首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
2.
SnRK2s are a large family of plant-specific protein kinases, which play important roles in multiple abiotic stress responses in various plant species. But the family in Gossypium has not been well studied. Here, we identified 13, 10, and 13 members of the SnRK2 family from Gossypium raimondii, Gossypium arboreum, and Gossypium hirsutum, respectively, and analyzed the locations of SnRK2 homologs in chromosomes based on genome data of cotton species. Phylogenetic tree analysis of SnRK2 proteins showed that these families were classified into three groups. All SnRK2 genes were comprised of nine exons and eight introns, and the exon distributions and the intron phase of homolog genes among different cotton species were analogous. Moreover, GhSnRK2.6 was overexpressed in Arabidopsis and upland cotton, respectively. Under salt treatment, overexpressed Arabidopsis could maintain higher biomass accumulation than wild-type plants, and GhSnRK2.6 overexpression in cotton exhibited higher germination rate than the control. So, the gene GhSnRK2.6 could be utilized in cotton breeding for salt tolerance.  相似文献   

3.
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases. It has been speculated that plant MMPs are involved in plant growth, development, and stress response. However, the biological function of MMPs in higher plants still remains elusive. In the present study, a MMP gene Gm2-MMP was isolated and characterized. It encoded a 357 amino acids protein and contained a common domain structure of MMPs. Subcellular localization of Gm2-MMP-GFP fusion protein indicated that Gm2-MMP was located in plasma membrane. Gm2-MMP was found to show higher expression levels in mature seeds, mature leaves, or old leaves than in other organs and was continuously expressed from seed development to maturation stage. Additionally, Gm2-MMP participated in response to HTH stress in leaves and developing seeds (R7 period) of soybean. The overexpression of Gm2-MMP in Arabidopsis affected the growth and development of leaves, enhanced the tolerance to HTH stress in leaves and developing seeds, and improved the vitality of seed. Twenty-eight candidate proteins interacted with Gm2-MMP were identified from the cDNA library of soybean developing seed under HTH stress by yeast two-hybrid (Y2H) screen. Our results suggested that Gm2-MMP is related to growth and development and confers enhanced HTH stress tolerance in plants. This will be helpful for us in further understanding of the biological functions of MMP family in plant.  相似文献   

4.
5.
Auxin receptors TIR1/AFBs play an essential role in a series of signaling network cascades. These F-box proteins have also been identified to participate in different stress responses via the auxin signaling pathway in Arabidopsis. Cucumber (Cucumis sativus L.) is one of the most important crops worldwide, which is also a model plant for research. In the study herein, two cucumber homologous auxin receptor F-box genes CsTIR and CsAFB were cloned and studied for the first time. The deduced amino acid sequences showed a 78% identity between CsTIR and AtTIR1 and 76% between CsAFB and AtAFB2. All these proteins share similar characteristics of an F-box domain near the N-terminus, and several Leucine-rich repeat regions in the middle. Arabidopsis plants ectopically overexpressing CsTIR or CsAFB were obtained and verified. Shorter primary roots and more lateral roots were found in these transgenic lines with auxin signaling amplified. Results showed that expression of CsTIR/AFB genes in Arabidopsis could lead to higher seeds germination rates and plant survival rates than wild-type under salt stress. The enhanced salt tolerance in transgenic plants is probably caused by maintaining root growth and controlling water loss in seedlings, and by stabilizing life-sustaining substances as well as accumulating endogenous osmoregulation substances. We proposed that CsTIR/AFB-involved auxin signal regulation might trigger auxin mediated stress adaptation response and enhance the plant salt stress resistance by osmoregulation.  相似文献   

6.
7.
YUCCA is an important enzyme which catalyzes a key rate-limiting step in the tryptophan-dependent pathway for auxin biosynthesis and implicated in several processes during plant growth and development. Genome wide analyses of YUCCA genes have been performed in Arabidopsis, rice, tomato, and Populus, but have never been characterized in soybean, one of the most important oil crops in the world. In this study, 22 GmYUCCA genes (GmYUCCA1-22) were identified and named based on soybean whole-genome sequence. Phylogenetic analysis of YUCCA proteins from Glycine max, Arabidopsis, Oryza sativa, tomato, and Populus euphratica revealed that GmYUCCA proteins could be divided into four subfamilies. Quantitative real-time RT-PCR (qRT-PCR) analysis showed that GmYUCCA genes have diverse expression patterns in different tissues and under various stress treatments. Compared to the wild type (WT), the transgenic GmYUCCA5 Arabidopsis plants displayed downward curling of the leaf blade margin, evident apical dominance, higher plant height, and shorter length of siliques. Our results provide a comprehensive analysis of the soybean YUCCA gene family and lay a solid foundation for further experiments in order to functionally characterize these gene members during soybean growth and development.  相似文献   

8.
The B subfamily of ATP-binding cassette (ABC) proteins (ABCB) plays a vital role in auxin efflux. However, no systematic study has been done in apple. In this study, we performed genomewide identification and expression analyses of the ABCB family in Malus domestica for the first time. We identified a total of 25 apple ABCBs that were divided into three clusters based on the phylogenetic analysis. Most ABCBs within the same cluster demonstrated a similar exon–intron organization. Additionally, the digital expression profiles of ABCB genes shed light on their functional divergence. ABCB1 and ABCB19 are two well-studied auxin efflux carrier genes, and we found that their expression levels are higher in young shoots of M106 than in young shoots of M9. Since young shoots are the main source of auxin synthesis and auxin efflux involves in tree height control. This suggests that ABCB1 and ABCB19 may also take a part in the auxin efflux and tree height control in apple.  相似文献   

9.
The U small nuclear RNA (U snRNA) genes comprise a multigene family and are required for splicing of pre-mRNA. In this paper, we aimed to study the chromosomal location of the U2 snRNA gene in Megaleporinus, Leporinus and Schizodon species, which constitute interesting models for the study of repetitive DNA and genomic evolution in fish once the group comprises species with and without heteromorphic sex chromosomes. The all six species showed 2n?=?54 chromosomes: Megaleporinus elongatus, Megaleporinus macrocephalus, Leporinus striatus, Leporinus friderici, Schizodon borelli and Schizodon isognathus. The U2 snDNA clusters were evident in only one medium-sized submetracentric pair in all analyzed species and this may represent a condition shared by Anostomidae family.  相似文献   

10.

Key message

Rag6 and Rag3c were delimited to a 49-kb interval on chromosome 8 and a 150-kb interval on chromosome 16, respectively. Structural variants in the exons of candidate genes were identified.

Abstract

The soybean aphid, an invasive species, has significantly threatened soybean production in North America since 2000. Host-plant resistance is known as an ideal management strategy for aphids. Two novel aphid-resistance loci, Rag6 and Rag3c, from Glycine soja 85-32, were previously detected in a 10.5-cM interval on chromosome 8 and a 7.5-cM interval on chromosome 16, respectively. Defining the exact genomic position of these two genes is critical for improving the effectiveness of marker-assisted selection for aphid resistance and for identification of the functional genes. To pinpoint the locations of Rag6 and Rag3c, four populations segregating for Rag6 and Rag3c were used to fine map these two genes. The availability of the Illumina Infinium SoySNP50K/8K iSelect BeadChip, combined with single-nucleotide polymorphism (SNP) markers discovered through the whole-genome re-sequencing of E12901, facilitated the fine mapping process. Rag6 was refined to a 49-kb interval on chromosome 8 with four candidate genes, including three clustered nucleotide-binding site leucine-rich repeat (NBS–LRR) genes and an amine oxidase encoding gene. Rag3c was refined to a 150-kb interval on chromosome 16 with 11 candidate genes, two of which are a LRR gene and a lipase gene. Moreover, by sequencing the whole-genome exome-capture of the resistant source (E12901), structural variants were identified in the exons of the candidate genes of Rag6 and Rag3c. The closely linked SNP markers and the candidate gene information presented in this study will be significant resources for integrating Rag6 and Rag3c into elite cultivars and for future functional genetics studies.
  相似文献   

11.
Pseudomonas syringae pv. phaseolicola is an important disease that causes halo blight in common bean. The genetic mechanisms underlying quantitative halo blight resistance are poorly understood in this species, as most disease studies have focused on qualitative resistance. The present work examines the genetic basis of quantitative resistance to the nine halo blight races in different organs (primary and trifoliate leaf, stem and pod) of an Andean recombinant inbred line (RIL) progeny. Using a multi-environment quantitative trait locus (QTL) mapping approach, 76 and 101 main-effect and epistatic QTLs were identified, respectively. Most of the epistatic interactions detected were due to loci without detectable QTL additive main effects. Main and epistatic QTLs detected were mainly consistent across the environment conditions. The homologous genomic regions corresponding to 26 of the 76 main-effect detected QTLs were positive for the presence of resistance-associated gene cluster encoding nucleotide-binding and leucine-rich repeat (NL) proteins and known defence genes. Main-effect QTLs for resistance to races 3, 4 and 5 in leaf, stem and pod were located on chromosome 2 within a 3.01-Mb region, where a cluster of nine NL genes was detected. The NL gene Phvul.002G323300 is located in this region, which can be considered an important putative candidate gene for the non-organ-specific QTL identified here. The present research provides essential information not only for the better understanding of the plant-pathogen interaction but also for the application of genomic assisted breeding for halo blight resistance in common bean.  相似文献   

12.
The plastidic thioredoxin F-type (TrxF) protein plays an important role in plant carbohydrate metabolism biosynthesis. In this study, a gene encoding the TrxF protein, named GmTrxF, was isolated from soybean. The open reading frame (ORF) contained 540 nucleotides encoding 179 amino acids. The coding region of GmTrxF was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis. The starch content in GmTrxF expressing plants was increased by 57–109% compared to that in wild-type (WT). Real-time quantitative PCR (qRT-PCR) analysis showed that constitutive expression of GmTrxF up-regulated the expression of phosphoglucomutase (AtPGM), ADP-glucose pyrophosphorylase (AGPase) small subunit (AtAGPase-S1 and AtAGPase-S2), AGPase large subunit (AtAGPase-L1 and AtAGPase-L2) and soluble starch synthases (AtSSS I, AtSSS II, AtSSS III and AtSSS IV) genes involved in starch biosynthesis in the transgenic Arabidopsis plants. Meanwhile, enzymatic analyses showed that the major enzymes (AGPase and SSS) involved in the starch biosynthesis exhibited higher activities in the transgenic plants compared to WT. These results suggest that GmTrxF may improve starch content of Arabidopsis by up-regulating the expression of the related genes and increasing the activities of the major enzymes invovled in starch biosynthesis. The manipulation of GmTrxF expression might be used for increasing starch accumulation of plants in the future.  相似文献   

13.
14.
15.

Aims

To identify Rhizobium strains’ ability to biocontrol Sclerotium rolfsii, a fungus that causes serious damage to the common bean and other important crops, 78 previously isolated rhizobia from common bean were assessed.

Methods

Dual cultures, volatiles, indole-acetic acid (IAA), siderophore production and 16S rRNA sequencing were employed to select strains for pot and field experiments.

Results

Thirty-three antagonistic strains were detected in dual cultures, 16 of which were able to inhibit ≥84% fungus mycelial growth. Antagonistic strains produced up to 36.5 μg mL?1 of IAA, and a direct correlation was verified between IAA production and mycelium inhibition. SEMIA 460 inhibited 45% of mycelial growth through volatile compounds. 16S rRNA sequences confirmed strains as Rhizobium species. In pot condition, common bean plants grown on S. rolfsii-infested soil and inoculated with SEMIA 4032, 4077, 4088, 4080, 4085, or 439 presented less or no disease symptoms. The most efficient strains under field conditions, SEMIA 439 and 4088, decreased disease incidence by 18.3 and 14.5% of the S. rolfsii-infested control.

Conclusions

Rhizobium strains could be strong antagonists towards S. rolfsii growth. SEMIA 4032, 4077, 4088, 4080, 4085, and 439 are effective in the biological control of the collar rot of the common bean.
  相似文献   

16.

Key message

Using a combination of phenotypic screening, genetic and statistical analyses, and high-throughput genome-wide sequencing, we have finely mapped a dominant Phytophthora resistance gene in soybean cultivar Wayao.

Abstract

Phytophthora root rot (PRR) caused by Phytophthora sojae is one of the most important soil-borne diseases in many soybean-production regions in the world. Identification of resistant gene(s) and incorporating them into elite varieties are an effective way for breeding to prevent soybean from being harmed by this disease. Two soybean populations of 191 F2 individuals and 196 F7:8 recombinant inbred lines (RILs) were developed to map Rps gene by crossing a susceptible cultivar Huachun 2 with the resistant cultivar Wayao. Genetic analysis of the F2 population indicated that PRR resistance in Wayao was controlled by a single dominant gene, temporarily named RpsWY, which was mapped on chromosome 3. A high-density genetic linkage bin map was constructed using 3469 recombination bins of the RILs to explore the candidate genes by the high-throughput genome-wide sequencing. The results of genotypic analysis showed that the RpsWY gene was located in bin 401 between 4466230 and 4502773 bp on chromosome 3 through line 71 and 100 of the RILs. Four predicted genes (Glyma03g04350, Glyma03g04360, Glyma03g04370, and Glyma03g04380) were found at the narrowed region of 36.5 kb in bin 401. These results suggest that the high-throughput genome-wide resequencing is an effective method to fine map PRR candidate genes.
  相似文献   

17.
18.
The Minichromosome maintenance protein [MCM (2-7)] complex is associated with helicase activity for replication fork formation during DNA replication. We identified and characterized each 12 putative MCM genes from Brassica oleracea and Brassica rapa. MCM genes were classified into nine groups according to their evolutionary relationships. A high number of syntenic regions were present on chromosomes C03 and A03 in B. oleracea and B. rapa, respectively, compared to the other chromosomes. Expression analysis showed that most of the MCM(2-7) helicase-subunit genes and their coregulating MCM genes were upregulated during hydroxyurea (HU) induced stress in B. oleracea. In B. rapa, MCM(2-7) helicase genes BrMCM2_2, BrMCM7_1, BrMCM7_2 and their co-regulating genes were upregulated during replication stress. During cold stress, BoMCM6 in B. oleracea and BrMCM5 in B. rapa were remarkably upregulated. During salt stress, BoMCM6_2, BoMCM7_1, BoMCM8, BoMCM9, and BoMCM10 were markedly upregulated in B. oleracea. Hence, our study identified the candidate MCM family genes those possess abiotic stress-responsive behavior and DNA replication stress tolerance. As the first genome-wide analysis of MCM genes in B. oleracea and B. rapa, this work provides a foundation to develop stress responsive plants. Further functional and molecular studies on MCM genes will be helpful to enhance stress tolerance in plants.  相似文献   

19.
The diploid oat species containing the A genome of two types (Al and Ac) were studied by electrophoresis of grain storage proteins (avenins), chromosome C-banding, and in situ hybridization with probes pTa71 and pTa794. The karyotypes of the studied species displayed similar C-banding patterns but differed in size and morphology of several chromosomes, presumably, resulting from structural rearrangements that took place during the divergence of A genomes from a common ancestor. In situ hybridization demonstrated an identical location of the 45S and 5S rRNA gene loci in Avena canariensis and A. longiglumis similar to that in the A. strigosa genome. However, the 5S rDNA locus in A. longiglumis (5S rDNA1) was considerably decreased in the chromosome 3Al long arm. The analysis demonstrated that these oat species were similar in the avenin component composition, although individual accessions differed in the electrophoretic mobilities of certain components. A considerable similarity of A. canariensis and A. longiglumis to the Avena diploid species carrying the As genome variant was demonstrated.  相似文献   

20.
In this research, through the analyzing of the Triticum aestivum salt-tolerant mutant gene expression profile, under salt stress. A brand new gene with unknown functions induced by salt was cloned. The cloned gene was named Triticum aestivum salt stress protein (TaSST). GenBank accession number of TaSST is ACH97119. Quantitative polymerase chain reaction (qPCR) results exhibited that the expression TaSST was induced by salt, abscisic acid (ABA), and polyethylene glycol (PEG). TaSST could improve salt tolerance of Arabidopsis-overexpressed TaSST. After salt stress, physiological indexes of transgenic Arabidopsis were better compared with WT (wild-type) plants. TaSST was mainly located in the cytomembrane. qPCR analyzed the expression levels of nine tolerance-related genes of Arabidopsis in TaSST-overexpressing Arabidopsis. Results showed that the expression levels of SOS3, SOS2, KIN2, and COR15a significantly increased, whereas the expression of the five other genes showed no obvious change. OsI_01272, the homologous gene of TaSST in rice, was interfered using RNA interference (RNAi) technique. RNAi plants became more sensitive to salt than control plants. Thus, we speculate that TaSST can improve plant salt tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号