首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Phosphorylated histone H2AX (gamma-H2AX) forms foci over large chromatin domains surrounding double-stranded DNA breaks (DSB). These foci recruit DSB repair proteins and dissolve during or after repair is completed. How gamma-H2AX is removed from chromatin remains unknown. Here, we show that protein phosphatase 2A (PP2A) is involved in removing gamma-H2AX foci. The PP2A catalytic subunit [PP2A(C)] and gamma-H2AX coimmunoprecipitate and colocalize in DNA damage foci and PP2A dephosphorylates gamma-H2AX in vitro. The recruitment of PP2A(C) to DNA damage foci is H2AX dependent. When PP2A(C) is inhibited or silenced by RNA interference, gamma-H2AX foci persist, DNA repair is inefficient, and cells are hypersensitive to DNA damage. The effect of PP2A on gamma-H2AX levels is independent of ATM, ATR, or DNA-PK activity.  相似文献   

2.
The histone variant H2AX is rapidly phosphorylated at the sites of DNA double-strand breaks (DSBs). This phosphorylated H2AX (gamma-H2AX) is involved in the retention of repair and signaling factor complexes at sites of DNA damage. The dependency of this phosphorylation on the various PI3K-related protein kinases (in mammals, ataxia telangiectasia mutated and Rad3-related [ATR], ataxia telangiectasia mutated [ATM], and DNA-PKCs) has been a subject of debate; it has been suggested that ATM is required for the induction of foci at DSBs, whereas ATR is involved in the recognition of stalled replication forks. In this study, using Arabidopsis as a model system, we investigated the ATR and ATM dependency of the formation of gamma-H2AX foci in M-phase cells exposed to ionizing radiation (IR). We find that although the majority of these foci are ATM-dependent, approximately 10% of IR-induced gamma-H2AX foci require, instead, functional ATR. This indicates that even in the absence of DNA replication, a distinct subset of IR-induced damage is recognized by ATR. In addition, we find that in plants, gamma-H2AX foci are induced at only one-third the rate observed in yeasts and mammals. This result may partly account for the relatively high radioresistance of plants versus yeast and mammals.  相似文献   

3.
Double-strand break (DSB) damage in yeast and mammalian cells induces the rapid ATM (ataxia telangiectasia mutated)/ATR (ataxia telangiectasia and Rad3 related)-dependent phosphorylation of histone H2AX (gamma-H2AX). In budding yeast, a single endonuclease-induced DSB triggers gamma-H2AX modification of 50 kb on either side of the DSB. The extent of gamma-H2AX spreading does not depend on the chromosomal sequences. DNA resection after DSB formation causes the slow, progressive loss of gamma-H2AX from single-stranded DNA and, after several hours, the Mec1 (ATR)-dependent spreading of gamma-H2AX to more distant regions. Heterochromatic sequences are only weakly modified upon insertion of a 3-kb silent HMR locus into a gamma-H2AX-covered region. The presence of heterochromatin does not stop the phosphorylation of chromatin more distant from the DSB. In mouse embryo fibroblasts, gamma-H2AX distribution shows that gamma-H2AX foci increase in size as chromatin becomes more accessible. In yeast, we see a high level of constitutive gamma-H2AX in telomere regions in the absence of any exogenous DNA damage, suggesting that yeast chromosome ends are transiently detected as DSBs.  相似文献   

4.
The histone H2A variant H2AX is rapidly phosphorylated in response to DNA double-stranded breaks to produce gamma-H2AX. gamma-H2AX stabilizes cell-cycle checkpoint proteins and DNA repair factors at the break site. We previously found that the protein phosphatase PP2A is required to resolve gamma-H2AX foci and complete DNA repair after exogenous DNA damage. Here we describe a three-protein PP4 phosphatase complex in mammalian cells, containing PP4C, PP4R2, and PP4R3beta, that specifically dephosphorylates ATR-mediated gamma-H2AX generated during DNA replication. PP4 efficiently dephosphorylates gamma-H2AX within mononucleosomes in vitro and does not directly alter ATR or checkpoint kinase activity, suggesting that PP4 acts directly on gamma-H2AX in cells. When the PP4 complex is silenced, repair of DNA replication-mediated breaks is inefficient, and cells are hypersensitive to DNA replication inhibitors, but not radiomimetic drugs. Therefore, gamma-H2AX elimination at DNA damage foci is required for DNA damage repair, but accomplishing this task involves distinct phosphatases with potentially overlapping roles.  相似文献   

5.
Interstrand cross-links (ICLs) are an extremely toxic class of DNA damage incurred during normal metabolism or cancer chemotherapy. ICLs covalently tether both strands of duplex DNA, preventing the strand unwinding that is essential for polymerase access. The mechanism of ICL repair in mammalian cells is poorly understood. However, genetic data implicate the Ercc1-Xpf endonuclease and proteins required for homologous recombination-mediated double-strand break (DSB) repair. To examine the role of Ercc1-Xpf in ICL repair, we monitored the phosphorylation of histone variant H2AX (gamma-H2AX). The phosphoprotein accumulates at DSBs, forming foci that can be detected by immunostaining. Treatment of wild-type cells with mitomycin C (MMC) induced gamma-H2AX foci and increased the amount of DSBs detected by pulsed-field gel electrophoresis. Surprisingly, gamma-H2AX foci were also induced in Ercc1(-/-) cells by MMC treatment. Thus, DSBs occur after cross-link damage via an Ercc1-independent mechanism. Instead, ICL-induced DSB formation required cell cycle progression into S phase, suggesting that DSBs are an intermediate of ICL repair that form during DNA replication. In Ercc1(-/-) cells, MMC-induced gamma-H2AX foci persisted at least 48 h longer than in wild-type cells, demonstrating that Ercc1 is required for the resolution of cross-link-induced DSBs. MMC triggered sister chromatid exchanges in wild-type cells but chromatid fusions in Ercc1(-/-) and Xpf mutant cells, indicating that in their absence, repair of DSBs is prevented. Collectively, these data support a role for Ercc1-Xpf in processing ICL-induced DSBs so that these cytotoxic intermediates can be repaired by homologous recombination.  相似文献   

6.
We have studied the rate of DNA synthesis, cell cycle distribution, formation of gamma-H2AX, and Rad51 nuclear foci and association of Rad51 with the nuclear matrix after treatment of HeLa cells with the interstrand crosslinking agent mitomycin C (MMC) in the presence of the kinase inhibitors caffeine and wortmannin. The results showed that MMC treatment arrested the cells in S-phase and induced the appearance of gamma-H2AX and Rad51 nuclear foci, accompanied with a sequestering of Rad51 to the nuclear matrix. These effects were abrogated by caffeine, which inhibits the Ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR) kinases. However, wortmannin at a concentration that inhibits ATM, but not ATR did not affect cell cycle progression, damage-induced phosphorylation of H2AX and Rad51 foci formation, and association with the nuclear matrix, suggesting that the S-phase arrest induced by MMC is ATR-dependent. These findings were confirmed by experiments with ATR-deficient and AT cells. They indicate that the DNA damage ATR-dependent S-phase checkpoint pathway may regulate the spatiotemporal organization of the process of repair of interstrand crosslinks.  相似文献   

7.
Telomere shortening in normal human cells causes replicative senescence, a p53-dependent growth arrest state, which is thought to represent an innate defence against tumour progression. However, although it has been postulated that critical telomere loss generates a 'DNA damage' signal, the signalling pathway(s) that alerts cells to short dysfunctional telomeres remains only partially defined. We show that senescence in human fibroblasts is associated with focal accumulation of gamma-H2AX and phosphorylation of Chk2, known mediators of the ataxia-telangiectasia mutated regulated signalling pathway activated by DNA double-strand breaks. Both these responses increased in cells grown beyond senescence through inactivation of p53 and pRb, indicating that they are driven by continued cell division and not a consequence of senescence. gamma-H2AX (though not Chk2) was shown to associate directly with telomeric DNA. Furthermore, inactivation of Chk2 in human fibroblasts led to a fall in p21(waf1) expression and an extension of proliferative lifespan, consistent with failure to activate p53. Thus, Chk2 forms an essential component of a common pathway signalling cell cycle arrest in response to both telomere erosion and DNA damage.  相似文献   

8.
Human replication protein A (RPA p34), a crucial component of diverse DNA excision repair pathways, is implicated in DNA double-strand break (DSB) repair. To evaluate its role in DSB repair, the intranuclear dynamics of RPA was investigated after DNA damage and replication blockage in human cells. Using two different agents [ionizing radiation (IR) and hydroxyurea (HU)] to generate DSBs, we found that RPA relocated into distinct nuclear foci and colocalized with a well-known DSB binding factor, gamma-H2AX, at the sites of DNA damage in a time-dependent manner. Colocalization of RPA and gamma-H2AX foci peaked at 2 h after IR treatment and subsequently declined with increasing postrecovery times. The time course of RPA and gamma-H2AX foci association correlated well with the DSB repair activity detected by a neutral comet assay. A phosphatidylinositol-3 (PI-3) kinase inhibitor, wortmannin, completely abolished both RPA and gamma-H2AX foci formation triggered by IR. Additionally, radiosensitive ataxia telangiectasia (AT) cells harboring mutations in ATM gene product were found to be deficient in RPA and gamma-H2AX colocalization after IR. Transfection of AT cells with ATM cDNA fully restored the association of RPA foci with gamma-H2AX illustrating the requirement of ATM gene product for this process. The exact coincidence of RPA and gamma-H2AX in response to HU specifically in S-phase cells supports their role in DNA replication checkpoint control. Depletion of RPA by small interfering RNA (SiRNA) substantially elevated the frequencies of IR-induced micronuclei (MN) and apoptosis in human cells suggestive of a role for RPA in DSB repair. We propose that RPA in association with gamma-H2AX contributes to both DNA damage checkpoint control and repair in response to strand breaks and stalled replication forks in human cells.  相似文献   

9.
Double-strand breaks in mammalian DNA lead to rapid phosphorylation of C-terminal serines in histone H2AX (gamma-H2AX) and formation of large nuclear gamma-H2AX foci. After DNA repair these foci disappear, but molecular mechanism of elimination of gamma-H2AX foci remains unclear. H2AX protein can be phosphorylated and dephosphorylated in vitro in the absence of chromatin. Here, we compared global exchange of GFP-H2AX with kinetics of formation and elimination of radiation-induced gamma-H2AX foci. Maximal number of gamma-H2AX foci is observed one hour after irradiation, when approximately 20% of GFP-H2AX is exchanged suggesting that formation of the foci mostly occurs by in situ H2AX phosphorylation. However, slow elimination of gamma-H2AX foci is weakly affected by an inhibitor of protein phosphatases calyculin A which is known as an agent suppressing dephosphorylation of gamma-H2AX. This indicates that elimination of gamma-H2AX foci may be independent of dephosphorylation of H2AX which can occur after its removal from the foci by exchange.  相似文献   

10.
DNA double-strand breaks and gamma-H2AX signaling in the testis   总被引:6,自引:0,他引:6  
Within minutes of the induction of DNA double-strand breaks in somatic cells, histone H2AX becomes phosphorylated at serine 139 and forms gamma-H2AX foci at the sites of damage. These foci then play a role in recruiting DNA repair and damage-response factors and changing chromatin structure to accurately repair the damaged DNA. These gamma-H2AX foci appear in response to irradiation and genotoxic stress and during V(D)J recombination and meiotic recombination. Independent of irradiation, gamma-H2AX occurs in all intermediate and B spermatogonia and in preleptotene to zygotene spermatocytes. Type A spermatogonia and round spermatids do not exhibit gamma-H2AX foci but show homogeneous nuclear gamma-H2AX staining, whereas in pachytene spermatocytes gamma-H2AX is only present in the sex vesicle. In response to ionizing radiation, gamma-H2AX foci are generated in spermatogonia, spermatocytes, and round spermatids. In irradiated spermatogonia, gamma-H2AX interacts with p53, which induces spermatogonial apoptosis. These events are independent of the DNA-dependent protein kinase (DNA-PK). Irradiation-independent nuclear gamma-H2AX staining in leptotene spermatocytes demonstrates a function for gamma-H2AX during meiosis. gamma-H2AX staining in intermediate and B spermatogonia, preleptotene spermatocytes, and sex vesicles and round spermatids, however, indicates that the function of H2AX phosphorylation during spermatogenesis is not restricted to the formation of gamma-H2AX foci at DNA double-strand breaks.  相似文献   

11.
We studied the formation of double strand breaks (DSBs) as intermediates in the repair of DNA interstrand crosslinks (ICLs) by homologous recombination (HR). The plasmid EGFP-N1 was crosslinked with trioxsalen to give one ICL per plasmid on average. HeLa cells were transfected with the crosslinked plasmids and the ICL repair was monitored by following the restoration of the GFP expression. It was accompanied by gamma-H2AX foci formation suggesting that DSBs were formed during the process. However, the same amount of gamma-H2AX foci was observed when cells were transfected with native plasmid, which indicated that gamma-H2AX foci appearance could not be used to determine the amount of DSBs connected with the ICL repair in this system. For this reason we further monitored the DSB formation by determining the amount of linearized plasmids, since having one crosslink per plasmid on average, any ICL-driven DSB formation would lead to plasmid linearization. Native and crosslinked plasmids were incubated in repair-competent cell-free extracts from G1 and S phase HeLa cells. Although a considerable part of the ICLs was repaired, no linearization of the plasmids was observed in the extracts, which was interpreted that DSBs were not formed as intermediates in the process of ICL repair. In another set of experiments HR-proficient HeLa and HR-deficient irs3 cells were transfected with native and crosslinked plasmids, and 6 h and 12 h later the plasmid DNA was isolated and analyzed by electrophoresis. The same amount of linear plasmid molecules was observed in both cell lines, regardless of whether they were transfected with native or crosslinked pEGFP-N1, which further confirmed that DSB formation was not an obligatory step in the process of ICL repair by HR.  相似文献   

12.
BACKGROUND: The response of eukaryotic cells to double-strand breaks in genomic DNA includes the sequestration of many factors into nuclear foci. Recently it has been reported that a member of the histone H2A family, H2AX, becomes extensively phosphorylated within 1-3 minutes of DNA damage and forms foci at break sites. RESULTS: In this work, we examine the role of H2AX phosphorylation in focus formation by several repair-related complexes, and investigate what factors may be involved in initiating this response. Using two different methods to create DNA double-strand breaks in human cells, we found that the repair factors Rad50 and Rad51 each colocalized with phosphorylated H2AX (gamma-H2AX) foci after DNA damage. The product of the tumor suppressor gene BRCA1 also colocalized with gamma-H2AX and was recruited to these sites before Rad50 or Rad51. Exposure of cells to the fungal inhibitor wortmannin eliminated focus formation by all repair factors examined, suggesting a role for the phosphoinositide (PI)-3 family of protein kinases in mediating this response. Wortmannin treatment was effective only when it was added early enough to prevent gamma-H2AX formation, indicating that gamma-H2AX is necessary for the recruitment of other factors to the sites of DNA damage. DNA repair-deficient cells exhibit a substantially reduced ability to increase the phosphorylation of H2AX in response to ionizing radiation, consistent with a role for gamma-H2AX in DNA repair. CONCLUSIONS: The pattern of gamma-H2AX foci that is established within a few minutes of DNA damage accounts for the patterns of Rad50, Rad51, and Brca1 foci seen much later during recovery from damage. The evidence presented strongly supports a role for the gamma-H2AX and the PI-3 protein kinase family in focus formation at sites of double-strand breaks and suggests the possibility of a change in chromatin structure accompanying double-strand break repair.  相似文献   

13.
14.
H2AX is a core histone H2A variant that contains an absolutely conserved serine/glutamine (SQ) motif within an extended carboxy-terminal tail. H2AX phosphorylation at the SQ motif (gamma-H2AX) has been shown to increase dramatically upon exogenously introduced DNA double-strand breaks (DSBs). In this study, we use quantitative in situ approaches to investigate the spatial patterning and cell cycle dynamics of gamma-H2AX in a panel of normally growing (unirradiated) mammalian cell lines and cultures. We provide the first evidence for the existence of two distinct yet highly discernible gamma-H2AX focal populations: a small population of large amorphous foci that colocalize with numerous DNA DSB repair proteins and previously undescribed but much more abundant small foci. These small foci do not recruit proteins involved in DNA DSB repair. Cell cycle analyses reveal unexpected dynamics for gamma-H2AX in unirradiated mammalian cells that include an ATM-dependent phosphorylation that is maximal during M phase. Based upon similarities drawn from other histone posttranslational modifications and previous observations in haplo-insufficient (H2AX-/+) and null mice (H2AX-/-), gamma-H2AX may contribute to the fidelity of the mitotic process, even in the absence of DNA damage, thereby ensuring the faithful transmission of genetic information from one generation to the next.  相似文献   

15.
Replication protein A (RPA) is the major eukaryotic single stranded DNA binding protein that plays a central role in DNA replication, repair and recombination. Like many DNA repair proteins RPA is heavily phosphorylated (specifically on its 32 kDa subunit) in response to DNA damage. Phosphorylation of many repair proteins has been shown to be important for their recruitment to DNA damage-induced intra-nuclear foci. Further, phosphorylation of H2AX (gamma-H2AX) has been shown to be important for either the recruitment or stable retention of DNA repair proteins to these intra-nuclear foci. We address here the relationship between DNA damage-induced hyper-phosphorylation of RPA and its intra-nuclear focalization, and whether gamma-H2AX is required for RPA's presence at these foci. Using GFP-conjugated RPA, we demonstrate the formation of extraction-resistant RPA foci induced by DNA damage or stalled replication forks. The strong DNA damage-induced RPA foci appear after phosphorylated histone H2AX and Chk1, but earlier than the appearance of hyper-phosphorylated RPA. We demonstrate that while the functions of phosphoinositol-3-kinase-related protein kinases are essential for DNA damage-induced H2AX phosphorylation and RPA hyper-phosphorylation, they are dispensable for the induction of extraction-resistant RPA and RPA foci. Furthermore, in mouse cells genetically devoid of H2AX, DNA damage-induced extraction-resistant RPA appears with the same kinetics as in normal mouse cells. These results demonstrate that neither RPA hyper-phosphorylation nor H2AX are required for the formation in RPA intra-nuclear foci in response to DNA damage/replicational stress and are consistent with a role for RPA as a DNA damage sensor involved in the initial recognition of damaged DNA or blocked replication forks.  相似文献   

16.
DNA double-strand breaks are thought to precede the formation of most radiation-induced micronuclei. Phosphorylation of the histone H2AX is an early indicator of DNA double-strand breaks. Here we studied the phosphorylation status of the histone H2AX in micronuclei after exposure of cultured cells to ionizing radiation or treatment with colchicine. In human astrocytoma SF268 cells, after exposure to gamma radiation, the proportion of gamma-H2AX-positive to gamma-H2AX-negative micronuclei increases. The majority of the gamma-H2AX-positive micronuclei are centromere-negative. The number of gamma-H2AX-positive micronuclei continues to increase even 24 h postirradiation when most gamma-H2AX foci in the main nucleus have disappeared. In contrast, in normal human fibroblasts (BJ), the proportion of gamma-H2AX-positive to gamma-H2AX-negative micronuclei remains constant, and the majority of the centromere-negative cells are gamma-H2AX-negative. Treatment of both cell lines with colchicine results in mostly centromere-positive, gamma-H2AX-negative micronuclei. Immunostaining revealed co-localization of MDC1 and ATM with gamma-H2AX foci in both main nuclei and micronuclei; however, other repair proteins, such as Rad50, 53BP1 and Rad17, that co-localized with gamma-H2AX foci in the main nuclei were not found in the micronuclei. Combination of the micronucleus assay with gamma-H2AX immunostaining provides new insights into the mechanisms of the formation and fate of micronuclei.  相似文献   

17.
DNA interstrand crosslinks are processed by multiple mechanisms whose relationships to each other are unclear. Xeroderma pigmentosum-variant (XP-V) cells lacking DNA polymerase eta are sensitive to psoralen photoadducts created under conditions favoring crosslink formation, suggesting a role for translesion synthesis in crosslink repair. Because crosslinks can lead to double-strand breaks, we monitored phosphorylated H2AX (gamma-H2AX), which is typically generated near double-strand breaks but also in response to single-stranded DNA, following psoralen photoadduct formation in XP-V fibroblasts to assess whether polymerase eta is involved in processing crosslinks. In contrast to conditions favoring monoadducts, conditions favoring psoralen crosslinks induced gamma-H2AX levels in both XP-V and nucleotide excision repair-deficient XP-A cells relative to control repair-proficient cells; ectopic expression of polymerase eta in XP-V cells normalized the gamma-H2AX response. In response to psoralen crosslinking, gamma-H2AX as well as 53BP1 formed coincident foci that were more numerous and intense in XP-V and XP-A cells than in controls. Psoralen photoadducts induced gamma-H2AX throughout the cell cycle in XP-V cells. These results indicate that polymerase eta is important in responding to psoralen crosslinks, and are consistent with a model in which nucleotide excision repair and polymerase eta are involved in processing crosslinks and avoiding gamma-H2AX associated with double-strand breaks and single-stranded DNA in human cells.  相似文献   

18.
Mammalian ATR and ATM checkpoint kinases modulate chromatin structures near DNA breaks by phosphorylating a serine residue in the carboxy-terminal tail SQE motif of histone H2AX. Histone H2A is similarly regulated in Saccharomyces cerevisiae. The phosphorylated forms of H2AX and H2A, known as gamma-H2AX and gamma-H2A, are thought to be important for DNA repair, although their evolutionarily conserved roles are unknown. Here, we investigate gamma-H2A in the fission yeast Schizosaccharomyces pombe. We show that formation of gamma-H2A redundantly requires the ATR/ATM-related kinases Rad3 and Tel1. Mutation of the SQE motif to AQE (H2A-AQE) in the two histone H2A genes caused sensitivity to a wide range of genotoxic agents, increased spontaneous DNA damage, and impaired checkpoint maintenance. The H2A-AQE mutations displayed a striking synergistic interaction with rad22Delta (Rad52 homolog) in ionizing radiation (IR) survival. These phenotypes correlated with defective phosphorylation of the checkpoint proteins Crb2 and Chk1 and a failure to recruit large amounts of Crb2 to damaged DNA. Surprisingly, the H2A-AQE mutations substantially suppressed the IR hypersensitivity of crb2Delta cells by a mechanism that required the RecQ-like DNA helicase Rqh1. We propose that gamma-H2A modulates checkpoint and DNA repair through large-scale recruitment of Crb2 to damaged DNA. This function correlates with evidence that gamma-H2AX regulates recruitment of several BRCA1 carboxyl terminus domain-containing proteins (NBS1, 53BP1, MDC1/NFBD1, and BRCA1) in mammals.  相似文献   

19.
We showed that gamma irradiation of the developing mouse brain with 2 Gy induced a massive apoptosis of neural precursors but not of neurons within 24 h. Successive phosphorylation and dephosphorylation of histone H2AX have been linked to DNA breaks and repair. Similar numbers of nuclear foci of phosphorylated H2AX (gamma-H2AX) were found 1 h postirradiation in neural precursors and in neurons, suggesting that differences in radiosensitivity were not related to variations in the numbers of DNA double-strand breaks induced by radiation. Surviving neural precursors like neurons totally lost gamma-H2AX within 24 h after irradiation, but they had a slower kinetics of loss of gamma-H2AX foci. This suggests that the DNA repair machinery processed damage more slowly in these neural precursors in relation to their greater radiosensitivity. We also found a bright and diffuse gamma-H2AX staining of nuclei of cells at an early stage of apoptosis, whereas cells at later stages of apoptosis were unstained. This was probably related to phosphorylation and subsequent degradation of H2AX in the course of DNA fragmentation during apoptosis. Detection of gamma-H2AX-bright nuclei may thus be a useful marker of neural cells at an early stage of apoptosis.  相似文献   

20.
Accumulation of DNA damage may play an essential role in both cellular senescence and organismal aging. The ability of cells to sense and repair DNA damage declines with age. However, the underlying molecular mechanism for this age-dependent decline is still elusive. To understand quantitative and qualitative changes in the DNA damage response during human aging, DNA damage-induced foci of phosphorylated histone H2AX (γ-H2AX), which occurs specifically at sites of DNA double-strand breaks (DSBs) and eroded telomeres, were examined in human young and senescing fibroblasts, and in lymphocytes of peripheral blood. Here, we show that the incidence of endogenous γ-H2AX foci increases with age. Fibroblasts taken from patients with Werner syndrome, a disorder associated with premature aging, genomic instability and increased incidence of cancer, exhibited considerably higher incidence of γ-H2AX foci than those taken from normal donors of comparable age. Further increases in γ-H2AX focal incidence occurred in culture as both normal and Werner syndrome fibroblasts progressed toward senescence. The rates of recruitment of DSB repair proteins to γ-H2AX foci correlated inversely with age for both normal and Werner syndrome donors, perhaps due in part to the slower growth of γ-H2AX foci in older donors. Because genomic stability may depend on the efficient processing of DSBs, and hence the rapid formation of γ-H2AX foci and the rapid accumulation of DSB repair proteins on these foci at sites of nascent DSBs, our findings suggest that decreasing efficiency in these processes may contribute to genome instability associated with normal and pathological aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号