首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A DNA-binding protein from human placenta, methylated DNA-binding protein (MDBP), binds to certain DNA sequences only when they contain 5-methylcytosine (m5C) residues at specific positions. We found a very similar DNA-binding activity in nuclear extracts of rat tissues, calf thymus, human embryonal carcinoma cells, HeLa cells, and mouse LTK cells. Like human placental MDBP, the analogous DNA-binding proteins from the above mammalian cell lines formed a number of different low-electrophoretic-mobility complexes with a 14-bp MDBP-specific oligonucleotide duplex. All of these complexes exhibited the same DNA methylation specificity and DNA sequence specificity. From the extracts of rat and calf tissues, oligonucleotide protein complexes formed that also had the same specificity as human placental MDBP although they had a higher electrophoretic mobility probably due to digestion by proteases in the nuclear extracts. Although MDBP activity was found in various mammalian cell types, it was not detected in extracts of cultured mosquito cells and so may be associated only with cells with vertebrate-type DNA methylation.  相似文献   

3.
4.
Methylated DNA-binding protein (MDBP) from mammalian cells binds specifically to six pBR322 and M13mp8 DNA sequences but only when they are methylated at their CpG dinucleotide pairs. We cloned three high-affinity MDBP recognition sites from the human genome on the basis of their binding to MDBP. These showed much homology to the previously characterized prokaryotic sites. However, the human sites exhibited methylation-independent binding apparently because of the replacement of m5C residues with T residues. We also identified three other MDBP sites in the herpes simplex virus type 1 genome, two of which require in vitro CpG methylation for binding and are in the upstream regions of viral genes. A comparison of MDBP sites leads to the following partially symmetrical consensus sequence for MDBP recognition sites: 5'-R T m5Y R Y Y A m5Y R G m5Y R A Y-3'; m5Y (m5C or T), R (A or G), Y (C or T). This consensus sequence displays an unusually high degree of degeneracy. Also, interesting deviations from this consensus sequence, including a one base-pair deletion in the middle, are sometimes observed in high-affinity MDBP sites.  相似文献   

5.
A nuclear protein isolated from human placenta, methylated DNA-binding protein (MDBP), binds selectively to DNA enriched in 5-methylcytosine. We now demonstrate that MDBP is a sequence-specific, as well as methylation-specific, DNA-binding protein. From ten restriction fragments of pBR322 DNA methylated with human DNA methyltransferase, one was bound to MDBP very much more strongly than any of the others. For this preferential binding to MDBP, the DNA had to be methylated. By a DNase I protection experiment (DNase I footprinting), a 22-base sequence within this methylated restriction fragment was shown to be specifically protected by MDBP. The sequence-specificity of MDBP coupled with its dependence on DNA methylation suggests that this is one of the proteins which modulates important functions of human DNA methylation in vivo.  相似文献   

6.
7.
Current evidence suggests that DNA is covalently attached to proteins in the nuclear matrix of eukaryotic cells and that specific DNA sequences are tightly associated with the nuclear matrix. However, it has not been documented that specific DNA sequences can become covalently attached to nuclear matrix protein. We have examined the binding of cloned DNA sequences that contain the avian beta-globin gene enhancer, a region previously shown to be matrix associated in erythroid cells in vivo, with nuclear matrices from several avian tissue sources to determine if covalent DNA-protein bonds are formed. Our results indicate that sequence-specific DNA-protein complexes that are resistant to denaturation by SDS, boiling, and phenol and disulfide reduction are formed. Excess protein, capable of forming very tight bonds with DNA that contains the beta-globin gene enhancer, is present in cells in which matrix attachment of this DNA sequence is not detected in vivo. Evidence is presented that suggests that the protein to which DNA forms very tight bonds is not topoisomerase II. These results are discussed in relation to current models of the nuclear matrix and the utility of in vitro assays of matrix attachment regions using cloned DNA.  相似文献   

8.
9.
DNA binding activities of c-Myc purified from eukaryotic cells.   总被引:1,自引:0,他引:1  
c-Myc is a nuclear phosphoprotein which contains both a leucine zipper and a helix-loop-helix dimerization motif. These are adjacent to a basic region believed to make specific contacts with DNA upon dimerization. We report the purification of full-length c-Myc to near homogeneity from two independent eukaryotic systems: the baculovirus overexpression system using an insect cell host, and Chinese hamster ovary cells containing heat-inducible c-myc genes. The DNA binding capabilities of these preparations were characterized. Both preparations contain two distinct activities that bind specifically to sequences with a core of CACGTG. The Myc protein is solely responsible for one of these binding activities. Specific sequences that bound to c-Myc were selected from a large pool of random DNA sequence. Sequencing of individual binding sites selected by this procedure yielded a 12-base consensus, PuACCACGTGCTC, for c-Myc binding. Both protein preparations additionally demonstrated a distinct complex, containing both c-Myc and a copurifying 26-29-kDa protein, that bound to DNA with higher affinity than Myc alone. Selection of specific DNA sequences by this complex revealed a consensus binding site similar to the 12-base consensus described above. These data demonstrate that c-Myc isolated from eukaryotic cells is capable of sequence-specific DNA binding and further refine the optimal sequence for c-Myc binding. These protein preparations should prove useful in further characterizing the biochemical properties of c-Myc.  相似文献   

10.
IHF and HU are small basic proteins of eubacteria that bind as homodimers to double-stranded DNA and bend the duplex to promote architectures required for gene regulation. These architectural proteins share a common alpha/beta fold but exhibit different nucleic acid binding surfaces and distinct functional roles. With respect to DNA-binding specificity, for example, IHF is sequence specific, while HU is not. We have employed Raman difference spectroscopy and gel mobility assays to characterize the molecular mechanisms underlying such differences in DNA recognition. Parallel studies of solution complexes of IHF and HU with the same DNA nonadecamer (5' --> 3' sequence: TC TAAGTAGTTGATTCATA, where the phage lambda H1 consensus sequence of IHF is underlined) show the following. (i) The structure of the targeted DNA site is altered much more dramatically by IHF than by HU binding. (ii) In the IHF complex, the structural perturbations encompass both the sugar-phosphate backbone and the bases of the consensus sequence, whereas only the DNA backbone is altered by HU binding. (iii) In the presence of excess protein, complexes of order higher than 1 dimer per duplex are detected for HU:DNA, though not for IHF:DNA. The results differentiate structural motifs of IHF:DNA and HU:DNA solution complexes, provide Raman signatures of prokaryotic sequence-specific and nonspecific recognition, and suggest that the architectural role of HU may involve the capability to recruit additional binding partners to even relatively short DNA sequences.  相似文献   

11.
Methylated DNA-binding protein (MDBP) from human placenta recognizes specific DNA sequences containing 5-methylcytosine (m5C) residues. Comparisons of binding of various prokaryotic DNAs to MDBP indicate that m5CpG is present in the recognition sites for this protein but is only part of the recognition sequence. Specific binding to MDBP was observed for bacteriophage XP12 DNA, which naturally contains approximately 1/3 of its residues as m5C, and for Micrococcus luteus DNA, M13mp8 replicative form (RF) DNA, and pBR322 when these three DNAs were methylated at CpG sites by human DNA methyltransferase. Five DNA regions binding to MDBP have been localized by DNase I footprinting or restriction mapping in methylated pBR322 and M13mp8 RF DNAs. A comparison of their sequences reveals a common 5'-m5CGRm5CG-3' element or closely related sequence in which one of the m5C residues may be replaced by a T. In addition to this motif, one upstream and one downstream m5CpG as well as other common residues over an approximately 20-bp long region may be recognized by MDBP.  相似文献   

12.
J Chou  B Roizman 《Journal of virology》1989,63(3):1059-1068
The terminal 500-base-pair alpha sequence of the herpes simplex virus 1 genome contains signals for cleavage (Pac1 and Pac2) of unit-length DNA molecules from concatemers in unique stretches of sequences designated Ub and Uc, respectively, and a cis site for cleavage designated DR1. We report that nuclear extracts from infected cells contain factors which form two DNA-virus-specific protein complexes with components of the a sequence. Purification of the factors forming the V2 complex yielded a protein with an apparent molecular weight of 82,000 binding to DNA in a non-sequence-specific manner. Addition of Mg2+ to the purified protein-DNA probe mixture resulted in exonucleolytic degradation of the DNA. The protein was identified as the virus-specific DNase with monoclonal antibody specific for the viral enzyme. The purification of the proteins forming the V4 complex yielded two proteins with molecular weights of greater than 250,000 and 140,000 corresponding to infected cell protein 1 and to an as yet unidentified protein, respectively. These proteins formed two DNA sequence-common bands with a number of DNA probes and one sequence-specific band with probes containing both Pac2 and DR1 but not with probes containing either site alone or Pac1 and DR1. Since the DNA probe containing Pac2 and DR1 inserted into viral genome or into amplicons induced specific cleavage of the DR1 sequence whereas the nonreactive probes failed to induce the cleavage, the formation of this sequence-specific DNA-protein complex is significant and may reflect a DNA-protein interaction essential for cleavage. The possible role of the proteins identified in this study for the cleavage-packaging of viral DNA into capsids is presented.  相似文献   

13.
14.
15.
Methylated DNA-binding protein (MDBP) from human placenta is the first protein shown to bind specifically to certain DNA sequences only when they are methylated at cytosine residues. Among the sites recognized by MDBP is pB site 1, a pBR322-derived sequence which has a high affinity for MDBP when methylated at all CpG positions. We have substituted pB site 1 with 5-methyl-cytosine (m5C) residues at one to three of its CpG dinucleotides on one strand by the use of m5C-containing oligonucleotides. MDBP binds best when all three CpG dinucleotides in the region 5'-ATCGTCACGGCGAT-3' are methylated. Even more binding is obtained when both strands are methylated. Alteration of various residues in this binding site by oligonucleotide-directed mutagenesis decreased the binding. However, two mutations which increased the dyad symmetry of part of the binding site yielded ligands with a higher affinity for MDBP.  相似文献   

16.
The class II (Ia) MHC Ag are integral membrane proteins whose expression is limited to specific cell types. A pair of consensus sequences, X and Y, is found upstream from all class II genes and deletion of each of these sequences eliminates expression of transfected genes. Cells that express Ia demonstrate a coordinate response to lymphokines and other stimuli. These conserved sequences might, therefore, play a role in tissue specificity or lymphokine inducibility of Ia gene expression. The X box sequence of the murine class II A alpha gene diverges much more substantially from the X consensus than does the Y box motif of this gene. We demonstrate that this X box motif is nonetheless recognized by sequence-specific DNA-binding proteins, as is the more closely conserved Y box. Gel retardation assays and DNase I footprints were compared for a panel of Ia+ and Ia- cells as well as for cells stimulated with the Ia-inducing lymphokines IL-4 and IFN-gamma. The level, retardation pattern and region of DNA contact were comparable in all instances. Thus the availability of active DNA-binding X and Y box factors cannot alone account for the regulation of A alpha expression. To test whether the same set of proteins binds all class II MHC conserved motifs, oligonucleotide probe binding and cross-competition experiments with X box sequences from A alpha, E alpha, and E beta genes were performed. These studies demonstrated A alpha, E alpha, and E beta DNA-protein complexes with unique mobilities and specificities. In addition, all three X box oligonucleotide probes generated one faint complex with an affinity profile of E beta greater than E alpha much greater than A alpha. These three complexes comigrated and thus may represent a communal binding protein. The data are most consistent with the conclusion that multiple proteins bind class II MHC X boxes. For A alpha, the predominant complexes represent different specificities from the predominant E alpha and E beta X box binding proteins.  相似文献   

17.
18.
We have identified and characterized protein factors from mung bean (Vigna radiata) nuclear extracts that specifically bind the single-stranded G-rich telomeric DNA repeats. Nuclear extracts were prepared from three different types of plant tissue, radicle, hypocotyl, and root, in order to examine changes in the expression patterns of telomere-binding proteins during the development of mung bean. At least three types of specific complexes (A, B, and C) were detected by gel retardation assays with synthetic telomere and nuclear extract from radicle tissue, whereas the two major faster-migrating complexes (A and B) were formed with nuclear extracts from hypocotyl and root tissues. Gel retardation assays also revealed differences in relative amount of each complex forming activity in radicle, hypocotyl, and root nuclear extracts. These data suggest that the expression of telomere-binding proteins is developmentally regulated in plants, and that the factor involved in the formation of complex C may be required during the early stages of development. The binding factors have properties of proteins and are hence designated as mung bean G-rich telomere-binding proteins (MGBP). MGBPs bind DNA substrates with three or more single-stranded TTTAGGG repeats, while none of them show binding affinity to either double-stranded or single-stranded C-rich telomeric DNA. These proteins have a lower affinity to human telomeric sequences than to plant telomeric sequences and do not exhibit a significant binding activity to Tetrahymena telomeric sequence or mutated plant telomeric sequences, indicating that their binding activities are specific to plant telomere. Furthermore, RNase treatment of the nuclear extracts did not affect the complex formation activities. This result indicates that the single-stranded telomere-binding activities may be attributed to a simple protein but not a ribonucleoprotein. The ability of MGBPs to bind specifically the single-stranded TTTAGGG repeats may suggest their in vivo functions in the chromosome ends of plants.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号