductive form of H. obtusa and cells bearing the predominantly infectious form of H. obtusa) cultured at 25 degrees C were transferred to 4, 10, 25, 35 and 40 degrees C and their swimming velocities were measured by taking photomicrographs with two-second exposures. The H. obtusa-free cells almost ceased swimming at both 4 and 40 degrees C, while cells bearing the reproductive form and those bearing the predominantly infectious form actively swam even at these temperatures. These results show that the host cell can acquire heat-shock resistance when infected by H. obtusa in the macronucleus. This is the first evidence to show that the endonuclear symbiont Holospora contributes to maintain the ciliary movement of the host even at temperatures unsuitable for the host growth.  相似文献   

3.
We examined the effects of antibiotics involved in bacterial DNA, RNA and protein synthesis and host protein synthesis on the early infection process of the bacterium Holospora obtusa, a macronucleus-specific symbiont of the ciliate Paramecium caudatum. Infection of the host macronucleus by the bacterium was not inhibited by mitomycin C, rifampicin and chloramphenicol. However, ingestion of the bacterium into the host digestive vacuoles and escape of the bacterium from the vacuoles to the host cytoplasm were significantly arrested with emetine. The results suggest that newly synthesized host proteins play an important role in the early infection process.  相似文献   

4.
The bacterium Holospora obtusa is a macronuclear-specific symbiont of the ciliate Paramecium caudatum. H. obtusa-bearing paramecia could survive even after the cells were quickly heated from 25 degrees C to 35 degrees C. To determine whether infection with H. obtusa confers heat shock resistance on its host, we isolated genes homologous to the heat shock protein genes hsp60 and hsp70 from P. caudatum. The deduced amino acid sequences of both cDNAs were highly homologous to hsp family sequences from other eukaryotes. Competitive PCR showed that H. obtusa-free paramecia expressed only trace amounts of hsp60 and hsp70 mRNA at 25 degrees C, but that expression of hsp70 was enhanced immediately after the cells were transferred to 35 degrees C. H. obtusa-bearing paramecia expressed high levels of hsp7O mRNA even at 25 degrees C and the level was further enhanced when the cells were incubated at 35 degrees C. In contrast, the expression pattern of hsp60 mRNA was the same in H. obtusa-bearing as in H. obtusa-free paramecia. These results indicate that infection with its endosymbiont can confer a heat-shock resistant nature on its host cells.  相似文献   

5.
Summary. Holospora obtusa is a Gram-negative bacterium inhabiting the macronucleus of the ciliate Paramecium caudatum. Experimental infection with H. obtusa was carried out under nocodazole treatment. Nocodazole has been shown to cause disassembly of the cytoplasmic microtubules radiating from the cytopharynx and postoral fibers in P. caudatum. Treatment with this drug did not prevent the ingestion of both prey bacteria and H. obtusa, but it reduced the phagosome number and affected cyclosis. In situ hybridization revealed infectious forms of this endobiont very close to the macronucleus, but never inside it. These results indicate that disassembly of microtubules does not impair transportation of the infectious forms of H. obtusa in the cytoplasm, but that it completely blocks the invasion of the nucleus by the bacteria. Correspondence and reprints: Department of Cytology and Histology, Faculty of Biology and Soil Sciences, Saint Petersburg State University, Universitetskaya naberezhnaya 7/9, 199034 Saint Petersburg, Russia.  相似文献   

6.
ABSTRACT. The bacterium Holospora is an endonuclear symbiont of the ciliate Paramecium. Previously, we reported that paramecia bearing the macronuclear‐specific symbiont Holospora obtusa survived better than symbiont‐free paramecia, even under high temperatures unsuitable for growth. The paramecia with symbionts expressed high levels of hsp70 mRNAs even at 25 °C, a usual growth temperature. We report herein that paramecia bearing the micronuclear‐specific symbiont Holospora elegans also acquire the heat‐shock resistance. Even after the removal of the bacteria from the hosts by treatment with penicillin, the resulting aposymbiotic paramecia nevertheless maintained their heat shock‐resistant nature for over 1 yr. Like symbiotic paramecia, these aposymbiotic paramecia also expressed high levels of both hsp60 and hsp70 mRNAs even at 25 °C. Moreover, analysis by fluorescent in situ hybridization with a probe specific for Holospora 16S rRNA revealed that the 16S rRNA of H. elegans was expressed around the nucleoli of the macronucleus in the aposymbiotic cells. This result suggests the possible transfer of Holospora genomic DNA from the micronucleus into the macronucleus in symbiotic paramecia. Perhaps this exogenous DNA could trigger the aposymbiotic paramecia to induce a stress response, inducing higher expression of Hsp60 and Hsp70, and thus conferring heat‐shock resistance.  相似文献   

7.
Holospora obtusa is a macronucleus-specific endosymbiotic bacterium of the ciliate Paramecium caudatum. We report the secretion of a 63-kDa periplasmic protein of an infectious form of the bacterium into the macronucleus of its host. Indirect immunofluorescence microscopy with five monoclonal antibodies against the 63-kDa protein demonstrated that, soon after the bacterial invasion into the host macronucleus, the protein was detected in the infected macronucleus and that levels of the protein increased dramatically within one day of infection. The use of inhibitors for host and bacterial protein synthesis illustrated that, in early infection of H. obtusa, not only the pre-existing but also a newly synthesized 63-kDa protein was secreted into the host macronucleus. A partial amino acid sequence of the protein was determined, and a gene encoding the 63-kDa protein was cloned. The deduced amino acid sequence shows that this protein is a novel protein.  相似文献   

8.
ABSTRACT The reproductive form of a macronucleus-specific symbiont Holospora obtuse , when harbored by the macronucleus of the ciliate Paramecium caudatum , selectively synthesized a 63-kDa protein which is immunologically related to GroEL, or HSP60, of Escherichia coli. Heat shock treatment of isolated cells of the reproductive and infectious form of the bacterium also induced the synthesis of the GroEL homolog. Immunoblotting showed that the amount of this protein per cell, whether the reproductive or infectious form, is roughly constant. Cloning and sequencing of a gene coding for the GroEL homolog suggested that the protein is 55.2% identical to GroEL of E. coli at the amino acid sequence level, and that the gene is preceded by an open reading frame which encodes a protein 39.6% identical to GroES of E. coli. Northern blot hybridization showed that the GroEL homologous gene is highly expressed in the reproductive form, but only in a trace amount in the intermediate and infectious form. Immunoelectron microscopy revealed that the GroEL homolog is localized in the cytoplasm of the reproductive and infectious form.  相似文献   

9.
ABSTRACT A monoclonal antibody (mAb) IR-2-1 was raised against a 67-kDa protein purified from the macronucleus-specific bacterial symbiont Holospora obtusa of Paramecium caudatum. The mAb was found to react with two bands (31 and 67-kDa) on gels of H. obtusa. Indirect immunofluorescence microscopy showed that these antigens were distributed inside the cells. However, unexpectedly, this mAb also cross reacted with the radial arms of the contractile vacuole in P. caudatum, P. tetraurelia, P. multimicronucleatum, P. jenningsi and P. bursaria as well as with their cytoplasm. Immunoelectron microscopy showed that the antigens were located on the decorated spongiome of the radial arms. In immunoblots, mAb IR-2-1 reacted with a band of 67 kDa in all Paramecium species examined. However, no band appeared in the immunoblot of isolated macronuclei of H. obtusa-free P. caudatum and no label was seen in the nuclear matrix of the macronucleus of air-dried P. caudatum. These results suggest that the 67-kDa antigen found in H. obtusa was not imported from the host macronucleus and the same antigen in the host contractile vacuoles and cytoplasm were not derived from the symbiont. These results also showed that an epitope on the decorated spongiome of the Paramecium species is shared by its bacterial symbiont. In contrast to the decorated tubule-specific mAb, DS-1, the antigens for IR-2-1 appeared to be loosely membrane bound as they were lost in paraformaldehyde fixed and acetone permeabilized Paramecium. Supplementary key words. Contractile vacuole complexes, Holospora obtusa, monoclonal antibody, Paramecium.  相似文献   

10.
We obtained a monoclonal antibody (MA-1) specific for macronuclei of the ciliate Paramecium caudotum and P. dubosqui. Immunoblotting showed that the antigen was a poly-peptide of 50 kilodalton (kDa). During the process of nuclear differentiation in P. caudatum, the MA-1 antigens appeared in the macronuclear anlagen immediately after four out of eight post zygotic nuclei differentiated morphologically into the macro-nuclear anlagen. Afterwards, the antigens could be detected in the macronucleus through the cell cycle, and disappeared when the macronucleus began to degenerate in exconjugant cells. These results suggest that the antigens may play a role in the differentiation and function of the macronucleus. © 1992 Wiley-Liss, Inc.  相似文献   

11.
Cd++对草履虫种群的毒性作用   总被引:2,自引:0,他引:2  
胡好远  郝家胜  靳璐 《生物学杂志》2006,23(1):19-21,30
通过研究20℃培养条件下Cd 对草履虫(Paramecium caudatum)种群毒性影响,结果表明:Cd 对草履虫的24hLC50为0.3294mg/L,Cd 浓度对草履虫的种群增长率有极显著影响,多重比较结果显示高浓度组(0.25和0.30mg/L)下草履虫的种群增长率显著小于低浓度下(0.05、0.15和0.20mg/L)的值。回归分析结果表明草履虫种群增长率(Y,/d)与Cd 浓度(X,mg/L)之间呈曲线相关。在一定浓度范围内,草履虫种群增长率随Cd 浓度的升高而呈增大,但高的Cd 浓度显著地降低了草履虫的种群增长率;当Cd 浓度为0.1179mg/L时,草履虫种群有最大增长率1.5442/d。各浓度组与对照组之间的t-检验结果表明在较低的Cd 浓度范围内(0.05、0.10和0.15mg/L)草履虫的种群增长率显著大于对照组的值,而Cd 浓度为0.30mg/L时的草履虫种群增长率显著小于对照组的值。  相似文献   

12.
SYNOPSIS. The behavior of Paramecium caudatum in small capillary glass tubes was investigated under various ionic conditions and at the various tube diameters. Along the inner walls of the tubes ciliates undergo regular spiral motion, which is completely different from natural spirallings or random walk-like movements observed usually in large vessels. The curvature calculated from the tracks of spiral motions was independent of the inner diameters of capillary tubes, but depend specifically on ionic conditions.
A plausible law governing such regular spiral motions of Paramecium caudatum is proposed. A definite part of the anterior end of a ciliate seems to contact the curved surface of the inner wall of a capillary tube during the motion so that the organism receives a constant tactile stimulus, and the direction of motive force keeps a certain angle against the surface.  相似文献   

13.
SYNOPSIS Triplet conjugants of Paramecium caudatum which appeared naturally in mating mixtures and those of Paramecium multimicronucleatum which were produced by conjugation-inducing chemicals were isolated. Triplet conjugants lasting for more than 3 h were stained to examine macronuclear events. In P. caudatum , only 2 triplets among 182 (1%) contained macronuclear fragmentation in all 3 members. The most frequently occurring triplets (79%) were those producing 1 cell without and 2 cells with macronuclear fragments. There were also triplets (17%) producing 1 cell with, and 2 without macronuclear fragments, and some (3%) with 3 cells that contained no fragments. The length of persistence of the triplet was not responsible for the occurrence of macronuclear fragmentation in the 3rd cell of the triplet. In P. multimicronucleatum , the same 4 classes of triplets occurred, but the most frequently occurring class was that consisting of 3 cells (91%) with macronuclear fragments. Induction of nearly 100% of triplets with 3 such cells was possible by isolating the triplets' from a culture which was treated chemically at about 24 h after the last feeding. Treatment with chemicals in starved cultures resulted in triplets with incompletely fragmented or nonfragmented macronuclei. Further, in P. multimicronucleatum , chemicallyinduced triplets involving only holdfast pairs to which the 3rd cells were uniting often produced 3 cells with fragmented macronuclei.  相似文献   

14.
Infection experiments were performed incubating Paramecium caudatum with non-infectious free-living bacteria or weakly infectious intracellular bacteria together with the infectious Holospora obtusa. Two of four non-infectious free-living bacteria (Enterobacter aerogenes and Klebsiella pneumoniae) were found to get into the nuclei when added to Paramecium together with H. obtusa. The endonuclear bacterium Nonospora macronucleata that is weakly infectious by itself increases its infectivity when presented together with the infectious holosporas. The results provide evidence that H. obtusa may facilitate entry of other, non-infectious bacteria into the nuclei of Paramecium.  相似文献   

15.
16.
The effect of biologically active form (threo-Ds-) of isocitric acid (ICA) on oxidative stress was studied using the infusorian Paramecium caudatum stressed by hydrogen peroxide and salts of some heavy metals (Cu, Pb, Zn, and Cd). ICA at concentrations between 0.5 and 10?mM favorably influenced the infusorian cells with oxidative stress induced by the toxicants studied. The maximal antioxidant effect of ICA was observed at its concentration 10?mM irrespective of the toxicant used (either H2O2 or heavy metal ions). ICA was found to be a more active antioxidant than ascorbic acid. Biologically active pharmaceutically pure threo-Ds-ICA was produced through cultivation of the yeast Yarrowia lipolytica and isolated from the culture liquid in the form of crystalline monopotassium salt with a purity of 99.9%.  相似文献   

17.
The macronucleus of Paramecium caudatum controls most cellular activities, including sexual immaturity after conjugation. Exconjugant cells have two macronuclear forms: (1) fragments of the maternal macronucleus, and (2) the new macronuclei that develop from the division products of a fertilization micronucleus. The fragments are distributed into daughter cells without nuclear division and persist for at least eight cell cycles after conjugation. Conjugation between heterokaryons revealed that the fragmented maternal macronuclei continued to express genetic information for up to eight cell cycles. When the newly developed macronucleus was removed artificially within four cell cycles after conjugation, the clones regenerated the macronuclear fragments (macronuclear regeneration; MR) and showed mating reactivity, because they were sexually mature. However, when the new macronucleus was removed during later stages, many MR clones did not show mating reactivity. In some extreme cases, immaturity continued for more than 50 fissions after conjugation, as seen with normal clones that had new macronuclei derived from a fertilization micronucleus. These results indicate that the immaturity determined by the new macronucleus is not annulled by the regenerated maternal macronucleus. Mature macronuclear fragments may be "reprogrammed" in the presence of the new macronucleus, resulting in their expression of "immaturity."  相似文献   

18.
Conjugation of Paramecium caudatum among cells of a single mating type can be induced parthenogenetically by exposing them to certain chemical solutions, a process called chemical induction of conjugation. The ionic conditions for chemical induction of conjugation are also the conditions that are required for the induction of the activation of voltage dependent Ca2+ channels in Paramecium . Four mutants controlled by independent gene loci with defects in Ca2+ channels, were subjected to an induction solution containing various concentrations of KCl and 0.01, 0.06 and 0.6 mmol/L CaCl2. Conjugation was able to be induced chemically in all four mutants. However, some locus-dependent differences were observed in the profiles of induction. Mutants controlled by different alleles but with the same locus were similar in their profile of induction, even when they exhibited opposite phenotypes on the activation of Ca2+ channels. These results suggest that the function of Ca2+ channels is not directly involved in the mechanism of chemical induction of conjugation. The locus dependency observed reflects the different role of each gene controlling Ca2+ channel functions.  相似文献   

19.
The development of the bacterium Holospora obtusa, which infects the macronucleus of Paramecium caudatum, was investigated in the course of a new infection from the infectious form into the reproductive form and vice versa. In parallel with a complete structural reorganization of the bacterium, the protein pattern changed gradually in this development. During the differentiation of the infectious form into the reproductive form, the voluminous periplasm was gradually reduced and the cytoplasm expanded, until the entire bacterium was filled by the cytoplasm. At this stage the long cell divided into five to seven short cells and thereby established the reproductive form, the main stage of the bacterium being maintained and multiplying in the host nucleus. In parallel with the reduction of the periplasm, some of the main proteins of the infectious form gradually disappeared in the electrophoresis pattern; some proteins disappeared earlier than others. Simultaneously, other proteins appeared and gradually became more prominent in the pattern of the developing reproductive form. In the reverse development, when the reproductive form differentiated into the infectious form, the bacterium grew longer, the cytoplasm was condensed, and electron-dense material was deposited in the extending periplasmic space. In parallel with this morphological development, the polypeptide pattern reverted to that of the infectious form.  相似文献   

20.
Each cell of Paramecium caudatum has a germinal micronucleus. When a bi-micronucleate state was created artificially by micronuclear transplantation, both micronuclei divided for at least 2 cell cycles after nuclear transplantation. However, this bi-micronucleate state was unstable and reduced to a uni-micronucleate state after several fissions. Although the number of micronuclei was usually 1 during the vegetative phase, 4 presumptive micronuclei differentiated after conjugation. At the first post-conjugational fission, only 1 of the 4 micronuclei divided, indicating that there is tight regulation of micronuclear number in exconjugants. Micronuclei that did not divide at the first post-conjugational fission may persist through the first and second post-conjugational cell cycles. The decision to divide appears to be separate from the decision to degenerate, as evidenced by division of a remaining micronucleus upon removal of the dividing micronucleus at the first division. Degeneration of micronuclei in exconjugants differs from that of haploid nuclei after meiosis. Nutritional state affected micronuclear degeneration. Under well-fed conditions, the micronuclei destined to degenerate lost the ability to divide earlier than after starvation treatment, suggesting that micronuclear degeneration is an "apoptotic" phenomenon, probably under the control of the new macronuclei (macronuclear anlagen).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号