首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The immune system is one of the most important adaptations that has evolved to protect animals from a wide range of pathogens they encounter from early life onwards. During the early developmental period this is particularly true for the innate immunity, as other components of the immune system are, as yet, poorly developed. But innate immunity may not only be crucial for early life survival, but may also have long‐lasting effects, for example if early life immunity reflects the functioning of the immune system as a whole. For this reason, we investigated the importance of four constitutive innate immune parameters (natural antibodies, complement activity, concentrations of haptoglobin, and concentrations of nitric oxide) for recruitment in free‐living great tits. We compared nestling immunity of recruits with nestling immunity of their nonrecruited siblings. We also investigated within individual consistency of these innate immune parameters for those individuals that recruited, which may be taken as a measure of immune capacity. In accordance with previous studies, we found a clear effect of tarsus length and a trend for body mass on the likelihood to recruit. Nevertheless, we found no evidence that higher levels of constitutive innate immunity as a nestling facilitated local recruitment. Furthermore, individual innate immunity was not consistent across life stages, that is to say, nestling immune parameters did not determine, or respectively, reflect adult innate immune parameters. This plasticity in innate immune components may explain why we did not find long‐lasting survival benefits.  相似文献   

2.
3.
Macrophages play a central role in both innate immunity to infection and atherosclerosis. Castrillo and colleagues report that selected microbial agonists for Toll-like receptors strongly inhibit LXR-mediated cholesterol efflux from macrophages. TLR-LXR crosstalk could explain how nonspecific microbial infections promote atherogenesis.  相似文献   

4.
Although B cells play important roles in the humoral immune response and the regulation of adaptive immunity, B cell subpopulations with unique phenotypes, particularly those with non-classical immune functions, should be further investigated. By challenging mice with Listeria monocytogenes, Escherichia coli, vesicular stomatitis virus and Toll-like receptor ligands, we identified an inducible CD11ahiFcγRIIIhi B cell subpopulation that is significantly expanded and produces high levels of IFN-γ during the early stage of the immune response. This subpopulation of B cells can promote macrophage activation via generating IFN-γ, thereby facilitating the innate immune response against intracellular bacterial infection. As this new subpopulation is of B cell origin and exhibits the phenotypic characteristics of B cells, we designated these cells as IFN-γ-producing innate B cells. Dendritic cells were essential for the inducible generation of these innate B cells from the follicular B cells via CD40L-CD40 ligation. Increased Bruton''s tyrosine kinase activation was found to be responsible for the increased activation of non-canonical NF-κB pathway in these innate B cells after CD40 ligation, with the consequent induction of additional IFN-γ production. The identification of this new population of innate B cells may contribute to a better understanding of B cell functions in anti-infection immune responses and immune regulation.  相似文献   

5.
6.
The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type Ⅲ secretion system(T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp.(Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gramnegative bacteria that share in common a 70 kb virulence plasmid which encodes the T3 SS. Translocation of the Yersinia effector proteins(YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia effector proteins and their contribution to Yersinia pathogenesis.  相似文献   

7.
Previously, a dominant role of the adaptive immune system in the pathogenesis of Sj?gren's syndrome was suspected. Recent advances, however, have revealed a major role of the type I IFN pathway, documented by an increased circulating type I IFN activity and an IFN 'signature' in peripheral blood mononuclear cells and minor salivary gland biopsies from the patients. Polymorphisms in the genes IRF5 and STAT4 leading to increased IFN activation are associated with disease susceptibility. In the pathogenesis of Sj?gren's syndrome, the activation of salivary gland epithelial cells appears to be the initial event. Once intrinsically activated, they express costimulatory and Toll-like receptors (TLRs) and MHC class I and II molecules, can present autoantigens and produce proinflammatory cytokines. The subsequent activation of plasmacytoid dendritic cells induces the production of high levels of proinflammatory cytokines in individuals with the risk alleles of the susceptibility genes IRF5 and STAT4. Under the influence of the high IFN concentration in the glands and through TLR ligation, B-cell activating factor is produced by epithelial cells and, together with autoantigen presentation on salivary gland epithelial cells, stimulates the adaptive immune system. In view of the central role of IFNalpha in at least the initiation of the pathogenesis of Sj?gren's syndrome, blockade of this cytokine may be a rational therapeutic approach.  相似文献   

8.
Previously, a dominant role of the adaptive immune system in the pathogenesis of Sj?gren's syndrome was suspected. Recent advances, however, have revealed a major role of the type I IFN pathway, documented by an increased circulating type I IFN activity and an IFN 'signature' in peripheral blood mononuclear cells and minor salivary gland biopsies from the patients. Polymorphisms in the genes IRF5 and STAT4 leading to increased IFN activation are associated with disease susceptibility. In the pathogenesis of Sj?gren's syndrome, the activation of salivary gland epithelial cells appears to be the initial event. Once intrinsically activated, they express costimulatory and Toll-like receptors (TLRs) and MHC class I and II molecules, can present autoantigens and produce proinflammatory cytokines. The subsequent activation of plasmacytoid dendritic cells induces the production of high levels of proinflammatory cytokines in individuals with the risk alleles of the susceptibility genes IRF5 and STAT4. Under the influence of the high IFN concentration in the glands and through TLR ligation, B-cell activating factor is produced by epithelial cells and, together with autoantigen presentation on salivary gland epithelial cells, stimulates the adaptive immune system. In view of the central role of IFNalpha in at least the initiation of the pathogenesis of Sj?gren's syndrome, blockade of this cytokine may be a rational therapeutic approach.  相似文献   

9.
10.
Polygalacturonase inhibiting proteins: players in plant innate immunity?   总被引:1,自引:0,他引:1  
Polygalacturonase-inhibiting proteins (PGIPs) are extracellular leucine-rich repeat (LRR) proteins that recognize and inhibit fungal polygalacturonases (PGs). The PG-PGIP interaction favours the accumulation of elicitor-active oligogalacturonides and causes the activation of defence responses. Small gene families encode PGIP isoforms that differ in affinity and specificity for PGs secreted by different pathogens. The consensus motif within the LRR structure of PGIPs is the same as that of the extracellular receptors of the plant innate immune system. Structural and functional evidence suggest that PGIPs are versatile proteins involved in innate immunity and that they are capable of recognizing different surface motifs of functionally related but structurally variable PGs.  相似文献   

11.
Innate immune responses, such as cell death and inflammatory signaling, are typically switch-like in nature. They also involve “prion-like” self-templating polymerization of one or more signaling proteins into massive macromolecular assemblies known as signalosomes. Despite the wealth of atomic-resolution structural information on signalosomes, how the constituent polymers nucleate and whether the switch-like nature of that event at the molecular scale relates to the digital nature of innate immune signaling at the cellular scale remains unknown. In this perspective, we review current knowledge of innate immune signalosome assembly, with an emphasis on structural constraints that allow the proteins to accumulate in inactive soluble forms poised for abrupt polymerization. We propose that structurally encoded nucleation barriers to protein polymerization kinetically regulate the corresponding pathways, which allows for extremely sensitive, rapid, and decisive signaling upon pathogen detection. We discuss how nucleation barriers satisfy the rigorous on-demand functions of the innate immune system but also predispose the system to precocious activation that may contribute to progressive age-associated inflammation.  相似文献   

12.
Can innate immunity be enhanced to treat microbial infections?   总被引:11,自引:0,他引:11  
  相似文献   

13.
The neutrophil has long been considered a phagocytic cell with a short life-span whose major role is to destroy intruders to the body. Toll receptors and anti-infectious factors such as defensin, perforin and granzymes are newly discovered mechanisms used by neutrophils for the first line of defense against invaders. Moreover, subpopulations of neutrophils share specific functions like the synthesis of certain cytokines and chemokines, as well as the expression of immunoreceptors like the T cell receptor. A primary consequence of inflammation on neutrophils is a delay in their spontaneous programmed cell death. Hence, this multifunctional cell is also a necessary actor of the acquired immune response. Neutrophils have the capacity to degrade and process antigens as well as efficiently present antigenic peptides to lymphocytes. Neutrophil interactions with immune cells, in particular dendritic cells, lead to the formation of IL-12 and TNF-alpha deviating the immune response towards a Th1 phenotype. Thus, the neutrophil exhibits a cellular plasticity that explains its capacity to transdifferentiate depending on the local requirements of the immune response. The neutrophil is probably the most underappreciated immune cell among hematopoietic leukocytes, and many neutrophil functions remain to be unraveled.  相似文献   

14.
15.
The mammary gland is a skin gland unique to the class Mammalia. Despite a growing molecular and histological understanding of the development and physiology of the mammary gland, its functional and morphological origins have remained speculative. Numerous theories on the origin of the mammary gland and lactation exist. The purpose of the mammary gland is to provide the newborn with copious amounts of milk, a unique body fluid that has a dual role of nutrition and immunological protection. Interestingly, antimicrobial enzymes, such as xanthine oxidoreductase or lysozyme, are directly involved in the evolution of the nutritional aspect of milk. We outline that xanthine oxidoreductase evolved a dual role in the mammary gland and hence provide new evidence supporting the hypothesis that the nutritional function of the milk evolved subsequent to its protective function. Therefore, we postulate that the mammary gland evolved from the innate immune system. In addition, we suggest that lactation partly evolved as an inflammatory response to tissue damage and infection, and discuss the observation that the two signaling pathways, NF-kB and Jak/Stat, play central roles in inflammation as well as in lactation.  相似文献   

16.
17.
18.
Pathogenicity of Chlamydia and Chlamydia-related bacteria could be partially mediated by an enhanced activation of the innate immune response. The study of this host pathogen interaction has proved challenging due to the restricted in vitro growth of these strict intracellular bacteria and the lack of genetic tools to manipulate their genomes. Despite these difficulties, the interactions of Chlamydiales with the innate immune cells and their effectors have been studied thoroughly. This review aims to point out the role of pattern recognition receptors and signal molecules (cytokines, reactive oxygen species) of the innate immune response in the pathogenesis of chlamydial infection. Besides inducing clearance of the bacteria, some of these effectors may be used by the Chlamydia to establish chronic infections or to spread. Thus, the induced innate immune response seems to be variable depending on the species and/or the serovar, making the pattern more complex. It remains crucial to determine the common players of the innate immune response in order to help define new treatment strategies and to develop effective vaccines. The excellent growth in phagocytic cells of some Chlamydia-related organisms such as Waddlia chondrophila supports their use as model organisms to study conserved features important for interactions between the innate immunity and Chlamydia.  相似文献   

19.
20.
Myeloid cells (macrophages, neutrophils, dendritic cells) express a repertoire of plasma membrane receptors able to recognize all classes of macromolecules. The concept of pattern recognition has emphasized microbial ligands and host defence. However, these receptors play a broader role in tissue homeostasis within multicellular hosts, clearing the extracellular environment of potential undesirable ligands arising endogenously as well as from without. This article will evaluate one of the paradigms that underlie innate immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号