首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The optomotor system of Drosophila is investigated in a flight simulator in which the fly's yaw torque controls the angular velocity of the panorama (striped drum, negative feedback). Flies in the flight simulator maintain a stable orientation even in a homogeneously textured panorama without landmarks. During straight flight, torque is not zero. It consists of small pulses mostly alternating in polarity. The course is controlled by the duration (and possibly amplitude) of the pulses. The system operates under reafference control. By comparing the pulses with the visual input the system continuously measures and adjusts the efficacy of the torque output. The comparison, however, is not between angular velocity and yaw torque but, instead, between visual acceleration and pretorque, the first time derivative of torque. For comparison, the system first computes a cross-correlation. If the correlation coefficient is above a certain threshold the system calculates the external gain and adjusts its internal gain so as to keep the total gain constant. With the correlation coefficient below threshold, however, the system keeps the internal gain low despite the infinitely small external gain. We propose that for a reafferent optomotor system the coupling coefficient and the correlation coefficient of pretorque and visual acceleration are more relevant than the distinction between exafference and reafference.Abbreviation EMD elementary movement detector  相似文献   

2.
The timing of bursts of motor activity in extensor muscles in the coxae of pairs of legs in intact freely walking American cockroaches was studied. The timing of bursts in adjacent and non-adjacent leg pairs generally reflected the common alternating tripod gait of these insects. Detailed study of the timing further revealed two previously unreported features. (1) The timing of extensor bursts in the middle legs relative to bursts in the rear legs was more variable than it was relative to those in the front legs. This difference in variability was statistically significant for the means of bursts when all insects were considered together as well as for bursts in individual insects. An apparent difference in variability of the timing of burst starts compared to burst ends for any one leg pair was not significant. (2) There was a shift in the timing of motor bursts relative to one another when an insect walked fast such that motor bursts in the middle legs tended to lag farther behind those in the front legs, and those in the rear legs tended to lag farther behind those in the middle legs compared to the timing during slow walking. This shift was apparent in both burst starts and burst ends, although more obvious in the former. It occurred in both ipsilateral and contralateral leg pairs, and in both the mean data and the data for individual insects. The implications of these characteristics of the timing data are discussed in terms of the neural organization of insect walking.  相似文献   

3.
Male silkworm moths, Bombyx mori, move their heads side-to-side during zigzag walking toward a source of sex pheromone. High-speed video analysis revealed that changes in walking direction were synchronized with this head turning. Thus the direction of the walking is indicated by the direction of the head turning. Head turning was regulated by neck motor neurons which innervate the cervical ventral muscles and the ventral muscles through the second cervical nerve. To determine the role of the `flipflop' state transition in spike activity carried by descending interneurons from the brain to the thoracic ganglion, we recorded pheromonal responses simultaneously from flipflop descending interneurons and a single cervical ventral 1 neck motor neuron. The activity of the cervical ventral 1 neck motor neuron was synchronized to that of the flipflop descending interneurons. The cervical ventral 1 neck motor neuron was morphologically identified using confocal imaging. Our results demonstrate that the flipflop signals play an important role in instructing turning signals during the pheromone-mediated behavior in a male B. mori. Accepted: 11 June 1998  相似文献   

4.
Alterations in Hox gene expression patterns have been implicated in both large and small-scale morphological evolution. An improved understanding of these changes requires a detailed understanding of Hox gene cis-regulatory function and evolution. cis-regulatory evolution of the Hox gene Ultrabithorax (Ubx) has been shown to contribute to evolution of trichome patterns on the posterior second femur (T2p) of Drosophila species. As a step toward determining how this function of Ubx has evolved, we performed a series of experiments to clarify the role of Ubx in patterning femurs and to identify the cis-regulatory regions of Ubx that drive expression in T2p. We first performed clonal analysis to further define Ubx function in patterning bristle and trichome patterns in the legs. We found that low levels of Ubx expression are sufficient to repress an eighth bristle row on the posterior second and third femurs, whereas higher levels of expression are required to promote the development and migration of other bristles on the third femur and to repress trichomes. We then tested the hypothesis that the evolutionary difference in T2p trichome patterns due to Ubx was caused by a change in the global cis-regulation of Ubx expression. We found no evidence to support this view, suggesting that the evolved difference in Ubx function reflects evolution of a leg-specific enhancer. We then searched for the regulatory regions of the Ubx locus that drive expression in the second and third femur by assaying all existing regulatory mutations of the Ubx locus and new deficiencies in the large intron of Ubx that we generated by P-element-induced male recombination. We found that two enhancer regions previously known to regulate Ubx expression in the legs, abx and pbx, are required for Ubx expression in the third femur, but that they do not contribute to pupal expression of Ubx in the second femur. This analysis allowed us to rule out at least 100 kb of DNA in and around the Ubx locus as containing a T2p-specific enhancer. We then surveyed an additional approximately 30 kb using enhancer constructs. None of these enhancer constructs produced an expression pattern similar to Ubx expression in T2p. Thus, after surveying over 95% of the Ubx locus, we have not been able to localize a T2p-specific enhancer. While the enhancer could reside within the small regions we have not surveyed, it is also possible that the enhancer is structurally complex and/or acts only within its native genomic context.  相似文献   

5.
6.
Summary Movement-induced visual orientation in flies depends largely upon predictable responses which establish simple optomotor balance or complex pseudo search in the appropriate visual environment. Less conspicuous course diverting spontaneous actions of the flies become important in pattern-induced visual orientation. The apparently stochastic spontaneous actions of the houseflyMusca domestica still allow powerful probabilistic predictions of orientation during stationary flight (Reichardt and Poggio 1981). The predominance of non-stochastic spontaneous actions such as body saccades, focussing and shift of visual attention, plasticity of response components etc. in the fruitflyDrosophila melanogaster (Heisenberg and Wolf 1979–1980) accounts for complementary behavioural options which reduce the relevance of probabilistic predictions of orientation in this fly.The conjecture of complementary options is based on a striking antagonism between orientation towards a visual object (fixation), and orientation in the opposite direction (anti-fixation), in the walking fly. Forced choice in a multiple-Y-maze quite definitely elicits fixation in the wild type, and antifixation in the optomotor blind mutantomb H31 (Fig. 3). However, these effects cannot be attributed to a continuous predominance of attraction in the wild type and repellence in the mutant. This is shown under comparable conditions of free choice in an arena: The flies of either strain alternate between fixation and anti-fixation of an inaccessible visual object (Fig. 4a), and keep running to and fro between two of these objects in Buridan's paradigm (Fig. 4b, c), even if the objects are not alike (Fig. 4d). The sequence of approach, retreat and transition may be repeated a few thousand times to the point of exhaustion (Fig. 5). The process resembles the recurrent alternation of ambiguous figures such as the Necker cube in human perception. The recurrent transition between competitive objects counteracts the accumulation of spontaneous preferences, and is likely to explain the apparent lack of pattern-discrimination under operant and non-operant conditions of continued free choice inDrosophila. The conspicuous dichotomy of fixation and anti-fixation in the same environment is, as yet, incompatible with the phenomenological theory of visually controlled orientation in larger flies.Abbreviation S.E.M. standard error of the mean  相似文献   

7.
8.
Protein synthesis during spermatogenesis in Drosophila melanogaster   总被引:1,自引:0,他引:1  
  相似文献   

9.
10.
11.
RNA metabolism during puff induction in Drosophila melanogaster   总被引:10,自引:0,他引:10  
RNA metabolism of the salivary glands of Drosophila melanogaster was studied for possible changes coinciding with the induction of new puffs by heat treatment.—The rate of 3H-uridine incorporation into RNA is identical at 37° C and at 24° C. It declines with time of incubation, possibly indicating the existence of a class of rapidly turning over RNA.—RNA extracted from glands pulselabelled at either 24° or at 37° C displays similar profiles if subjected to gel electrophoresis. Processing of the 38s ribosomal RNA precursor comes to a halt at 37° between 30 and 60 minutes of incubation, i.e., some time after puff induction is completed. At both temperatures newly synthesized pre-ribosomal RNA accumulates with time of incubation more rapidly than heterodisperse RNA, again suggesting that some heterodisperse RNA is of relatively short life span. After short pulses the portion of heterodisperse RNA is larger in glands kept at 37° C than in glands kept at 24° C. With increasing time this difference disappears.—Some of the pulse-labelled, high molecular weight heterodisperse RNA is rapidly degraded, if RNA synthesis is blocked by actinomycin D. If the chase is performed at 24° C, about 30% of the newly synthesized RNA is degraded within about 15 minutes. At 37° C the beginning of degradation appears delayed for about 30 minutes; subsequently the same percentage of RNA is degraded as at 24° C.—The possibility is considered that the local RNA accumulation visualized by the heat-induced puffs may have resulted from a change in RNA degradation rather than from a local stimulation of RNA synthesis.  相似文献   

12.
Fatty-acids (FAs) are required in the diet of many animals throughout their life. However, the mechanisms involved in the perception of and preferences for dietary saturated and unsaturated FAs (SFAs and UFAs, respectively) remain poorly explored, especially in insects. Using the model species Drosophila melanogaster, we measured the responses of wild-type larvae and adults to pure SFAs (14, 16, and 18 carbons) and UFAs (C18 with 1, 2, or 3 double-bonds). Individual and group behavioral tests revealed different preferences in larvae and adults. Larvae preferred UFAs whereas SFAs tended to induce both a strong aversion and a persistent aggregation behavior. Adults generally preferred SFAs, and laid more eggs and had a longer life span when ingesting these substances as compared to UFAs. Our data suggest that insects can discriminate long-chain dietary FAs. The developmental change in preference shown by this species might reflect functional variation in use of FAs or stage-specific nutritional requirements, and may be fundamental for insect use of these major dietary components.  相似文献   

13.
Previous studies of the mechanical work performed during uphill and downhill walking have neglected the simultaneous negative and positive work performed by the leading and trailing legs during double support. Our goal was to quantify the mechanical work performed by the individual legs across a range of uphill and downhill grades. We hypothesized that during double support, (1) with steeper uphill grade, the negative work performed by the leading leg would become negligible and the trailing leg would perform progressively greater positive work to raise the center of mass (CoM), and (2) with steeper downhill grade, the leading leg would perform progressively greater negative work to lower the CoM and the positive work performed by the trailing leg would become negligible. 11 healthy young adults (6 M/5 F, 71.0±12.3 kg) walked at 1.25 m/s on a dual-belt force-measuring treadmill at seven grades (0, ±3, ±6, ±9°). We collected three-dimensional ground reaction forces (GRFs) and used the individual limbs method to calculate the mechanical work performed by each leg. As hypothesized, the trailing leg performed progressively greater positive work with steeper uphill grade, and the leading leg performed progressively greater negative work with steeper downhill grade (p<0.005). To our surprise, unlike level-ground walking, during double support the leading leg performed considerable positive work when walking uphill and the trailing leg performed considerable negative work when walking downhill (p<0.005). To understand how humans walk uphill and downhill, it is important to consider these revealing biomechanical aspects of individual leg function and interaction during double support.  相似文献   

14.
Spindles and centrosomes during male meiosis in Drosophila melanogaster   总被引:1,自引:0,他引:1  
We have studied the spatial distribution of chromosomes, spindle fibers and centrosomes throughout the first meiotic division in males of Drosophila melanogaster. There seem to be two different types of spindle fibers: those which connect the poles to the chromosomes, and others arranged as cup-shaped hemispheres that reach from the poles to an unstained area on the equator of the cell. These pole-equator fibers could be responsible for positioning the nucleus and distributing cytoplasmic organelles around the nucleus during prophase, so that after meiosis, the daughter cells are provided with equal amounts of preorganized cytoplasmic organelles. These fibers remain until after the daughter nuclei have formed during telophase. An antigen associated with the centrosomes of mitotic spindles appears during meiosis as dispersed particles surrounding the nucleus; these particles might provide the developing spermatids with microtubule-organizing centers.  相似文献   

15.
16.
The Drosophila melanogaster embryo has been widely utilized as a model for genetics and developmental biology due to its small size, short generation time, and large brood size. Information on embryonic metabolism during developmental progression is important for further understanding the mechanisms of Drosophila embryogenesis. Therefore, the aim of this study is to assess the changes in embryos’ metabolome that occur at different stages of the Drosophila embryonic development. Time course samples of Drosophila embryos were subjected to GC/MS-based metabolome analysis for profiling of low molecular weight hydrophilic metabolites, including sugars, amino acids, and organic acids. The results showed that the metabolic profiles of Drosophila embryo varied during the course of development and there was a strong correlation between the metabolome and different embryonic stages. Using the metabolome information, we were able to establish a prediction model for developmental stages of embryos starting from their high-resolution quantitative metabolite composition. Among the important metabolites revealed from our model, we suggest that different amino acids appear to play distinct roles in different developmental stages and an appropriate balance in trehalose-glucose ratio is crucial to supply the carbohydrate source for the development of Drosophila embryo.  相似文献   

17.
18.
Some endemic Drosophila overwinter in a state of adult reproductive diapause where egg maturation is arrested in previtellogenic stages. When maintained at cool temperatures, adult Drosophila melanogaster enter reproductive dormancy, that is, diapause or diapause-like quiescence. The ability to survive for extended periods is a typical feature of diapause syndromes. In adults this somatic persistence may involve reduced or slowed senescence. Here we assess whether reproductively dormant D. melanogaster age at slow rates. Adults were exposed to dormancy-inducing conditions for 3, 6, or 9 wk. After this period, demographic parameters were measured under normal conditions and compared to the demography of newly eclosed cohorts. The age-specific mortality rates of postdormancy adults were essentially identical to the mortality rates of newly eclosed, young flies. Postdormancy reproduction, in contrast, declined with the duration of the treatment; somatic survival during dormancy may tradeoff with later reproduction. Adults in reproductive dormancy were highly resistant to heat and to oxidative stress. Suppressed synthesis of juvenile hormone is known to regulate reproductive diapause of many insects. Treatment of dormant D. melanogaster with a juvenile hormone analog restored vitellogenesis, suppressed stress resistance, and increased demographic senescence. We conclude that D. melanogaster age at slow rates as part of their reproductive dormancy syndrome; the data do not agree with an alternative hypothesis based on heat-dependent "rate of living." We suggest that low temperature reduces neuroendocrine function, which in turn slows senescence as a function of altered stress response, nutrient reallocation, and metabolism.  相似文献   

19.
Rhythmic leg movements and tailflipping are mutually exclusive behaviours in most decapod crustaceans, but sand crabs (Anomura: Hippoidea) combine leg movements with simultaneous tailflipping or uropod beating for both digging and swimming. We examined the coordination between the legs and tail (abdomen and tailfan) of Blepharipoda occidentalis, Lepidopa californica (Albuneidae), and Emerita analoga (Hippidae). When either albuneid swims, the tail cycles at a higher frequency than the legs, and the two rhythms are not coupled. When albuneids begin digging, the tail's frequency drops to that of the legs, and its rhythm becomes phase coupled to the legs. In E. analoga the legs seldom move during swimming by uropod beating. During digging the frequency of the uropods and fourth legs starts at about double that of the second and third legs, but drops to that of the second and third legs as digging progresses. The fourth legs in E. analoga are coupled with the uropods; their outward movement (= power stroke) is concurrent with the uropod return stroke. The familial differences in leg coordination and in the coordination of the legs and tail account for the smooth descent of E. analoga beneath sand compared to the stepwise descent of the albuneids. Accepted: 23 August 1996  相似文献   

20.
1. Dolichol levels in the fruit fly, Drosophila melanogaster were determined at the larva and pupa stages and in 1, 10, 20 and 30-day-old flies. 2. Free dolichol increased from 1.2 micrograms/g wet weight in the larvae to 14.9 micrograms/g in 30-day-old flies, while total dolichol increased from 3.4 micrograms/g in the larvae to 21.2 micrograms/g at 30-days-old. 3. Dolichol released after saponification is primarily from dolichyl fatty acid ester, which accounts for up to 65% of the total dolichol. 4. The major dolichol homologs, which remain relatively constant throughout development and ageing in D. melanogaster, are C-80, C-85 and C-90, which represent approximately 7%, 60% and 33%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号