首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Escherichia coil signal peptidase I (leader peptidase, SPase I) is an integral membrane serine protease that catalyzes the cleavage of signal (leader) peptides from pre-forms of membrane or secretory proteins. We previously demonstrated that E. coil SPase I was significantly inactivated by reaction with phenylglyoxal with concomitant modification of three to four of the total 17 arginine residues in the enzyme. This result indicated that several arginine residues are important for the optimal activity of the enzyme. In the present study, we have constructed 17 mutants of the enzyme by site-directed mutagenesis to investigate the role of individual arginine residues in the enzyme. Mutation of Arg127, Arg146, Arg198, Arg199, Arg226, Arg236, Arg275, Arg282, and Arg295 scarcely affected the enzyme activity in vivo and in vitro. However, the enzymatic activity toward a synthetic substrate was significantly decreased by replacements of Arg77, Arg222, Arg315, or Arg318 with alanine/lysine. The kcat values of the R77A, R77K, R222A, R222K, R315A, R318A, and R318K mutant enzymes were about 5.5-fold smaller than that of the wild-type enzyme, whereas the Km values of these mutant enzymes were almost identical with that of the wild-type. Moreover, the complementing abilities in E. Arg222, Arg315, coil IT41 were lost completely when Arg77, or Arg318 was replaced with alanine/lysine. The circular dichroism spectra and other enzymatic properties of these mutants were comparable to those of the wild-type enzyme, indicating no global conformational changes. However, the thermostability of R222A, R222K, R315A, and R318K was significantly lower compared to the wild type. Therefore, Arg77, Arg222, Arg315, and Arg318 are thought to be important for maintaining the proper and stable conformation of SPase I.  相似文献   

2.
The Tol proteins are involved in the outer membrane stability of gram-negative bacteria. The C-terminal domain of TolA was mutagenized to identify residues important for its functions. The isolation of suppressor mutants of tolA mutations in the tolB gene confirmed an interaction between TolAIII and the N-terminal domain of TolB.  相似文献   

3.
The roles of invariant residues at the active site of transaldolase B from Escherichia coli have been probed by site-directed mutagenesis. The mutant enzymes D17A, N35A, E96A, T156A, and S176A were purified from a talB-deficient host and analyzed with respect to their 3D structure and kinetic behavior. X-ray analysis showed that side chain replacement did not induce unanticipated structural changes in the mutant enzymes. Three mutations, N35A, E96A, and T156A resulted mainly in an effect on apparent kcat, with little changes in apparent Km values for the substrates. Residues N35 and T156 are involved in the positioning of a catalytic water molecule at the active site and the side chain of E96 participates in concert with this water molecule in proton transfer during catalysis. Substitution of Ser176 by alanine resulted in a mutant enzyme with 2.5% residual activity. The apparent Km value for the donor substrate, fructose 6-phosphate, was increased nearly fivefold while the apparent Km value for the acceptor substrate, erythrose 4-phosphate remained unchanged, consistent with a function for S176 in the binding of the C1 hydroxyl group of the donor substrate. The mutant D17A showed a 300-fold decrease in kcat, and a fivefold increase in the apparent Km value for the acceptor substrate erythrose 4-phosphate, suggesting a role of this residue in carbon-carbon bond cleavage and stabilization of the carbanion/enamine intermediate.  相似文献   

4.
Klein G  Georgopoulos C 《Genetics》2001,158(2):507-517
Genetic experiments have shown that the GroEL/GroES chaperone machine of Escherichia coli is absolutely essential, not only for bacterial growth but also for the propagation of many bacteriophages including lambda. The virulent bacteriophages T4 and RB49 are independent of the host GroES function, because they encode their own cochaperone proteins, Gp31 and CocO, respectively. E. coli groEL44 mutant bacteria do not form colonies above 42 degrees nor do they propagate bacteriophages lambda, T4, or RB49. We found that the vast majority (40/46) of spontaneous groEL44 temperature-resistant colonies at 43 degrees were due to the presence of an intragenic suppressor mutation. These suppressors define 21 different amino acid substitutions in GroEL, each affecting one of 13 different amino acid residues. All of these amino acid residues are located at or near the hinge, which regulates the large en bloc movements of the GroEL apical domain. All of these intragenic suppressors support bacteriophages lambda, T4, and RB49 growth to various extents in the presence of the groEL44 allele. Since it is known that the GroEL44 mutant protein does not interact effectively with Gp31, the suppressor mutations should enhance cochaperone binding. Analogous intragenic suppressor studies were conducted with the groEL673 temperature-sensitive allele.  相似文献   

5.
The TolB protein interacts with the porins of Escherichia coli.   总被引:1,自引:0,他引:1       下载免费PDF全文
TolB is a periplasmic protein of the cell envelope Tol complex. It is partially membrane associated through an interaction with the outer membrane lipoprotein PAL (peptidoglycan-associated lipoprotein), which also belongs to the Tol system. The interaction of TolB with outer membrane porins of Escherichia coli was investigated with a purified TolB derivative harboring a six-histidine tag. TolB interacted with the trimeric porins OmpF, OmpC, PhoE, and LamB but not with their denatured monomeric forms or OmpA. These interactions took place both in the presence and in the absence of lipopolysaccharide. TolA, an inner membrane component of the Tol system, also interacts with the trimeric porins via its central periplasmic domain (R. Dérouiche, M. Gavioli, H. Bénédetti, A. Prilipov, C. Lazdunski, and R. Lloubès, EMBO J. 15:6408-6415, 1996). In the presence of the purified central domain of TolA (TolAIIHis), the TolB-porin complexes disappeared to form TolAIIHis-porin complexes. These results suggest that the interactions of TolA and TolB with porins might take place in vivo and might be concomitant events participating in porin assembly. They also suggest that the Tol system as a whole may be involved in porin assembly in the outer membrane.  相似文献   

6.
To identify novel virulence-associated genes in uropathogenic Escherichia coli (UPEC) strains, a suppression subtractive hybridization strategy was applied to genomic DNA of four clinical UPEC isolates from patients suffering from cystitis or pyelonephritis. The genomic DNA of four isolates (tester strains) was subtracted from the DNA of two different driver strains, the well characterized UPEC strain CFT073 and the non-pathogenic E. coli K-12 strain MG1655. We determined the sequence of 172 tester strain-specific DNA fragments, 86 of which revealed only low or no homology to nucleotide sequences of public databases. We further determined the virulence association of the 86 novel DNA fragments using each DNA fragment as a probe in Southern hybridizations of a reference strain collection consisting of 60 extraintestinal pathogenic E. coli isolates, and 40 non-virulent E. coli strains from stool samples. From this, 19 novel DNA fragments were demonstrated to be significantly associated with virulent strains and thus may represent new virulence traits. Our results support the idea of a considerable genetic variability among UPEC strains and suggest that novel genomic determinants might contribute to virulence of UPEC.  相似文献   

7.
Escherichia coli esterase (EcE) is a member of the hormone-sensitive lipase family. We have analyzed the roles of the conserved residues in this enzyme (His103, Glu128, Gly163, Asp164, Ser165, Gly167, Asp262, Asp266 and His292) by site-directed mutagenesis. Among them, Gly163, Asp164, Ser165, and Gly167 are the components of a G-D/E-S-A-G motif. We showed that Ser165, Asp262, and His292 are the active-site residues of the enzyme. We also showed that none of the other residues, except for Asp164, is critical for the enzymatic activity. The mutation of Asp164 to Ala dramatically reduced the catalytic efficiency of the enzyme by the factor of 10(4) without seriously affecting the substrate binding. This residue is probably structurally important to make the conformation of the active-site functional.  相似文献   

8.
Bolon DN  Mayo SL 《Biochemistry》2001,40(34):10047-10053
Most globular proteins contain a core of hydrophobic residues that are inaccessible to solvent in the folded state. In general, polar residues in the core are thermodynamically unfavorable except when they are able to form intramolecular hydrogen bonds. Compared to hydrophobic interactions, polar interactions are more directional in character and may aid in fold specificity. In a survey of 263 globular protein structures, we found a strong positive correlation between the number of polar residues at core positions and protein size. To probe the importance of buried polar residues, we experimentally tested the effects of hydrophobic mutations at the five polar core residues in Escherichia coli thioredoxin. Proteins with single hydrophobic mutations (D26I, C32A, C35A, T66L, and T77V) all have cooperative unfolding transitions like the wild type (wt), as determined by chemical denaturation. Relative to wt, D26I is more stable while the other point mutants are less stable. The combined 5-fold mutant protein (IAALV) is less stable than wt and has an unfolding transition that is substantially less cooperative than that of wt. NMR spectra as well as amide deuterium exchange indicate that IAALV is likely sampling a number of low-energy structures in the folded state, suggesting that polar residues in the core are important for specifying a well-folded native structure.  相似文献   

9.
Menaquinol-fumarate oxidoreductase of Escherichia coli is a four-subunit membrane-bound complex that catalyzes the final step in anaerobic respiration when fumarate is the terminal electron acceptor. The enzyme is structurally and catalytically similar to succinate dehydrogenase (succinate-ubiquinone oxidoreductase) from both procaryotes and eucaryotes. Both enzymes have been proposed to contain an essential cysteine residue at the active site based on studies with thiol-specific reagents. Chemical modification studies have also suggested roles for essential histidine and arginine residues in catalysis by succinate dehydrogenase. In the present study, a combination of site-directed mutagenesis and chemical modification techniques have been used to investigate the role(s) of the conserved histidine 232, cysteine 247, and arginine 248 residues of the flavorprotein subunit (FrdA) in active site function. A role for His-232 and Arg-248 of FrdA is shown by loss of both fumarate reductase and succino-oxidase activities following site-directed substitution of these particular amino acids. Evidence is also presented that suggests a second arginine residue may form part of the active site. Potential catalytic and substrate-binding roles for arginine are discussed. The effects of removing histidine-232 of FrdA are consistent with its proposed role as a general acid-base catalyst. The fact that succinate oxidation but not fumarate reduction was completely lost, however, might suggest that alternate proton donors substitute for His-232. The data confirm that cysteine 247 of FrdA is responsible for the N-ethylmaleimide sensitivity shown by fumarate reductase but is not required for catalytic activity or the tight-binding of oxalacetate, as previously thought.  相似文献   

10.
Comparison of the amino-acid sequences of several methionyl-tRNA synthetases indicates the occurrence of a few conserved motifs, having a possible functional significance. The role of one of these motifs, centered at position 300 in the E. coli enzyme sequence, was assayed by the use of site-directed mutagenesis. Substitution of the His301 or Trp305 residues by Ala resulted in a large decrease in methionine affinity, whereas the change of Val298 into Ala had only a moderate effect. The catalytic rate of the enzyme was unimpaired by these substitutions. It is concluded that the above conserved amino-acid region is located at or close to the amino-acid binding pocket of methionyl-tRNA synthetase.  相似文献   

11.
BACKGROUND: The periplasmic protein TolB from Escherichia coli is part of the Tol-PAL (peptidoglycan-associated lipoprotein) multiprotein complex used by group A colicins to penetrate and kill cells. TolB homologues are found in many gram-negative bacteria and the Tol-PAL system is thought to play a role in bacterial envelope integrity. TolB is required for lethal infection by Salmonella typhimurium in mice. RESULTS: The crystal structure of the selenomethionine-substituted TolB protein from E. coli was solved using multiwavelength anomalous dispersion methods and refined to 1. 95 A. TolB has a two-domain structure. The N-terminal domain consists of two alpha helices, a five-stranded beta-sheet floor and a long loop at the back of this floor. The C-terminal domain is a six-bladed beta propeller. The small, possibly mobile, contact area (430 A(2)) between the two domains involves residues from the two helices and the first and sixth blades of the beta propeller. All available genomic sequences were used to identify new TolB homologues in gram-negative bacteria. The TolB structure was then interpreted using the observed conservation pattern. CONCLUSIONS: The TolB beta-propeller C-terminal domain exhibits sequence similarities to numerous members of the prolyl oligopeptidase family and, to a lesser extent, to class B metallo-beta-lactamases. The alpha/beta N-terminal domain shares a structural similarity with the C-terminal domain of transfer RNA ligases. We suggest that the TolB protein might be part of a multiprotein complex involved in the recycling of peptidoglycan or in its covalent linking with lipoproteins.  相似文献   

12.
A subset of the spin systems assigned in the 1H NMR spectrum of the trp repressor in the first paper in this series (our penultimate preceding paper in this journal) can be identified as surface or buried residues on the basis of four independent types of measurement: selective spin-lattice relaxation times; the dependence of line widths on temperature and the concentration of manganous ion; fluorescence quenching; and titration behaviour. Criteria are developed for distinguishing surface and buried residues. The significance for the function of DNA binding proteins is discussed.  相似文献   

13.
The side chains of Escherichia coli phosphofructokinase (EcPFK) that interact with bound substrate, fructose 6-phosphate (Fru-6-P), are examined for their potential roles in allosteric regulation. Mutations that severely decrease Fru-6-P affinity and/or k(cat)/K(m) were created at each contact residue, with the exception of the catalytic base, D127. Even though Fru-6-P affinity was greatly decreased for R162E, M169A, E222A/H223A, and R243E, the mutated proteins retained the ability to be activated by MgADP and inhibited by phosphoenolpyruvate (PEP). R252E did not show an allosteric response to either MgADP or PEP. The H249E mutation retained MgADP activation but did not respond to PEP. R72E, T125A, and R171E maintained allosteric inhibition by PEP. Both R72E and T125A displayed a MgADP-dependent decrease in k(cat) but no MgADP-dependent K-type effects. R171E maintained MgADP-dependent K-type activation but also displayed a MgADP-dependent decrease in k(cat). Localization of mutations that alter MgADP activation near the transferred phosphate group indicates the importance of the 1-methoxy region of Fru-6-P in allosteric regulation by MgADP. A region near the 6'-phosphate may be similarly important for PEP inhibition. R252 is uniquely positioned between the 1'- and 6'-phosphates of bound Fru-1,6-BP, and the mutation at this position may alter both allosterically responsive regions. The differential functions of specific regions in the Fru-6-P contact residues support different mechanisms for allosteric activation and inhibition. In addition, the lack of correlation between mutations that decrease Fru-6-P affinity and those that abolish allosteric communications supports the independence of affinity and allosteric coupling.  相似文献   

14.
Chemical modification studies with pyridoxal 5'-phosphate have indicated that lysine(s) appear to be at or near the active site of Escherichia coli glutamine synthetase (Colanduoni, J., and Villafranca, J. J. (1985) J. Biol. Chem. 260, 15042-15050; Whitley, E. J., Jr., and Ginsburg, A. (1978) J. Biol. Chem. 253, 7017-7025). Enzyme samples were prepared that contained approximately 1, approximately 2, and approximately 3 pyridoxamine 5'-phosphate residues/50,000-Da monomer; the activity of each sample was 100, 25, and 14% of the activity of unmodified enzyme, respectively. Cyanogen bromide cleavage of each enzyme sample was performed, the peptides were separated by high performance liquid chromatography, and the peptides containing pyridoxamine 5'-phosphate were identified by their absorbance at 320 nm. These isolated peptides were analyzed for amino acid composition and sequenced. The N terminus of the protein (a serine residue) was modified by pyridoxal 5'-phosphate at a stoichiometry of approximately 1/50,000 Da and this modified enzyme had full catalytic activity. Beyond a stoichiometry of approximately 1, lysines 383 and 352 reacted with pyridoxal 5'-phosphate and each modification results in a partial loss of activity. When various combinations of substrates and substrate analogs (ADP/Pi or L-methionine-SR-sulfoximine phosphate/ADP) were used to protect the enzyme from modification, Lys-352 was protected from modification indicating that this residue is at the active site. Under all experimental conditions employed, Lys-47, which reacts with the ATP analog 5'-p-fluorosulfonylbenzoyl-adenosine does not react with pyridoxal 5'-phosphate.  相似文献   

15.
Leader peptidase of Escherichia coli cleaves the leader sequence from the amino terminus of membrane and secreted proteins after these proteins insert across the membrane. Despite considerable research, the mechanism of catalysis of leader peptidase remains unknown. This peptidase cannot be classified using protease inhibitors to the serine, cysteine, aspartic acid, or metallo- classes of proteases (Zwizinski, C., Date, T., and Wickner, W. (1981) J. Biol. Chem. 256, 3593-3597). Using site-directed mutagenesis, we have attempted to place leader peptidase in one of these groups. We found that leader peptidase, lacking all of the cysteine residues, can cleave the leader peptide from procoat, the precursor to bacteriophage M13 coat protein. Replacement of each histidine residue with an alanyl residue was without effect on catalysis. Among all the serine and aspartic acid residues, serine 90 and serine 185 as well as aspartic acid 99, 153, 273, and 276 are necessary to cleave procoat in a detergent extract. However, only serine 90 and aspartic acid 153 were required for processing using a highly sensitive in vivo assay. In addition to the residues directly affecting catalysis, aspartic acid 99 plays a role in maintaining the structure of leader peptidase. Replacement of this residue with alanine results in a very unstable leader peptidase protein. This study thus defines two critical residues, serine 90 and aspartic acid 153, that may be directly involved in catalysis and provides evidence that leader peptidase belongs to a novel class of serine proteases.  相似文献   

16.
Delehanty JB  Jones RM  Bishop TC  Blake DA 《Biochemistry》2003,42(48):14173-14183
The molecular characterization of antibodies directed against metal-chelate complexes will provide important insights into the design and development of radiotherapeutic and radioimaging reagents. In this study, two monoclonal antibodies directed against different metal-chelate complexes were expressed as recombinant Fab fragments. Covalent modification and site-directed mutagenesis were employed to ascertain those residues important in antigen recognition. Antibody 5B2 was raised to a Pb(II)-loaded isothiocyanatobenzyl-diethylenetriamine pentaacetic acid (DTPA)-protein conjugate. The native antibody bound to complexes of Pb(II)-p-aminobenzyl-DTPA with an affinity of 4.6 x 10(-9) M. A monovalent Fab fragment prepared from the native protein and a bivalent recombinant fragment exhibited comparable affinities for the same Pb(II)-chelate complex, approximately 6-fold lower than that of the intact antibody. Covalent modification and molecular modeling predicted that Lys(58) in the heavy chain contacted the Pb(II)-chelate ligand. Mutational analysis supported a role for Lys(58) in ion pair or hydrogen bond formation with the carboxylate groups on the chelate. Antibody E5 was directed toward an isothiocyanatobenzyl-ethylenediamine tetraacetic acid (EDTA)-protein conjugate loaded with ionic Cd(II). The native immunoglobulin recognized Cd(II)-p-aminobenzyl-EDTA with an affinity of 8.2 x 10(-12) M. A proteolytically derived fragment and a bivalent recombinant fragment bound to the same Cd(II)-chelate complex with affinities that were comparable to that of the native antibody. Homology modeling and mutagenesis identified three residues (Trp(52) and His(96) in the heavy chain and Arg(96) in the light chain) that were important for Cd(II)-chelate recognition. His(96) likely mediates a direct ligation to the Cd(II) ion and Trp(52) appears to be involved in hydrophobic stacking with the benzyl moiety of the chelator. Arg(96) appeared to mediate an electrostatic or hydrogen bond to the chelate portion of the complex. These studies demonstrate that antibody recognition of metal-chelate haptens occurs through a limited number of molecular contacts and that these molecular interactions involve both direct ligation between the antibody and the metal ion and interactions between the antibody and the chelator.  相似文献   

17.
The gene encoding Escherichia coli biotin synthase (bioB) has been expressed as a histidine fusion protein, and the protein was purified in a single step using immobilized metal affinity chromatography. The His(6)-tagged protein was fully functional in in vitro and in vivo biotin production assays. Analysis of all the published bioB sequences identified a number of conserved residues. Single point mutations, to either serine or threonine, were carried out on the four conserved (Cys-53, Cys-57, Cys-60, and Cys-188) and one non-conserved (Cys-288) cysteine residues, and the purified mutant proteins were tested both for ability to reconstitute the [2Fe-2S] clusters of the native (oxidized) dimer and enzymatic activity. The C188S mutant was insoluble. The wild-type and four of the mutant proteins were characterized by UV-visible spectroscopy, metal and sulfide analysis, and both in vitro and in vivo biotin production assays. The molecular masses of all proteins were verified using electrospray mass spectrometry. The results indicate that the His(6) tag and the C288T mutation have no effect on the activity of biotin synthase when compared with the wild-type protein. The C53S, C57S, and C60S mutant proteins, both as prepared and reconstituted, were unable to covert dethiobiotin to biotin in vitro and in vivo. We conclude that three of the conserved cysteine residues (Cys-53, Cys-57, and Cys-60), all of which lie in the highly conserved "cysteine box" motif, are crucial for [Fe-S] cluster binding, whereas Cys-188 plays a hitherto unknown structural role in biotin synthase.  相似文献   

18.
19.
Sun W  Li G  Nicholson AW 《Biochemistry》2004,43(41):13054-13062
The ribonuclease III superfamily represents a structurally distinct group of double-strand-specific endonucleases with essential roles in RNA maturation, RNA decay, and gene silencing. Bacterial RNase III orthologs exhibit the simplest structures, with an N-terminal nuclease domain and a C-terminal double-stranded RNA-binding domain (dsRBD), and are active as homodimers. The nuclease domain contains conserved acidic amino acids, which in Escherichia coli RNase III are E38, E41, D45, E65, E100, D114, and E117. On the basis of a previously reported crystal structure of the nuclease domain of Aquifex aeolicus RNase III, the E41, D114, and E117 side chains of E. coli RNase III are expected to be coordinated to a divalent metal ion (Mg(2+) or Mn(2+)). It is shown here that the RNase III[E41A] and RNase III[D114A] mutants exhibit catalytic activities in vitro in 10 mM Mg(2+) buffer that are comparable to that of the wild-type enzyme. However, at 1 mM Mg(2+), the activities are significantly lower, which suggests a weakened affinity for metal. While RNase III[E41A] and RNase III[D114A] have K(Mg) values that are approximately 2.8-fold larger than the K(Mg) of RNase III (0.46 mM), the RNase III[E41A/D114A] double mutant has a K(Mg) of 39 mM, suggesting a redundant function for the two side chains. RNase III[E38A], RNase III[E65A], and RNase III[E100A] also require higher Mg(2+) concentrations for optimal activity, with RNase III[E100A] exhibiting the largest K(Mg). RNase III[D45A], RNase III[D45E], and RNase III[D45N] exhibit negligible activities, regardless of the Mg(2+) concentration, indicating a stringent functional requirement for an aspartate side chain. RNase III[D45E] activity is partially rescued by Mn(2+). The potential functions of the conserved acidic residues are discussed in the context of the crystallographic data and proposed catalytic mechanisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号