首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary At Collades de Bastus, Catalonian Pyrences, a Santonian mixed siliciclastic-carbonate succession indicates two proximal-distal gradients, and records two styles of stratigraphical development upon relative sea-level change. The succession consists of four small-scale sequences (5.1 to 5.4) within the highstand systems tract of the. “Valicarca-5” depositional sequence of Simo (1993), and is topped by a drowning sequence (small-scale sequence 5.5). The investigated succession (Collades Member) accumulated near the margin of the south-Pyrenean shelf, shortly before development of the south-vergent Boixols thrust system. Deposition of the Collades Member commenced with moderate sea-level rise accompanied by increased siliciclastic input. In the larger, eastern outcrop sector the Collades Member consists of a succession of neritic marls with four intercalated intervals each deposited from a carbonate shelf. Each carbonate interval consists of stacked upward-shoaling cycles interpreted as parasequences. From bottom to top, most parasequences consist of a coral-sponge-rudist bioconstruction, a rudist biostrome, and bioclastic limestones. Depositional sequences 5.1 to 5.4 developed by overstep of shelf carbonates with neritic marls, corresponding to the transgressive systems tract (TST) and to part of the highstand systems tract(HST) The carbonate facies tract of the HST consists of stacked parasequences that become thinner up-section and record a westward component of progradation. Each highstand carbonate interval is overlain by a stack of carbonate parasequences that become thicker up-section and, down depositional dip, by neritic marls. Together, the upward-thickening parasequence stack and the laterally adjacent overlying succession of neritic marls comprise the TST and part of the HST of the successive sequence. The sequence boundary is the level of maximum shoaling within each carbonate shelf interval. The uppermost sequence 5.5 is a drowning sequence (cf. Simo 1993). In the western outcrop sector, the Collades Member consists of hummocky cross-laminated to bioturbated sandy calcarenites, of neritic marls and of relatively thin intervals of coral-sponge-rudist limestones. Sequence development may have started with deposition of sharp-based bedsets of sandy calcarenites that both eastward and up-section become thinner and grade into neritic marls. Together, the succession of sandy calcarenites and neritic marls may comprise the TST and, possibly, part of the HST. In the HST neritic marls and, locally, coral-sponge-rudist bioconstructions accumulated. Deposition of some calcarenite bedsets seems to have started near or closely after maximum progradation of each carbonate shelf in the eastern part of outcrop. The stratigraphic architecture of the Collades Member indicates, for the eastern outcrop sector, an east-west proximal-distal gradient, whereas the western sector records a west-east gradient. The opposite gradients result from outcrop intersection subparallel to oblique to general northward depositional dip, across two distinct shelf depositional systems.  相似文献   

2.
Successions of the Slovenian Basin structurally belong to the easternmost Southern Alps. During the Late Triassic, they were part of the Adriatic continental margin. Norian–Rhaetian successions of the Slovenian Basin are characterized mainly by dolomite of the Bača Dolomite Formation. However, in the northern part of the basin, Late Triassic limestone is preserved above Bača Dolomite Formation and is formalized as the Slatnik Formation. It is composed of hemipelagic limestone alternating with resedimented limestones. The succession documents an upward progradation of the slope environment composed of three high-frequency cycles. Most prominent progradation is referred to the second, i.e., Early Rhaetian cycle. The Slatnik Formation ends with thin-bedded hemipelagic limestone that records the end-Triassic productivity crisis, or rapid sea-level fall. The overlying resedimented limestones of the Early Jurassic Krikov Formation, document the recovery of production and shedding from the adjacent carbonate platform.  相似文献   

3.
4.
In the Julian Alps (Mt. Prisojnik, NW Slovenia) and in the Kamnik–Savinja Alps (Mt. Kri?evnik, N Slovenia), both of which form part of the eastern Southern Alps, several meters of Upper Anisian pelagic red nodular, radiolarian-rich limestone (Loibl Formation) were deposited on the drowned platform carbonates of the Contrin Formation. The time of the platform drowning is dated with radiolarians and conodonts to the Illyrian, more precisely to the upper part of the Paraceratites trinodosus Ammonoid Zone. The red limestone is overlain by pyroclastics and volcanics (rhyolites) or carbonate (mega)breccia (Uggowitz Formation). The following unit consists of thin-bedded limestone, grainstone and subordinate marl (Buchenstein Formation) deposited during the final filling of the basin from the adjacent prograding carbonate platform (Schlern Formation) in the Ladinian. Map-scale geometry, neptunian dykes, the onset of volcanism, the presence of (mega)breccia and related paleo-escarpments, the lateral variations in thickness and the wedge-shaped geometry of the lithological units provide evidence of syn-sedimentary block faulting and the formation of small-scale, relatively shallow half-grabens within the previously uniform Slovenian Carbonate Platform. This analysis indicates a clear tectonic control over the development of the Middle Triassic stratigraphy. The described extensional event is well correlated and genetically connected with the syn-rift formation of the neighboring Slovenian Basin and other Southern Alpine basins that formed in connection with the opening of the Meliata-Maliac branch of the Neotethys Ocean.  相似文献   

5.
Summary Following a phase of predominantly siliciclastic sedimentation in the Early and Middle Jurassic, a large-scale, low-latitude carbonate depositional system was established in the northern part of the Tabas Block, part of the central-east Iranian microplate, during the Callovian and persisted until the latest Oxfordian/Early Kimmeridgian. Running parallel to the present eastern block margin, a NNW/SSE-trending carbonate platform developed in an area characterized by reduced subsidence rates (Shotori Swell). The growth of this rimmed, flat-topped barrier platform strongly influenced the Upper Jurassic facies pattern and sedimentary history of the Tabas Block. The platform sediments, represented by the predominantly fine-grained carbonates of the Esfandiar Limestone Formation, pass eastward into slope to basin sediments of the Qal'eh Dokhtar Limestone Formation (platform-derived allochthonites, microbialites, and peri-platform muds). Towards the west, they interfinger with bedded limestones and marlstones (Kamar-e-Mehdi Formation), which were deposited in an extensive shelf lagoon. In a N−S direction, the Esfandiar Platform can be traced for about 170 km, in an E-W direction, the platform extended for at least 35–40 km. The width of the eastern slope of the platform is estimated at 10–15 km, the width of the western shelf lagoon varied considerably (>20–80 km). During the Late Callovian to Middle Oxfordian, the Esfandiar Platform flourished under arid climatic conditions and supplied the slope and basinal areas with large amounts of carbonates (suspended peri-platform muds and gravitational sediments). Export pulses of platform material, e.g. ooids and aggregate grains, into the slope and basinal system are interpreted as highstand shedding related to relative sealevel variations. The high-productivity phase was terminated in the Late Oxfordian when the eastern platform areas drowned and homogeneous deep water marls of the Upper Oxfordian to Kimmeridgian Korond Formation onlapped both the Qal'eh Dokhtar Limestone Formation and the drowned Esfandiar Limestone Formation. Tectonic instability, probably caused by faulting at the margins of the Tabas Block in connection with rotational movements of the east-central Iranian block assemblage, was responsible for the partial drowning of the eastern platform areas. In some areas, relicts of the platform persisted to produce shallow-water sediments into the Kimmeridgian.  相似文献   

6.
Based on their lithologic characteristics and stratal geometries, the Middle Cambrian Fasham and Deh-Sufiyan Formations of the lower Mila Group in the Central Alborz, northern Iran, exhibit 39 lithofacies representing several supratidal to deep subtidal facies belts. The siliciclastic successions of the Fasham Formation are divided into two facies associations, suggesting deposition in a tide-dominated, open-mouthed estuarine setting. The mixed, predominantly carbonate successions of the Deh-Sufiyan Formation are grouped into ten facies associations. Four depositional zones are recognized on the Deh-Sufiyan ramp: basinal, outer ramp (deep subtidal associations), mid ramp (shallow subtidal to lower intertidal associations), and inner ramp (shoal and upper intertidal to supratidal associations). These facies associations are arranged in small-scale sedimentary cycles, i.e., peritidal, shallow subtidal, and deep subtidal cycles. These cycles reflect spatial differences in the reaction of the depositional system to small-scale relative sea-level changes. Small-scale cycles are stacked into medium-scale cycles that in turn are building blocks of large-scale cycles. Systematic changes in stacking pattern (cycle thickness, cycle type, and facies proportion) allow to reconstruct long-term changes in sea-level. Six large-scale cycles (S1–S6) have been identified and are interpreted as depositional sequences showing retrogradational (transgressive systems tract) and progradational (highstand systems tract) packages of facies associations. The six depositional sequences provide the basis for inter-regional sequence stratigraphic correlations and have been controlled by eustatic sea-level changes.  相似文献   

7.
Summary Modern carbonate sedimentation in the Caribbean Sea commonly occurs on banks that are surrounded and isolated by deep oceanic water. This depositional regime also occurred during the Tertiary, and many islands, such as Cayman Brac, have sequences that evolved in such settings. Cayman Brac is a small (about 39 km2) island, located on the Cayman Ridge, that has an exposed Oligocene to Pliocene succession which encompasses three unconformity-bounded formations. The upper Lower Oligocene Brac Formation is formed ofLepidocyclina limestones and sucrosis dolostones that locally contain numerous bivalves and gastropods. The overlying Lower to Middle Miocene Cayman Formation is formed of pervasively dolomitized mudstones to grainstones that contain an abundant, diverse biota of corals, gastropods, bivalves, foraminifera, and algae. Rhodolites are locally common. The Pliocene Pedro Castle Formation is formed of limestones, dolostones, and dolomitic limestones that contain a biota which is similar to that in the Cayman Formation. The unconformities between the formations represent substantial periods of time during which the previously deposited carbonates were lithified and eroded to produce karst terrains. All facies in the Brac, Cayman, and Pedro Castle formations on Cayman Brac developed on a bank that was no more than 20 km long and 3 km wide. There is no evidence of reef development other than isolated thickets ofStylophora and/orPorites and no systematic stratigraphic or geographic changes in the facies patterns of the formations. Comparison with modern Caribbean banks shows that the depositional regime was primarily controlled by water depth and energy levels. Limestones of the Brac Formation probably accumulated in low-energy conditions in water less than 10 m deep. The overlying Cayman Formation contains facies that formed in water 15 to 30 m deep with good cross-bank circulation. The Pedro Castle Formation formed in slightly shallower water (5–25 m) and lower energy conditions. The disconformities between the packages correlate with world wide eustatic drops in sea level.  相似文献   

8.
The fauna of the upper Cassian Formation is composed mainly of reef-building and reef-dwelling organisms which occur as reeeposited material in basinal sediments, but have not been found as original reef bodies. Such bodies have now been discovered in the uppermost Cassian Formation of the central Dolomites from the Sella Group in the west to the Monti Cadini in the east. Generally they are small-scale patch reefs, not exceeding a few metres in thickness and lateral extent, which are intercalated in well-bedded detrital and micritic limestones. locally, larger biostromes spread out from the margins of the Cassian Dolomite buildups. Four types of faunal communities have been encountered in these reefs:
  1. The thrombolite-calcareous algae community, composed of small patchy cryptalgal structures binding poorly sorted debris and associated with other Cyanophyta, sessile formainifera and scattered calcareous sponges and corals. This type is the most common within the calcareous and marly-tuffaceous facies of the Cassian Formation.
  2. The calcareous sponge-coral community, composed mostly of calcareous sponges (stromatoporoids, some pharetronids) and, to a lesser extent, colonial corals and thrombolites. This community corre-sponds well to the Cassian reef fauna, best known from erratic blocks at Alpe di Specie, but has been found in situ only at one locality.
  3. The Spongiomorpha-Solenopora community, associated with scattered calcareous sponges and colonial corals, forming a thin biostrome at one locality.
  4. Coral communities, composed predominantly of colonial Scleractinia; found only in small or stratigraphically illdefined outcrops and in erratic blocks.
The Cassian patch reefs and biostromes mark the end of a basinal evolution which began in the Lower Ladinian, and the onset of newly expanding carbonate buildups of Cassian Dolomite. These buildups and the sponge-coral patch reefs might have been the source for the allochthonous reef fauna of the Cassian Formation which interfingers with both shallow water environments.  相似文献   

9.
The Upper Ordovician (uppermost Caradoc-Ashgill) section of western Estonia consists of a series of seven open-shelf carbonate sequences. Depositional facies grade laterally through a series of shelf-to-basin facies belts: grain-supported facies (shallow shelf), mixed facies (middle shelf), mud-supported facies (deep shelf and slope) and black shale facies (basin). Locally, a stromatactis mud mound occurs in a middle-to-deep shelf position. Shallow-to-deep shelf facies occur widely across the Estonian Shelf and grade laterally through a transitional (slope) belt into the basinal deposits of the Livonian Basin.

Each sequence consists of a shallowing-upward, prograding facies succession. Sequences 1 (Upper Nabala Stage) and 2 (Vormsi Stage) record step-wise drowning of underlying shelf units (lower Nabala) that culminated in the deposition of the most basinal facies (Fjäcka Shale) in the Livonian Basin. Sequences 3–6 comprise the overlying Pirgu Stage and record the gradual expansion of shallow and middle-shelf facies across the Estonian Shelf. The Porkuni Stage (sequence 7) is bracketed by erosional surfaces and contains the shallowest-water facies of the preserved strata. The uppermost part of the section (Normalograptus persculptus biozone) is restricted to the Livonian Basin, and includes redeposited carbonate and siliciclastic grains; it is the lowstand systems tract of the lowest Silurian sequence 8. Sequence 7 and the overlying basinal redeposited material (i.e., the lowstand of sequence 8) correspond to the latest Ordovician (Hirnantian) glacial interval, and the bracketing unconformities are interpreted as the widely recognized early and late Hirnantian glacial maximums.

The sequences appear correlative to Upper Ordovician sequences in Laurentia. Graptolite biozones indicated that the Estonian sequences are equivalent to carbonate ramp sequences in the western United States (Great Basin) and mixed carbonate-siliciclastic sequences in the eastern United States (Appalachian Basin–Cincinnati Arch region). These correlations indicate a strong eustatic control over sequence development despite the contrasting tectonic settings of these basins.  相似文献   


10.
Andrea Cozzi 《Facies》2002,47(1):151-178
Summary Upper Triassic (Middle-Upper Norian) shallow-water carbonates of the Dolomia Principale and its deep-water counterparts (Forni Dolomite) have been studied in the Carnian Prealps (northeastern Italy). The Dolomia Principale was a storm-dominated carbonate platform; in the Mt. Pramaggiore area, along a well-preserved 3.5 km-long platform-to-basin transition, the inner platform facies of the Dolomia Principale, characterized by m-scale shallowing upward cycles, give way seaward to open marine storm-dominated shallow subtidal lagoon deposits with frequent hardgrounds and evidence of microbial stabilization of the bottom sediment. The margin of the Dolomia Principale platform was colonized by meter-scale stromatolites and serpulid-microbial mounds that thrived due to the local highly stressed environment, characterized by drastic salinity fluctuations and turbid waters, that excluded the Upper Triassic coral-sponge communities. The Forni Dolomite slope-basin complex was characterized by an upper slope facies with debris flows, megabreccias, turbidites and serpulid-microbial mounds. The lower slope and basinal facies show thinning and fining trends. After restoring the original geometry of the slope, the depositional angles of the clinoforms range between 11 and 36 degrees, reflecting closely the coarse-grained character of the Forni Dolomite slope complex, which can be interpreted as a slope apron that, as a model, can be extended to steeply inclined carbonate slopes. The onset of synsedimentary extensional tectonics at the Middle-Late Norian boundary affected the platform-slope depositional system via: 1) localized inner platform collapses and the formation of an intraplatform anoxic depression at Mt. Valmenone, 2) a switch from platform lateral progradation during the Middle Norian to vertical aggradation in the Late Norian, reflected in an increase in platform relief, steeper foreslope angles and coarser-grained slope facies, and 3) controlling the spatial orientation of the margin of the Dolomia Principale.  相似文献   

11.
Summary The epicontinental pelagic to hemipelagic Upper Cenomanian and Lower Turonian successons of the Lower Saxony Basin (northwestern Germany) are represented by the Rotpl?ner facies on swells (multicolored marls and marly limestones) and the basinal Black Shales facies (marly limestones (Turbidites), black shales) in the local basins. Facies units are described with their lateral and vertical variation from both depositional environments and their correlation is discussed. The distinct Cenomanian-Turonian boundary facies is due to dilution of pelagic carbonate by siliciclastic material, volcanic ashfall, and substantial changes in carbonate, sedimentation rates by about an order of magnitude. The observed sediment geometries origin from preservation of sediments in areas where normal faults occur and erosion of the formerly deposited units in unfaulted areas (preservation of relicts). Erosion and redeposition on swells occurs in thin (<50 cm thick) debris flow and mud flow channels (1–100 m wide), sheet flows, and by turbidity currents. During the Upper Cenomanian the sediment transport is governed by gravity flow which is increasingly superimposed by storm deposition during the Lower Turonian. Lense-shaped tempestites (probably below average storm wave base) occur at the base of the Turonian (entry ofMytiloides hattini) in morphologically highest swell positions and migrate across the entire basin until the late Lower Turonian. The basinal facies is characterised by laminated and biotrubated black shales and mud turbidites that vary over short distances. Laminae show graded bedding and erosive contacts and were deposited by turbidity currents. Intercalated marly limestones are mud turbidities (some mudflows) that are coarsening upwards until the early Lower Turonian. Larger slides occurred predominantly in the late Upper Cenomanian. The sediment distribution is closely related to sea level changes and reflects short- and long-term fluctuations generating comparable stratigraphic trend in the sections, although basin and swell facies are always clearly distinguished. Lokal basin margins (e.g. primary fordeeps of sal domes) were probably limited by larger normal faults that prevented facies gradation between both depositional environments.  相似文献   

12.
Summary The Gladenbach Formation is an approximately 30 m thick, well-segregated calciturbidite sequence, restricted to the H?rre belt of the eastern Rheinisches Schiefergebirge. It is middle Tournaisian in age (lowerPericyclus Stage, lower cd II of the German Culm zonation) and is an equivalent of the Liegende Alaunschiefer. The sequence is composed predominantly of minor turbiditic fining-upward cycles. Cycles start with massive calciturbidite beds. They are composed of fine-grained intraclastic-bioclastic grainstone/packstone, more or less ooid-bearing in the top of the formation, and/or radiolarian-rich packstone. Cycles continue with platy, dense limestones consisting of radiolarian-rich wackestone/packstone and microlithoclastic-microbioclastic wackestone/packstone. Different types of shales finish the fining-upward development. Minor cycles can be grouped into several 4th order cycles, composing a single 3rd order cycle. Towards the top, abundance of resedimented platform components, like ooids, calcareous smaller foraminifers, echinoderms, brachiopods, bryozoans and critical conodont genera, increases. Simultaneously, the thickness of the minor cycles decreases. This indicates a transgressive phase, characterized by increasing over-production of carbonate on platform realms and a correlated increase in the frequency of resedimentation events in the basin. The transgression corresponds to the well-documented global eustatic transgression of the Lowercrenulata andisosticha-uppercrenulata Zone of the conodont chronology. Thus, the Gladenbach Formation is interpreted as a transgressive systems tract/highstand systems tract. The Liegende Alaunschiefer is the time-equivalent, starved basin facies. Predominating hemipelagic calciturbidites of the lower Gladenbach Formation derive from the deeper shelf slope or from an intrabasinal swell, which might constitute a flexural bulge in front of the shelf slope. Turbidite sediments from the upper part of the formation derive from shelf-edge sands and the upper shelf slope. The source might be related to the ancient Devonian reef complex of Langenaubach-Breitscheid in the southwest.  相似文献   

13.
The Tale-Zang Formation in Zagros Mountains (south-west Iran) is a Lower to Middle Eocene carbonate sequence. Carbonate sequences of the Tale-Zang Formation consist mainly of large benthic foraminifera (e.g. Nummulites and Alveolina), along with other skeletal and non-skeletal components. Water depth during deposition of the formation was determined based on the variation and types of benthic foraminifera, and other components in different facies. Microfacies analysis led to the recognition of ten microfacies that are related to four facies belts such as tidal flat, lagoon, shoal and open marine. An absence of turbidite deposits, reefal facies, gradual facies changes and widespread tidal flat deposits indicate that the Tale-Zang Formation was deposited in a carbonate ramp environment. Due to the great diversity and abundance of larger benthic foraminifera, this carbonate ramp is referred to as a “foraminifera-dominated carbonate ramp system”. Based on the field observations, microfacies analysis and sequence stratigraphic studies, three third-order sequences in the Langar type section and one third-order sequence in the Kialo section were identified. These depositional sequences have been separated by both type-1 and type-2 sequence boundaries. The transgressive systems tracts of sequences show a gradual upward increase in perforate foraminifera, whereas the highstand systems tracts of sequences contain predominantly imperforate foraminifera.  相似文献   

14.
Andrej Šmuc  Jože Čar 《Facies》2002,46(1):205-216
Summary An Upper Ladinian to Lower Carnian succession in the Idrija-Cerkno region (W Slovenia) is described and correlated with similar successions in the Dolomites. Structurally, the area belongs to the Rodne unit (Trnovo nappe, NW Dinarides). The succession was reconstructed from three stratigraphically superimposed sections. The Orehovska Grapa section is characterised by finegrained turbidites composed of sandy mudstones with intercalations of lenses and beds of trachy-andesite tuff and resedimented tuffs. Beds of hemipelagic light grey wackestone are rarely interstratified. These rocks are correlative with the Upper Ladinian Wengen Group. The Police1 section is composed of black shaly marls and mudstones, hemipelagic wackestone, tuffaceous sand-stones, and in the upper part, of calciturbidites overlain by black laminated shales. The section is correlated with the lower part of the San Cassiano Formation. The Police 2 section consists mainly of wavy bedded peloidal and bioclastic limestone, alternating with thin interbeds of shaly mudstones and marls. The limestone and mudstones are interpreted as tempestites and gradually pass into bedded and massive dolomite of Early Carnian age. This succession is similar to the transition from the San Cassiano Formation to the Cassian Dolomite. The studied succession represents a shallowing upward basinal sequence capped by carbonate platform deposits. Palaeogeographically it is a Late Ladinian transition from the carbonate platform in the south to the typical basinal area in the north.  相似文献   

15.
Detailed facies analysis and event stratigraphy of an Upper Ordovician (Rocklandian–Edenian) cratonic ramp succession in eastern North America yields insights into eustatically driven sequence architecture and localized tectonic instability. Seven, predominantly subtidal, mixed carbonate-siliciclastic depositional sequences (3rd order) are identified and correlated across the length of a 275-km ramp–to–basin profile. Within the larger depositional sequences (3rd order) at least two smaller orders (4th and 5th) of cyclicity are recognizable. Three systems tracts occur within each sequence (transgressive, TST; highstand, HST; regressive, RST) and are considered in terms of their component parasequences (5th order). Generally, TSTs are composed of skeletal grainstone–rudstone facies, HSTs are dominated by shaly nodular wacke-packstone facies, and RSTs are mostly calcarenite facies. Systems tracts, sequence boundaries and their correlative conformities, maximum flooding surfaces, and forced regression surfaces were traced from shallow shelf to basinal settings. This high-resolution framework also provides insight into the timing of tectonic fluctuations on this cratonic ramp during the Taconic Orogeny and documents the relative influence of tectonism on lateral facies distributions and eustatically derived cyclicity.  相似文献   

16.
Summary The lithologic associations within the Lower Ordovician Mungok Formation in Korea define four depositional facies that formed across a continental margin fringing the Sino-Korean block: these facies represent lagoonal/restricted marine, shoal, inner shelf, and outer shelf environments. The stacking pattern of these facies reveals two systems tracts composed of five depositional sequences. The lower highstand systems tract consists of the lagoonal/restricted marine and shoal facies, whereas the upper lowstand systems tract comprises, in ascending order, inner shelf, outer shelf, and inner shelf facies. Three trilobite biofacies are recognized in the Mungok Formation: i.e.,Yosimuraspis, Kainella, andShumardia biofacies in ascending order. TheYosimuraspis Biofacies is dominated byYosimuraspis but also containsJujuyaspis andElkanaspis. The predominance of the endemic eponymous taxon suggests a lagoonal/restricted marine environment. The nearly monotaxicKainella Biofacies, which comprises pandemic genera such asKainella and occasionallyLeiostegium, may represent a less restricted environment than theYosimuraspis Biofacies. TheShumardia Biofacies occurs in the marlstone/shale lithofacies through relatively thick stratigraphic interval and is dominated by cosmopolitan trilobite taxa with some endemic species. The lithofacies and cosmopolitan trilobite assemblage of theShumardia Biofacies indicate that it occupied an outer shelf environment. The vertical succession of lithofacies and trilobite biofacies in the Mungok Formation records in general a shift from a restricted, shallow water environment to deeper-water environment.  相似文献   

17.
Summary The Seroe Domi Formation is a 350 m-thick sequence of Neogene marine limestones and silicilastic sandstones cropping out on the leeward coast of Cura?ao, Netherlands Antilles. Integrated analyses of lithofacies, biostratigraphy, geochemistry and Sr isotope model age analyses indicate that Seroe Domi Formation has experienced three major episodes of limestone diagenesis and dolomitization (Dolomites I, I′, and II) that have taken place after successive Mio-Plio-Pleistocene depositional and subaerial exposure events (Subunits 1, 2, and 3). Subunit 1, the lowermost 30 to 100 m of the Seroe Domi Formation, is composed of interbedded coralgal grainstone gravity flows, pelagic wackestones, and allochthonous blocks deposited in Middle Miocene deep-water (>500 m) fore-reef and carbonate slope environments. Subunit 2, the uppermost 250 m of the Seroe Domi Formation, consists of coralgal packstones with basement-derived siliciclastic sands that were deposted in shallowing fore-reef to reef-front environments during the Late Miocene to Pliocene. Subunit 3 siliciclastic sandstones were deposited during the Early Pleistocene within erosional cavities in the Subunit 2 limestones, and are overlain by Late Pleistocene Quaternary Limestone Terraces. The petrography, distribution and geochemistry of Dolomites I, I′ and II indicate that they were precipitated from seawater-freshwater mixing zone fluid environments. Dolomite rhombs and meteoric calcite cements within biomolds illustrate that the host Seroe Domi Formation limestones were subaerially exposed prior to each dolomitization event. Dolomite I (δ18O = +1.04 to +2.46% PDB; δ13C = −2.55 to −6.79 PDB;87Sr/86Sr=0.708866 to 0.708915; Zn=0 ppm; Cu=0 ppm) was precipitated from mixtures of seawater with isotopically-depleted freshwater during the late Middle Miocene. Dolomite I′ (δ18O = +2.08 to +3.55 PDB, δ13C = −1.53 to 1.69 PDB,87Sr/86Sr=0.708981−0.709030; Zn=0 ppm; Cu=0 ppm) was also precipitated from mixtures of seawater with isotopically-depleted freshwater, but during late Late Miocene. In contrast, Dolomite II (δ18O = +2.69 to +3.51 PDB; δ13C = −0.34 to +1.53 PDB;87Sr/86Sr=0.708954 to 0.709088; Zn=20 ppm; Cu=20 ppm) precipitated from late Early Pliocene mixtures of seawater with isotopically-depleted freshwater that had derived Zn, Cu, and less-radiogenic Sr from basalts comprising the Cura?ao basement.  相似文献   

18.
The Late Cenomanian Hummar Formation was studied in three sections in north and central Jordan, at Aameriyya, northeast of Na’ur and the Wadi Haur areas. The base in the Aameriyya area is marked by a subaerial unconformity overlain by a calcrete and a paleokarstic horizon, separating the underlying Fuheis Formation marl from the overlying Hummar Formation limestone. The emergent Aameriyya area is interpreted to have been a paleohigh, as a response to tectonism, and a basin and swell topography is invoked for the Late Cenomanian carbonate platform in this region. The Hummar Formation is believed to form one complete depositional sequence; the calcrete-karst represents a lowstand systems tract, the overlying 2-m massive rudstone/floatstone represents the transgressive systems tracts (TST), and the cortoid grainstone/packstone with clinoforms the highstand systems tracts. The topmost miliolid limestone is probably the late highstand topset of the sequence, followed upwards by the TST of the Shueib Formation marl of the next sequence. The sequence boundary at the upper contact of the Hummar Formation can be correlated regionally whereas the sequence boundary at its base with subaerial exposure has not been reported elsewhere in Jordan, the Negev, or Sinai.  相似文献   

19.
Summary This article deals with the discussion of the role of the syndepositional cementation for the growth of the Middle Triassic pre-volcanic carbonate platforms of the Dolomites (Southern Alps, Northern Italy). The study is concentrated on the Marmolada Buildup, which escaped the facies destroying dolomitization which affected many surrounding platforms. The investigations took place within an almost isochronous uppermost Anisian palcogeographic transect, ranging from the platform-top to the margin and the upper slope. Methods used include geological mapping, sedimentological and paleontological studies, evaluation of the microfacies, as well as SEM and EDS epifluorescence analyses. The well bedded platform-top succession consists of intra-bioclast calcarenites and calcirudites, interbedded with subordinate boundstones, and organized in shallowing upward, meter scale depositional cycles, sometimes capped by subaerial surfaces. The platform margin belt is rich in boundstones and lacks a primary framework formed by organisms; metazoan skeletons form less then 5% of the rock volume. The outer margin and the uppermost slope are characterized by decimeter-scale boundstone blocks, coated and linked to each other by huge amounts of radiaxial fibrous calcite cements, arranged in concentric crusts. These cements (“evinospongiac”) represent the main component of the margin and upper slope facies. Epifluorescence analyses suggest the existence of abundant organic residual matter associated not only with the bioclasts and peloids, but also with the syndepositional cements. Organic matter likely played a significant role in carbonate cementation and was a key factor for the early lithification of the platform as well as for the sediment production. Minor element microanalyses reveal an uniform Mg content in different calcite types (2–4 Mole % MgCO3), independently from the primary nature of the components. Late diagenetic sparry calcites exhibit similar Mg values but no iron. These data point to a homogenization of minor element distribution, probably associated with a slow but long-lasting semi-closed fluid circulation, possibly related with the Neogene uplifting of the Dolomite Mountains.  相似文献   

20.
The Jahrum Formation was deposited in the foreland basin in southwest Iran (Zagros Basin). The Zagros mountain belt of Iran, a part of the Alpine–Himalayan system, extends from the NW Iranian border through to SW Iran, up to the strait of Hormuz. The various facies of the Jahrum Formation were deposited in four main genetically related depositional environments, including: tidal flat, lagoon, shoal and open marine. These are represented by 14 microfacies. The Jahrum Formation represents sedimentation on a carbonate ramp. Tidal flat facies are represented by fenestral fabric, stromatolitic boundstone and thin-bedded planes. Carbonate deposition in a shallow marine lagoon was characterised by wacke–packstone, dominated by various taxa of imperforate foraminifer. The shoals are made up of medium- to coarse-grained skeletal and peloidal grainstone. This facies was deposited predominantly in an active high energy wave and current regime, and grades basinward into middle ramps facies are represented by wackestones–packstones with a diverse assemblage of echinoderm and large benthic foraminifers with perforate wall. Outer ramp facies consist of alternating marl and limestones rich in pelagic foraminifera. There is no evidence for resedimentation processes in this facies belt. The sequence stratigraphy study has led to recognition of three third-order depositional sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号