首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review highlights the literature on the effects of biologically active sphingolipids (sphingosine, ceramide, sphingomyelin, glucosylceramide, gangliosides GM1, GM2, GM3, GD3, etc.) on proliferation, apoptosis, metastases, and invasiveness of tumor cells and the putative role of sphingolipids in chemotherapy of malignant tumors.  相似文献   

2.
Glycosphingolipids (GSLs) are ubiquitous plasma membrane components composed of a ceramide lipid anchor attached to one of a diverse complement of oligosaccharide structures. Fundamentally important activities have been attributed to GSLs including formation of plasma membrane structures involved in membrane trafficking, signal transduction and cell-cell interactions. Glucosylceramide synthase converts ceramide to glucosylceramide, a core structure of the vast majority of GSLs. Disruption of the gene encoding glucosylceramide synthase (Ugcg) caused embryonic lethality in mice during gastrulation. To further investigate the role of GSL synthesis during embryogenesis, we produced mice with a Lacz reporter gene inserted into the glucosylceramide synthase locus. These mice allowed the visualization of glucosylceramide synthase expression during early embryonic development.  相似文献   

3.
It was previously shown that sphingomyelin and gangliosides can be biosynthesized starting from sphingosine or sphingosine-containing fragments which originated in the course of GM1 ganglioside catabolism. In the present paper we investigated which fragments were specifically re-used for sphingomyelin and ganglioside biosynthesis in rat liver. At 30 h after intravenous injection of GM1 labelled at the level of the fatty acid ([stearoyl-14C]GM1) or of the sphingosine ([Sph-3H]) moiety, it was observed that radioactive sphingomyelin was formed almost exclusively after the sphingosine-labelled-GM1 administration. This permitted the recognition of sphingosine as the metabolite re-used for sphingomyelin biosynthesis. Conversely, gangliosides more complex than GM1 were similarly radiolabelled after the two treatments, thus ruling out sphingosine re-utilization for ganglioside biosynthesis. For the identification of the lipid fragment re-used for ganglioside biosynthesis, we administered to rats neutral glycosphingolipids (galactosylceramide, glucosylceramide and lactosylceramide) each radiolabelled in the sphingosine moiety or in the terminal sugar residue. Thereafter we compared the formation of radiolabelled gangliosides in the liver with respect to the species administered and the label location. After galactosylceramide was injected, no radiolabelled gangliosides were formed. After the administration of differently labelled glucosylceramide, radiolabelled gangliosides were formed, regardless of the position of the label. After lactosylceramide administration, the ganglioside fraction became more radioactive when the long-chain-base-labelled precursors were used. These results suggest that glucosylceramide, derived from glycosphingolipid and ganglioside catabolism, is recycled for ganglioside biosynthesis.  相似文献   

4.
The pathways of metabolic processing of exogenously administered GM1 ganglioside in rat liver was investigated at the subcellular level. The GM1 used was 3H-labelled at the level of long-chain base ([Sph(sphingosine)-3H]GM1) or of terminal galactose ([Gal-3H]GM1). The following radioactive compounds, derived from exogenous GM1, were isolated and chemically characterized: gangliosides GM2, GM3, GD1a and GD1b (nomenclature of Svennerholm [(1964) J. Lipid Res. 5, 145-155] and IUPAC-IUB Recommendations [(1977) Lipids 12, 455-468]); lactosylceramide, glucosylceramide and ceramide; sphingomyelin. GM2, GM3, lactosylceramide, glucosylceramide and ceramide, relatively more abundant shortly after GM1 administration, were mainly present in the lysosomal fraction and reflected the occurrence of a degradation process. 3H2O was also produced in relevant amounts, indicating complete degradation of GM1, although no free long-chain bases could be detected. GD1a and GD1b, relatively more abundant later on after administration, were preponderant in the Golgi-apparatus fraction and originated from a biosynthetic process. More GD1a was produced starting from [Sph-3H]GM1 than from [Gal-3H]GM1, and radioactive GD1b was present only after [Sph-3H]GM1 injection. This indicates the use of two biosynthetic routes, one starting from a by-product of GM1 degradation, the other implicating direct sialylation of GM1. Both routes were used to produce GD1a, but only the first one for producing GD1b. Sphingomyelin was the major product of GM1 processing, especially at the longer times after injection, and arose from a by-product of GM1 degradation, most likely ceramide.  相似文献   

5.
The oxidative stress induced by photodynamic therapy using the phthalocyanine Pc 4 (PDT) can lead to apoptosis, and is accompanied by photodamage to Bcl-2 and accumulation of de novo ceramide. Similar to PDT, the oxidative stress inducer and Bcl-2 inhibitor HA14-1 triggers apoptosis. To test the specificity of the ceramide response, Jurkat cells were exposed to an equitoxic dose of HA14-1. Unlike PDT, HA14-1 did not induce accumulation of de novo ceramide, although levels of sphingomyelin, phosphatidylserine and phosphatidylethanolamine were below control values after either treatment. In contrast to PDT, (i) the transient inhibition of serine palmitoyltransferase induced by HA14-1 was associated with the initial decrease in de novo ceramide, and (ii) HA14-1-initiated inhibition of sphingomyelin synthase and glucosylceramide synthase did not result in accumulation of de novo ceramide. These results show that the ceramide response to PDT is not induced by another pro-apoptotic stimulus, and may be unique to PDT as described here.  相似文献   

6.
The apolipoprotein E gene knockout (apoE-/-) mouse develops atherosclerosis that shares many features of human atherosclerosis. Increased levels of glycosphingolipid (GSL) have been reported in human atherosclerotic lesions; however, GSL levels have not been studied in the apoE-/- mouse. Here we used HPLC methods to analyze serum and aortic GSL levels in apoE-/- and C57BL/6J control mice. The concentrations of glucosyl ceramide (GlcCer), lactosyl ceramide (LacCer), GalNAcbeta1-4Galbeta1-4Glc-Cer (GA2), and ceramide trihexoside (CTH) were increased by approximately 7-fold in the apoE-/- mouse serum compared with controls. The major serum ganglioside, N-glycolyl GalNAcbeta1-4[NeuNAcalpha2-3]Galbeta1-4Glc-Cer (N-glycolyl GM2), was increased in concentration by approximately 3-fold. A redistribution of GSLs from HDL to VLDL populations was also observed in the apoE-/- mice. These changes were accompanied by an increase in the levels of GSLs in the aortic sinus and arch of the apoE-/- mice. The spectrum of gangliosides present in the aortic tissues was more complex than that found in the lipoproteins, with the latter represented almost entirely by N-glycolyl GM2 and the former comprised of NeuNAcalpha2-3Galbeta1-4Glc-Cer (GM3), GM2, N-glycolyl GM2, GM1, GD3, and GD1a. In conclusion, neutral GSL and ganglioside levels were increased in the serum and aortae of apoE-/- mice compared with controls, and this was associated with a preferential redistribution of GSL to the proatherogenic lipoprotein populations. The apoE-/- mouse therefore represents a useful model to study the potential role of GSL metabolism in atherogenesis.  相似文献   

7.
Glycosphingolipids (GSLs) have been implicated as potential atherogenic lipids. Studies in apolipoprotein E-null (apoE(-/-)) mice indicate that exacerbated tissue GSL accumulation resulting from alpha-galactosidase deficiency promotes atherosclerosis, whereas the serine palmitoyl transferase inhibitor myriocin (which reduces plasma and tissue levels of several sphingolipids, including sphingomyelin, ceramide, sphingosine-1-phosphate, and GSLs) inhibits atherosclerosis. It is not clear whether GSL synthesis inhibition per se has an impact on atherosclerosis. To address this issue, apoE(-/-) mice maintained on a high-fat diet were treated with a potent glucosylceramide synthesis inhibitor, d-threo-1-ethylendioxyphenyl-2-palmitoylamino-3-pyrrolidino-propanol (EtDO-P4), 10 mg/kg/day for 94 days, and lesion development was compared in mice that were treated with vehicle only. EtDO-P4 reduced plasma GSL concentration by approximately 50% but did not affect cholesterol or triglyceride levels. Assessment of atherosclerotic lesions at four different sites indicated that EtDO-P4 had no significant impact on lesion area. Thus, despite the previously observed positive correlations between plasma and aortic GSL concentrations and the development of atherosclerosis, and the in vitro evidence implying that GSLs may be pro-atherogenic, our current data indicate that inhibition of GSL synthesis does not inhibit atherosclerosis in vivo.  相似文献   

8.
Glycosphingolipids (GSLs) and their sialic acid-containing derivatives, gangliosides, are important cellular components and are abundant in the nervous system. They are known to undergo dramatic changes during brain development. However, knowledge on the mechanisms underlying their qualitative and qualitative changes is still fragmentary. In this investigation, we have provided a detailed study on the developmental changes of the expression patterns of GSLs, GM3, GM1, GD3, GD1a, GD2, GD1b, GT1b, GQ1b, A2B5 antigens (c-series gangliosides such as GT3 and GQ1c), Chol-1alpha (GT1aalpha and GQ1balpha), glucosylceramide, galactosylceramide (O1 antigen), sulfatide (O4 antigen), stage-specific embryonic antigen-1 (Lewis x) glycolipids, and human natural killer-1 glycolipid (sulfoglucuronosyl paragloboside) in developing mouse brains [embryonic day 12 (E12) to adult]. In E12-E14 brains, GD3 was a predominant ganglioside. After E16, the concentrations of GD3 and GM3 markedly decreased, and the concentrations of a-series gangliosides, such as GD1a, increased. GT3, glucosylceramide, and stage-specific embryonic antigen-1 were expressed in embryonic brains. Human natural killer-1 glycolipid was expressed transiently in embryonic brains. On the other hand, Chol-1alpha, galactosylceramide, and sulfatide were exclusively found after birth. To provide a better understanding of the metabolic basis for these changes, we analyzed glycogene expression patterns in the developing brains and found that GSL expression is regulated primarily by glycosyltransferases, and not by glycosidases. In parallel studies using primary neural precursor cells in culture as a tool for studying developmental events, dramatic changes in ganglioside and glycosyltransferase gene expression were also detected in neurons induced to differentiate from neural precursor cells, including the expression of GD3, followed by up-regulation of complex a- and b-series gangliosides. These changes in cell culture systems resemble that occurring in brain. We conclude that the dramatic changes in GSL pattern and content can serve as useful markers in neural development and that these changes are regulated primarily at the level of glycosyltransferase gene expression.  相似文献   

9.
The major glycosphingolipids (GSLs) of a line of African green monkey kidney cells (BGM) were characterized as glucosylceramide, lactosylceramide, galactosyl-galactosyl-glucosylceramide, and N-acetylgalactosaminyl-galactosyl-galactosyl-glucosylceramide. Neutral GSLs accounted for approximately 80% of the total GSLs isolated. The predominant gangliosides were N-acetylneuraminyl-galactosyl-glucosylceramide, N-acetylgalactosaminyl-N-acetylneuraminyl-galactosyl- glucosylceramide, and galactosyl-N-acetylgalactosaminyl-N-acetylneuraminyl -galactosyl-glucosylceramide. The incorporation of labeled galactose into GSLs was compared in mock-infected and herpes simplex virus type 1-infected BGM cells. Herpes simplex virus type 1 infection resulted in a three- to four-fold increase in galactose incorporation into glucosylceramide and a decrease in galactose incorporation into galactosyl-galactosyl-glucosylceramide and N-acetyl-galactosaminyl-galactosyl-galactosyl-glucosylceramide. The virus-induced alteration in the GSL labeling pattern occurred early in infection, before the release of infectious virus, and was not prevented by the presence of cytosine arabinoside. Treatment of uninfected BGM cells with cycloheximide resulted in alterations in the GSL pattern which were similar to those observed in herpes simplex virus type 1-infected cells. These observations suggest that an early virus function such as inhibition of host cell protein synthesis is responsible for the observed alterations of GSL metabolism. Experiments with a syncytium-producing strain of herpes simplex virus type 1, herpes simplex virus type 2, and pseudorabies virus indicated that other herpes viruses altered GSL metabolism in a manner similar to herpes simplex virus type 1.  相似文献   

10.
Abstract: The biological activity of human medulloblastoma tumor gangliosides very likely involves the interaction of these molecules with host cells in the tumor microenvironment. To trace the hypothesized intercellular transfer of shed medulloblastoma gangliosides, we used an in vitro dual-chamber culture system in which the tumor cells, the shed gangliosides, and the target cells to which they might bind would not be perturbed during the transfer process. We observed that under these unmanipulated conditions, gangliosides were shed by the Daoy medulloblastoma cell line (∼300 pmol/108 cells/h), traversed the chamber membrane, and stably bound to the target fibroblasts at the very high density of 107 molecules per cell within 48 h. To determine if this substantial intercellular transfer of shed gangliosides, with its potential of modifying target cell function, could be blocked, we evaluated a new inhibitor of glucosylceramide synthase, dl - threo -1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol (PPPP). PPPP (1.0 µ M ) reduced (90%) Daoy cell ganglioside content strikingly, without causing toxicity or inhibiting cell proliferation. Subsequently, ganglioside shedding by the medulloblastoma cells was diminished significantly (to ∼50 pmol/108/h), and binding of radiolabeled shed medulloblastoma gangliosides to target fibroblasts was consequently almost completely abrogated. We conclude that the shedding and transfer of potentially biologically active human medulloblastoma gangliosides can be diminished effectively by PPPP.  相似文献   

11.
Glycosphingolipids (GSLs), present in cell membranes, participate in a variety of biological functions. Although their exact role(s) may not be understood, it has been shown that 1) embryos lacking glucosylceramide synthase activity do not develop normally, 2) GSLs can affect neuritogenesis, and 3) they can function as receptors for some pathogens. To study the role of the saccharide portion of a GSL in any of these functions, it is necessary to either isolate it from the intact GSL or synthesize it. Because syntheses are more complex, modifications were made to the oxidation/elimination procedure previously described for the isolation of the saccharide portion of GM1 and GD1a to enable it to be used with GSLs of varying polarity. The key is to use a mixture of GSLs that differ in polarity. This appears to eliminate problems encountered when purified GSLs such as sulfatide or GT1b are used.  相似文献   

12.
We have studied the effects ofD-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP) and itsL-enantiomer on glycosphingolipids in cultured normal human kidney proximal tubular cells. We found thatD-PDMP exerted a concentration-dependent reduction in the metabolic labelling and cellular levels of glucosylceramide (GlcCer), lactosylceramide (LacCer), and the globo-series glycosphingolipids, GbOse3Cer and GbOse4Cer. It also directly inhibited the activity of UDP-glucose:ceramide 1 4-glucosyltransferase (GlcT-1) and UDP-galactose: GlcCer 1 4 galactosyltransferase (GalT-2). In contrast,L-PDMP had opposite effects on the metabolic labelling of GlcCer, LacCer, and GbOse3Cer. The levels of GlcCer and LacCer were increased, while the labelling and level of GbOse4Cer were strongly reduced. Purified GalT-2 from human kidney was inhibited byD-PDMP and stimulated byL-PDMP. It appears likely that the different glycosphingolipid glycosyltransferases possess similar binding sites for the ceramide moiety, which are blocked by binding toD-PDMP and, in the case of GbOse4Cer synthase, byL-PDMP as well. The stimulatory effects ofL-PDMP on GlcCer and LacCer synthases may be the result of binding to a modulatory site on the glycosyltransferases; in intact cells, the enzyme-analog complex may afford protection against the normal catabolic inactivation of the enzymes.Abbreviations GalT-2 UDP-galactose:GlcCer -galactosyltransferase - GbOse3Cer Gal1 4Gal1 GlcCer - GbOse4Cer GalNAc1 3Gal1 4Gal1 GlcCer - GlcCer glucosylceramide - GlcT-1 UDP-glucose:ceramide -glucosyltransferase - GSLs glycosphingolipids - LacCer lactosylceramide - PDMP threo-1-phenyl-2-decanolyamino-3-morpholino-1-propanol  相似文献   

13.
Abstract: Whole embryo culture (WEC) of organogenesis-stage mouse embryos was adapted for glycosphingolipid (GSL) metabolic studies to evaluate the hypothesis that de novo GSL biosynthesis is a prerequisite for growth and morphogenesis of the early postimplantation embryo. WEC supports the growth and development of postimplantation mouse embryos to stages that are indistinguishable from those achieved in vivo. N -Butyldeoxygalactonojirimycin ( N B-DGJ) is an N -alkylated imino sugar that specifically inhibits biosynthesis of all glucosylceramide-based GSLs. N B-DGJ inhibited glucosylceramide and lactosylceramide biosynthesis nearly completely and inhibited ganglioside biosynthesis ∼90% in both the embryo and visceral yolk sac. N B-DGJ also significantly reduced total ganglioside content in both the embryo and visceral yolk sac as estimated by the cholera toxin immunooverlay technique. A shift in expression from the structurally simple to the structurally complex gangliosides was also observed in N B-DGJ-treated embryos and yolk sacs. Despite causing major changes in GSL biosynthesis and composition, N B-DGJ had no effect on embryo viability, growth, or morphology. The findings suggest that de novo GSL biosynthesis may not be a prerequisite for the growth and morphogenesis of the organogenesis-stage mouse embryo.  相似文献   

14.
Glycosphingolipids (GSLs), which are highly concentrated at the apical membrane of polarized epithelial cells, are key components of cell membranes and are involved in a large number of processes. Here, we investigated the ability of hypertonicity (high salt medium) to induce Madin-Darby Canine Kidney (MDCK) cell differentiation and found an increase in GSL synthesis under hypertonic conditions. Then, we investigated the role of GSLs in MDCK cell differentiation induced by hypertonicity by using two approaches. First, cultured cells were depleted of GSLs by exposure to D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP). Second, cells were transfected with an siRNA specific to glucosylceramide synthase, the key enzyme in GSL synthesis. Exposure of cells to both treatments resulted in the impairment of the development of the apical membrane domain and the formation of the primary cilium. Enzymatic inhibitions of the de novo and the salvage pathway of GSL synthesis were used to determine the source of ceramide responsible of the GSL increase involved in the development of the apical membrane domain induced by hypertonicity. The results from this study show that extracellular hypertonicity induces the development of a differentiated apical membrane in MDCK cells by performing a sphingolipid metabolic program that includes the formation of a specific pool of GSLs. The results suggest as precursor a specific pool of ceramides formed by activation of a Fumonisin B1-resistant ceramide synthase as a component of the salvage pathway.  相似文献   

15.
We recently reported that the marked decrease in cellular ceramide in primary astrocytes is an early event associated with the mitogenic activity of basic fibroblast growth factor (bFGF) (Riboni, L., Viani, P., Bassi, R., Stabieini, A., and Tettamanti, G. (2000) GLIA 32, 137-145). Here we show that a rapid activation of sphingomyelin biosynthesis appears to be the major mechanism responsible for the fall in ceramide levels induced by bFGF. When quiescent astrocytes were treated with bFGF, an increased amount of newly synthesized ceramide (from either l-[(3)H]serine or [(3)H]sphingosine) was directed toward the biosynthesis of sphingomyelin. Conversely, bFGF did not appear to affect ceramide levels by other metabolic pathways involved in ceramide turnover such as sphingomyelin degradation and ceramide biosynthesis, degradation, and glucosylation. Enzymatic studies demonstrating a relevant and rapid increase in sphingomyelin synthase activity after bFGF treatment have provided a convincing explanation for the activation of sphingomyelin biosynthesis. The bFGF-induced increase in sphingomyelin synthase appears to depend on a post-translational activation mechanism. Moreover, in the presence of brefeldin A, the activation of sphingomyelin biosynthesis was abolished, suggesting that the enzyme is located in a compartment other than the Golgi apparatus. Also the phosphatidylcholine-specific phospholipase C inhibitor D609 exerted a potent inhibitory effect on sphingomyelin biosynthesis. Finally, we demonstrate that inhibition of sphingomyelin biosynthesis by brefeldin A or D609 led to a significant inhibition of bFGF-stimulated mitogenesis. All this supports that, in primary astrocytes, the early activation of sphingomyelin synthase is involved in the bFGF signaling pathway leading to proliferation.  相似文献   

16.
Cancer stem cells are distinguished from normal adult stem cells by their stemness without tissue homeostasis control. Glycosphingolipids (GSLs), particularly globo-series GSLs, are important markers of undifferentiated embryonic stem cells, but little is known about whether or not ceramide glycosylation, which controls glycosphingolipid synthesis, plays a role in modulating stem cells. Here, we report that ceramide glycosylation catalyzed by glucosylceramide synthase, which is enhanced in breast cancer stem cells (BCSCs) but not in normal mammary epithelial stem cells, maintains tumorous pluripotency of BCSCs. Enhanced ceramide glycosylation and globotriosylceramide (Gb3) correlate well with the numbers of BCSCs in breast cancer cell lines. In BCSCs sorted with CD44+/ESA+/CD24 markers, Gb3 activates c-Src/β-catenin signaling and up-regulates the expression of FGF-2, CD44, and Oct-4 enriching tumorigenesis. Conversely, silencing glucosylceramide synthase expression disrupts Gb3 synthesis and selectively kills BCSCs through deactivation of c-Src/β-catenin signaling. These findings highlight the unexploited role of ceramide glycosylation in selectively maintaining the tumorous pluripotency of cancer stem cells. It speculates that disruption of ceramide glycosylation or globo-series GSL is a useful approach to specifically target BCSCs specifically.  相似文献   

17.
18.
Interactions among four natural neutral sphingolipids (ceramide, glucosyl-ceramide, lactosyl-ceramide and asialo-GM1) and six gangliosides (GM3, GM2, GM1, GD3, GD1a and GT1b) were studied in binary Langmuir monolayers at the air-buffer interface in terms of their molecular packing, compressibility, dipole potential and mixing behavior. The changes of surface organization can be grouped into three sets: (a) binary films of neutral GSLs, and of the latter with ceramide, exhibit thermodynamically unfavorable mixing with mean molecular area expansions and dipole moment hyperpolarization; (b) mixed monolayers of ceramide, or of GlcCer, and gangliosides occur with thermodynamically favorable interactions leading to mean molecular area condensation and depolarisation; (c) binary mixtures of LacCer or Gg4Cer with gangliosides, and all ganglioside species among them, revealed molecular immiscibility characterized by additive mean molecular area and dipole potential, with composition-independent constant collapse pressure. These results disclose basic tendencies of GSLs to molecularly mix or demix, leading to their surface segregation, which may underlay vectorial separation of their specific biosynthetic pathways.  相似文献   

19.
Glycosphingolipids (GSLs) have been implicated as playing major roles in cellular interactions and control of cell proliferation in muticellular organisms. Moreover GSLs and other sphingolipids such as sphingomyelins, ceramides and sphingosines serve a variety of roles in signal transduction. Hence, identification of structures of GSLs in different biota will shed light in understanding their physiological role. During this study, the major glycosphingolipid component present in the extracts of stage-12 and stage-17/18 metamorphosing adults of Manduca sexta was identified as mactosyl ceramide. We report the isolation of several ceramide disaccharides, a ceramide trisaccharide and a ceramide tetrasaccharide. The GSL structures were confirmed by high-resolution mass spectrometry and tandem mass spectrometry. The identity of the monosaccharides was proved using exoglycosidases. The predominant sphingosine chain-length varied from C-14 (tetradecasphing-4-enine) to C-16 (hexadecasphing-4-enine) in these GSLs. Sphingosines of both chain lengths were accompanied by their doubly unsaturated counterparts tetradecasphinga-4,6-diene and hexadecasphinga-4,6-diene. It is also interesting to note the presence of tetradecasphinganine and hexadecasphinganine in minute amounts in the form of a GSL in the extracts of M. sexta. The varying degrees of unsaturation in the sphingosine moiety of GSLs in M. sexta may be biologically significant in insect metamorphosis. The ceramide trisaccharides and ceramide tetrasaccharide belong to the arthro-series, The observation of fucose in the M. sexta GSLs is the first report of the presence of fucose in an arthroseries GSL.  相似文献   

20.
Adult Ascaridia galli incorporate label from [U-14C] serine into various intermediates of sphingomyelin synthesis (ketosphinganine, sphinganine, sphingosine, ceramide and sphingomyelin). From the results it is concluded that A. galli possesses the five enzymes involved in sphingomyelin synthesis, namely: serine palmitoyltransferase, 3-ketosphinganine reductase, flavoprotein sphinganine reductase, sphingosine acyltransferase and ceramide choline phosphotransferase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号