首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell-cell adhesion mediated by specific cell-surface molecules is essential for multicellular development. Here we quantify de-adhesion forces at the resolution of individual cell-adhesion molecules, by controlling the interactions between single cells and combining single-molecule force spectroscopy with genetic manipulation. Our measurements are focused on a glycoprotein, contact site A (csA), as a prototype of cell-adhesion proteins. csA is expressed in aggregating cells of Dictyostelium discoideum, which are engaged in development of a multicellular organism. Adhesion between two adjacent cell surfaces involves discrete interactions characterized by an unbinding force of 23 +/- 8 pN, measured at a rupture rate of 2.5 +/- 0.5 microm s-1.  相似文献   

2.
Latrophilin-1, -2, and -3 are adhesion-type G protein-coupled receptors that are auxiliary α-latrotoxin receptors, suggesting that they may have a synaptic function. Using pulldowns, we here identify teneurins, type II transmembrane proteins that are also candidate synaptic cell-adhesion molecules, as interactors for the lectin-like domain of latrophilins. We show that teneurin binds to latrophilins with nanomolar affinity and that this binding mediates cell adhesion, consistent with a role of teneurin binding to latrophilins in trans-synaptic interactions. All latrophilins are subject to alternative splicing at an N-terminal site; in latrophilin-1, this alternative splicing modulates teneurin binding but has no effect on binding of latrophilin-1 to another ligand, FLRT3. Addition to cultured neurons of soluble teneurin-binding fragments of latrophilin-1 decreased synapse density, suggesting that latrophilin binding to teneurin may directly or indirectly influence synapse formation and/or maintenance. These observations are potentially intriguing in view of the proposed role for Drosophila teneurins in determining synapse specificity. However, teneurins in Drosophila were suggested to act as homophilic cell-adhesion molecules, whereas our findings suggest a heterophilic interaction mechanism. Thus, we tested whether mammalian teneurins also are homophilic cell-adhesion molecules, in addition to binding to latrophilins as heterophilic cell-adhesion molecules. Strikingly, we find that although teneurins bind to each other in solution, homophilic teneurin-teneurin binding is unable to support stable cell adhesion, different from heterophilic teneurin-latrophilin binding. Thus, mammalian teneurins act as heterophilic cell-adhesion molecules that may be involved in trans-neuronal interaction processes such as synapse formation or maintenance.  相似文献   

3.
Focal adhesion kinase: protein interactions and cellular functions   总被引:12,自引:0,他引:12  
Integrin-mediated cell adhesion to extracellular matrix (ECM) plays important roles in a variety of biological processes. Recent studies suggested that integrins mediate signal transduction across the plasma membrane via activating several intracellular signaling pathways. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that has been shown to be a major mediator of integrin signal transduction pathways. Upon activation by integrins, FAK undergoes autophosphorylation as well as associations with several other intracellular signaling molecules. These interactions in the signaling pathways have been shown to regulation a variety of cellular functions such as cell spreading, migration, cell proliferation, apoptosis and cell survival. Recent progress in the understanding of FAK interactions with other proteins in the regulation of these cellular functions will be discussed in this review.  相似文献   

4.
The Leukocytic cell-adhesion molecule (beta 2 integrin) family of adhesion molecules play a key role in the intercellular adhesive interactions necessary for normal immune cell function. In this study, we report an antibody that recognizes an epitope on the Leukocytic cell-adhesion molecule common beta-chain (CD18) and promotes both lymphocyte function-associated Ag-1- and CR3-dependent adhesion events. The antibody recognizes a temperature-sensitive epitope that is not dependent on the presence of divalent cations. It is proposed that antibody binding promotes a conformational change in both lymphocyte function-associated Ag-1 and CR3, which may mimic a natural activation mechanism, resulting in increased cellular adhesion.  相似文献   

5.
Neurotrophin receptor tyrosine kinases (Trks) have well-defined trophic roles in nervous system development through kinase activation by neurotrophins. Yet Trks have typical cell-adhesion domains and express noncatalytic isoforms, suggesting additional functions. Here we discovered noncatalytic TrkC in an unbiased hippocampal neuron-fibroblast coculture screen for proteins that trigger differentiation of neurotransmitter release sites in axons. All TrkC isoforms, but not TrkA or TrkB, function directly in excitatory glutamatergic synaptic adhesion by neurotrophin-independent high-affinity trans binding to axonal protein tyrosine phosphatase receptor PTPσ. PTPσ triggers and TrkC mediates clustering of postsynaptic molecules in dendrites, indicating bidirectional synaptic organizing functions. Effects of a TrkC-neutralizing antibody that blocks TrkC-PTPσ interaction and TrkC knockdown in culture and in?vivo reveal essential roles of TrkC-PTPσ in glutamatergic synapse formation. Thus, postsynaptic TrkC trans interaction with presynaptic PTPσ generates bidirectional adhesion and recruitment essential for excitatory synapse development and positions these signaling molecules at the center of synaptic pathways.  相似文献   

6.
The synapse is the most elementary operating unit in neurons, creating neural circuits that underlie all brain functions. Synaptic adhesion molecules initiate neuronal synapse connections, promote their stabilization and refinement, and control long-term synaptic plasticity. Leukocyte common antigen-related receptor protein tyrosine phosphatases (LAR-RPTPs) have previously been implicated as essential elements in central nervous system (CNS) development. Recent studies have demonstrated that LAR-RPTP family members are also involved in diverse synaptic functions, playing a role in synaptic adhesion pathways together with a host of distinct transmembrane proteins and serving as major synaptic adhesion molecules in governing pre- and postsynaptic development, dysfunctions of which may underlie various disorders. This review highlights the emerging role of LAR-RPTPs as synapse organizers in orchestrating synapse development.  相似文献   

7.
Recent studies have documented changes in adhesion molecule expression and function after exposure to ionizing radiation. Adhesion molecules mediate cell-cell and cell-matrix interactions and are essential for a variety of physiological and pathological processes including maintenance of normal tissue integrity as well as tumor development and progression. Consequently, modulation of adhesion molecules by radiation may have a role in radiation-induced tumor control and normal tissue damage by interfering with cell signaling, radioresistance, metastasis, angiogenesis, carcinogenesis, immune response, inflammation and fibrosis. In addition, the interactions of radiation with adhesion molecules could have a major impact in developing new strategies to increase the efficacy of radiation therapy. Remarkable progress has been made in recent years to design targeted drug delivery to radiation-up-regulated adhesion molecules. Furthermore, the inhibition of adhesion, migration, invasion and angiogenesis by blocking adhesion receptors may represent a new therapeutic approach to improve tumor control and decrease radiation toxicity. This review is focused on current data concerning the mechanistic interactions of radiation with adhesion molecules and the possible clinical-pathological implications in radiotherapy.  相似文献   

8.
EndoCAM: a novel endothelial cell-cell adhesion molecule   总被引:39,自引:10,他引:29       下载免费PDF全文
Cell-cell adhesion is controlled by many molecules found on the cell surface. In addition to the constituents of well-defined junctional structures, there are the molecules that are thought to play a role in the initial interactions of cells and that appear at precise times during development. These include the cadherins and cell adhesion molecules (CAMs). Representatives of these families of adhesion molecules have been isolated from most of the major tissues. The notable exception is the vascular endothelium. Here we report the identification of a cell surface molecule designated "endoCAM" (endothelial Cell Adhesion Molecule), which may function as an endothelial cell-cell adhesion molecule. EndoCAM is a 130-kD glycoprotein expressed on the surface of endothelial cells both in culture and in situ. It is localized to the borders of contiguous endothelial cells. It is also present on platelets and white blood cells. Antibodies against endoCAM prevent the initial formation of endothelial cell-cell contacts. Despite similarities in size and intercellular location, endoCAM does not appear to be a member of the cadherin family of adhesion receptors. The serologic and protease susceptibility characteristics of endoCAM are different from those of the known cadherins, including an endogenous endothelial cadherin. Although the precise biologic function of endoCAM has not been determined, it appears to be one of the molecules responsible for regulating endothelial cell-cell adhesion processes and may be involved in platelet and white blood cell interactions with the endothelium.  相似文献   

9.
10.
Galectins as modulators of cell adhesion   总被引:31,自引:0,他引:31  
Hughes RC 《Biochimie》2001,83(7):667-676
The galectins are a family of carbohydrate-binding proteins that are distributed widely in metazoan organisms. Each galectin exhibits a specific pattern of expression in various cells and tissues, and expression is often closely regulated during development. Although these proteins are found mainly in the cell cytoplasm, some are secreted from cells and interact with appropriately glycosylated proteins at the cell surface or within the extracellular matrix. These receptors include cell-adhesion molecules such as integrins, and matrix glycoproteins such as laminin and fibronectin isoforms. Recent studies have increased understanding of the roles of the galectins in regulating cell-cell and cell-matrix adhesion. These interactions are critically involved in modulation of normal cellular motility and polarity and during tissue formation, and loss of adhesive function is implicated in several disease states including tumour progression, inflammation and cystic development in branching epithelia such as kidney tubules. This review discusses recent progress in defining the specificities and mechanisms of action of secreted galectins as multifunctional cell regulators.  相似文献   

11.
The neural cell adhesion molecule (NCAM) plays a pivotal role in the development and maintenance of the nervous system via homophilic (NCAM–NCAM) and heterophilic (NCAM-other molecules) interactions. Many synthetic peptides have been engineered to mimic these interactions and induce NCAM-downstream signaling pathways. Such NCAM mimetics have displayed neuritogenic and neuroprotective properties, as well as synaptic modulation in vitro and in vivo. Furthermore, they have been used successfully in preclinical studies to treat neurological disorders including stroke, traumatic brain injury and Alzheimer’s disease. This review focuses on recent progress in the development of NCAM mimetic peptides, in particular, on establishing C3, plannexin, and FGL as therapeutic candidates for neurological disorders.  相似文献   

12.
Cell adhesion junctions characteristically arise from the cooperative integration of adhesion receptors, cell signalling pathways and the cytoskeleton. This is exemplified by cell–cell interactions mediated by classical cadherin adhesion receptors. These junctions are sites where cadherin adhesion systems functionally couple to the dynamic actin cytoskeleton, a process that entails physical interactions with many actin regulators and regulation by cell signalling pathways. Such integration implies a potential role for molecules that may stand at the interface between adhesion, signalling and the cytoskeleton. One such candidate is the cortical scaffolding protein, vinculin, which is a component of both cell–cell and cell–matrix adhesions. While its contribution to integrin-based adhesions has been extensively studied, less is known about how vinculin contributes to cell–cell adhesions. A major recent advance has come with the realisation that cadherin adhesions are active mechanical structures, where cadherin serves as part of a mechanotransduction pathway by which junctions sense and elicit cellular responses to mechanical stimuli. Vinculin has emerged as an important element in cadherin mechanotransduction, a perspective that illuminates its role in cell–cell interactions. We now review its role as a cortical scaffold and its role in cadherin mechanotransduction.  相似文献   

13.
The interaction between cell-adhesion molecules CD2 and CD58 is critical for an immune response. Modulation or inhibition of these interactions has been shown to be therapeutically useful. Synthetic 12-mer linear and cyclic peptides, and cyclic hexapeptides based on rat CD2 protein, were designed to modulate CD2-CD58 interaction. The synthetic peptides effectively blocked the interaction between CD2-CD58 proteins as demonstrated by antibody binding, E-rosetting and heterotypic adhesion assays. NMR and molecular modeling studies indicated that the synthetic cyclic peptides exhibit beta-turn structure in solution and closely mimic the beta-turn structure of the surface epitopes of the CD2 protein. Docking studies of CD2 peptides and CD58 protein revealed the possible binding sites of the cyclic peptides on CD58 protein. The designed cyclic peptides with beta-turn structure have the ability to modulate the CD2-CD58 interaction.  相似文献   

14.
15.
选择素与肿瘤转移   总被引:3,自引:1,他引:3  
选择素是已知的细胞粘附分子家族之一,其生理功能是在炎症发生时介导白细胞与血管内皮间的起始粘附.近年来,大量实验证据表明选择素在肿瘤转移的过程中也起重要作用,主要是介导肿瘤细胞与血小板及血管内皮间的起始粘附,另外选择素及其配体也可以作为信号分子促进肿瘤的转移.因此,在将来的临床应用中,选择素及其配体可以作为血清诊断标记监控肿瘤及肿瘤转移的发生;通过抑制选择素与其配体的相互作用,或阻断选择素表达的途径防止肿瘤转移.  相似文献   

16.
The ability of cells to interact with each other and their surroundings in a co-ordinated manner depends on multiple adhesive interactions between neighbouring cells and their extracellular environment. These adhesive interactions are mediated by a family of cell surface proteins, termed cell adhesion molecules. Fortunately these adhesion molecules fall into distinct families with adhesive interactions varying in strength from strong binding involved in the maintenance of tissue architecture to more transient, less avid, dynamic interactions observed in leukocyte biology. Adhesion molecules are extremely versatile cell surface receptors which not only stick cells together but provide biochemical and physical signals that regulate a range of diverse functions, such as cell proliferation, gene expression, differentiation, apoptosis and migration. In addition, like many other cell surface molecules, they have been usurped as portals of entry for pathogens, including prions. How the mechanical and chemical messages generated from adhesion molecules are integrated with other signalling pathways (such as receptor tyrosine kinases and phosphatases) and the role that aberrant cell adhesion plays in developmental defects and disease pathology are currently very active areas of research. This review focuses on the biochemical features that define whether a cell surface molecule can act as an adhesion molecule, and discusses five specific examples of how cell adhesion molecules function as more than just 'sticky’ receptors. The discussion is confined to the signalling events mediated by members of the integrin, cadherin and immunoglobulin gene superfamilies. It is suggested that, by controlling the membrane organization of signalling receptors, by imposing spatial organization, and by regulating the local concentration of cytosolic adapter proteins, intercellular and cell-matrix adhesion is more than just glue holding cells together. Rather dynamic ‘conversations’ and the formation of multi-protein complexes between adhesion molecules, growth factor receptors and matrix macromolecules can now provide a molecular explanation for the long-observed but poorly understood requirement for a number of seemingly distinct cell surface molecules to be engaged for efficient cell function to occur.  相似文献   

17.
Over the past decade, multi-disciplinary approaches have led to the discovery and characterization of several classes of adhesion molecules. Under normal conditions, these molecules provide support for cells, regulate cell migration and contain information that cells use when sensing their environment. In disease, adhesive function is frequently compromised and results in tissue disorder, aberrant cell migration and dysregulation of signalling pathways. The integrins are a major family of adhesion receptors produced by most cell types and are a means by which the cell senses its immediate environment and responds to changes in extracellular matrix composition. Recent years have seen major advances in our understanding of integrin-ligand interactions, and have revealed a structurally dynamic family of receptors capable of translating information into and out of the cell.  相似文献   

18.
During development of Dictyostelium, four adhesion systems have been identified and adherens junction-like structures have been discovered in the fruiting body. The temporal and spatial expression of cell adhesion molecules (CAMs) is under stringent developmental control, corresponding to major shifts in morphological complexity. Genetic manipulations, including over-expression and knockout mutations, of the adhesion genes, cadA (encoding DdCAD-1), csaA (gp80) and lagC (gp150), have shed light on new roles for cell adhesion molecules in aggregate size regulation, cell-type proportioning, cell differentiation and cell sorting. As cell-cell interactions remain highly dynamic within cell streams and aggregates, mechanisms must exist to facilitate the rapid assembly and disassembly of adhesion complexes. Studies on gp80 have led to a model for the rapid assembly of adhesion complexes via lipid rafts.  相似文献   

19.
The ability of cells to interact with each other and their surroundings in a co-ordinated manner depends on multiple adhesive interactions between neighbouring cells and their extracellular environment. These adhesive interactions are mediated by a family of cell surface proteins, termed cell adhesion molecules. Fortunately these adhesion molecules fall into distinct families with adhesive interactions varying in strength from strong binding involved in the maintenance of tissue architecture to more transient, less avid, dynamic interactions observed in leukocyte biology. Adhesion molecules are extremely versatile cell surface receptors which not only stick cells together but provide biochemical and physical signals that regulate a range of diverse functions, such as cell proliferation, gene expression, differentiation, apoptosis and migration. In addition, like many other cell surface molecules, they have been usurped as portals of entry for pathogens, including prions. How the mechanical and chemical messages generated from adhesion molecules are integrated with other signalling pathways (such as receptor tyrosine kinases and phosphatases) and the role that aberrant cell adhesion plays in developmental defects and disease pathology are currently very active areas of research. This review focuses on the biochemical features that define whether a cell surface molecule can act as an adhesion molecule, and discusses five specific examples of how cell adhesion molecules function as more than just 'sticky' receptors. The discussion is confined to the signalling events mediated by members of the integrin, cadherin and immunoglobulin gene superfamilies. It is suggested that, by controlling the membrane organization of signalling receptors, by imposing spatial organization, and by regulating the local concentration of cytosolic adapter proteins, intercellular and cell-matrix adhesion is more than just glue holding cells together. Rather dynamic 'conversations' and the formation of multi-protein complexes between adhesion molecules, growth factor receptors and matrix macromolecules can now provide a molecular explanation for the long-observed but poorly understood requirement for a number of seemingly distinct cell surface molecules to be engaged for efficient cell function to occur.  相似文献   

20.
The means by which leukocytes, including lymphocytes, monocytes, and neutrophils, migrate from the circulation to sites of acute and chronic inflammation is an area of intense research interest. Although a number of soluble mediators of these important cellular interactions have been identified, a major site of great importance to the inflammatory response is the physical interface between the white cell and the endothelium. This critical association is mediated by an array of cell surface adhesion molecules. Previous data have demonstrated that the integrin subfamily of heterotypic adhesion molecules was a major component of these adhesive interactions, although it was clear that other, non-integrin-like molecules of unknown identity also seemed to be involved during the inflammatory process. A number of these other cell-surface glycoproteins which may be involved with inflammation have recently been characterized by molecular cloning. These glycoproteins, including the peripheral lymph node homing receptor (pln HR), the endothelial cell adhesion molecule (ELAM), and PADGEM/gmp140, are all members of a family of proteins which are unified by the inclusion of three characteristic protein motifs: a lectin or carbohydrate recognition domain, an epidermal growth factor (egf) domain, and a variable number of short consensus repeats (scr) which are also found in members of the complement regulatory proteins. The appearance of lectin domains in all of these adhesion molecules is consistent with the possibility that these glycoproteins function by binding to carbohydrates which are expressed in a cell and/or region specific manner, and the members of this adhesion family have been given the generic name LEC-CAM (lectin cell adhesion molecules).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号