首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myelin isolated from the rat peripheral nervous system (sciatic nerve and cauda equina) contained Mg2+-dependent protein kinase that phosphorylated myelin polypeptides. Ca2+, in micromolar concentrations, markedly stimulated phosphorylation (half-maximal stimulation at 5 microM (free) Ca2+) but at higher concentrations (greater than 100 microM Ca2+) it caused inhibition. In the presence of Triton X-100, phosphorylation (+/-Ca2+) of myelin was increased and Ca2+ caused up to a 10-fold increase in phosphorylation. Among the myelin polypeptides, P0 (Mr, 28 000), a major glycoprotein, accounted for nearly 60% of the total phosphate incorporated into the myelin and Ca2+ markedly promoted phosphorylation of P0. Phosphorylation of other myelin polypeptides, P2 (Mr, 16 000), Y (Mr, 26 000), and P1 (Mr, 20 000), and the Ca2+-stimulatory effect on phosphorylation of these were also evident. Cyclic AMP (or other cyclic nucleotides) failed to show any significant stimulatory effect on myelin phosphorylation.  相似文献   

2.
We have investigated rapid and marked phosphorylation of cellular proteins induced by interleukin 2 (IL-2) in both phytohaemagglutinin-stimulated normal peripheral blood leucocytes, and IL-2-dependent or -independent human T-cell lines bearing human T-cell leukaemia (lymphotropic) virus type I. Two-dimensional electrophoretic analysis showed that the IL-2-induced phosphoprotein was of Mr 67,000 with a pI of 5.8 (pp67) and was distinct from the IL-2 receptor. IL-2 also stimulated phosphorylation of four other proteins, with an Mr of 63,000 and pI values 5.3-6.1 (pp63s). The stimulation of pp67 phosphorylation was observed within 5 min after addition of IL-2 and was maximal after 15 min. The maximal phosphorylation was more than 10-fold that observed initially. In IL-2-dependent cells, IL-2 dose responses of pp67 phosphorylation and cell proliferation were exactly correlated. Phosphoamino acid analysis showed that the phosphorylation site of pp67 and pp63s was a serine residue. Subcellular-fractionation studies indicated that pp67 was localized in cytosol, whereas pp63s phosphorylation was induced by IL-2 in nuclear and cytosol fractions. Similar phosphorylation of pp67 and pp63s was observed when the cells were treated with phorbol 12-myristate 13-acetate instead of IL-2. These results suggest that IL-2-IL-2-receptor interaction leads to activation of protein kinase(s), resulting in phosphorylation of certain cellular proteins such as pp67 and pp63s, and that this phosphorylation could be an early event in the transmission of intracellular growth signalling from the IL-2 receptors.  相似文献   

3.
IL-1 increases phosphorylation of the small heat shock protein (hsp27) in intact cells. This change was also shown both by introducing [gamma-32P]ATP and Mg2+ into MRC-5 fibroblasts permeabilized by LPC after stimulation by IL-1, and by adding the labeled ATP and Mg2+ to cell extracts. Hsp27 phosphorylated in permeabilized cells or cell extracts was shown by 2D electrophoresis to comprise the three forms seen in metabolically labeled cells, suggesting that the physiologically relevant kinase was acting on the substrate in vitro. Mixing of extracts of resting and IL-1-stimulated cells revealed that stimulated cells contained increased levels of kinase activity that phosphorylated substrate hsp27 in the extracts of resting cells. Existence of the activated kinase was confirmed by showing that extracts of IL-1-stimulated cells phosphorylated purified homogeneous hsp27 at a greater rate than those of resting cells. The kinase activity was maximal in cells stimulated with IL-1 for 5 to 10 min, but had declined to the resting level after stimulation for 40 min. Membrane and cytosolic fractions prepared from cell homogenates both contained hsp27 kinase, but the IL-1-dependent increase was associated with the cytosolic fraction. TNF-stimulated cells also contained increased hsp27 kinase activity in the cytosol. The evidence suggests that the cytosolic hsp27 kinase is responsible for the changes in hsp27 phosphorylation induced by the cytokines in intact cells.  相似文献   

4.
Protein kinase and its endogenous substrates in coated vesicles   总被引:3,自引:0,他引:3  
Coated vesicles prepared from bovine brains contained a protein kinase activity which catalyzed the phosphorylation of endogenous structural proteins, Mr 150 000, 120 000, 48 000 and 32 000. An endogenous protein, Mr 48 000 was most strongly phosphorylated by this kinase. This protein kinase also phosphorylated exogenous proteins, phosvitin intensely and casein slightly but not histone or protamine. The enzyme activity was independent of cyclic nucleotides or Ca2+/calmodulin. Mg2+ stimulated the kinase activity. Some divalent cations were substituted for Mg2+; the potency decreased in the order Mn2+, Mg2+, Co2+, Ca2+, Zn2+. Two separate subfractions, the outer coat and the inner vesicle (core), were prepared from coated vesicles by a urea treatment followed by sucrose density gradient centrifugation and dialysis. The kinase activity was found predominantly in the coat subfraction.  相似文献   

5.
Endogenous phosphorylation was studied with highly purified fractions of the plasma membrane and the endoplasmic reticulum of SV40-transformed mouse fibroblasts using [gamma-32P]ATP and [gamma-32P]GTP as precursors. With ATP maximum overall incorporation of 32P into both membrane fractions occurred at pH 7.8 in the presence of 10 mM MgCl2 after incubation for 1 min. GTP could be utilized only by the plasma membrane fraction showing maximum incorporation of 32P at pH 7.8 and 10 mM MgCl2 after incubation for 3 min. The pattern of phosphoproteins of the plasma membrane is represented by more than 15 proteins whereas the endoplasmic reticulum essentially contained only one phosphorylated component of 35 000 molecular weight. The comparison of ATP- and GTP-specific phosphorylation of the plasma membrane revealed GTP to be a less efficient precursor yielding a similar phosphoprotein pattern with one significant difference: the GTP-specific main component exhibited a molecular weight of about 100 000 and the ATP-specific main component a molecular weight of 110 000. The relative distribution of individual phosphoproteins in the pattern of the plasma membrane was dependent on pH but not on MgCl2 concentration or time of incubation. Increasing concentrations of plasma membrane protein altered the patterns of phosphoproteins dramatically: At high protein concentrations the ATP-specific main component (Mr = 110 000) was no more phosphorylated whereas with GTP the main component Mr = 100 000 was essentially the sole phosphorylated protein.  相似文献   

6.
Identification of the AraE transport protein of Escherichia coli.   总被引:4,自引:1,他引:3       下载免费PDF全文
1. Two arabinose-inducible proteins are detected in membrane preparations from strains of Escherichia coli containing arabinose-H+ (or fucose-H+) transport activity; one protein has an apparent subunit relative molecular mass (Mr) of 36 000-37 000 and the other has Mr 27 000. 2. An araE deletion mutant was isolated and characterized; it has lost arabinose-H+ symport activity and the arabinose-inducible protein of Mr 36 000, but not the protein of Mr 27 000. 3. An araE+ specialized transducing phage was characterized and used to re-introduce the araE+ gene into the deletion strain, a procedure that restores both arabinose-H+ symport activity and the protein of Mr 36,000. 4. N-Ethylmaleimide inhibits arabinose transport and partially inhibits arabinose-H+ symport activity. 5. N-Ethylmaleimide modifies an arabinose-inducible protein of Mr 36 000-38 000, and arabinose protects the protein against the reagent. 6. These observations identify an arabinose-transport protein of Escherichia coli as the product of the araE+ gene. 7. The protein was recognized as a single spot staining with Coomassie Blue after two-dimensional gel electrophoresis.  相似文献   

7.
Cytoskeletal preparation obtained from synaptosome fractions of rat cerebrum contained the activity of kinase C, which phosphorylated 17K Mr protein endogenous to the preparation. The kinase C activity associated with the synaptosome cytoskeletons is greater in the cerebellum and hippocampus than in the cerebrum. The enhancement rates of phosphorylation of the 17K Mr protein were 293%, 544%, and 526% in the Triton X-100-insoluble fractions of synaptosomes prepared from cerebral cortex, hippocampus, and cerebellum, respectively. The 17K Mr protein was distinct from myelin basic protein (MBP) for the following reasons: 1) The electrophoretic mobility of the protein was slightly smaller than that of major MBP of rat in the polyacrylamide gel of 10–20% linear gradient, and the protein was not contained in the purified rat myelin. 2) The isoelectric point of the protein was in neutral range, whereas that of MBP was in alkaline one. 3) The 17K Mr protein did not cross-react with anti-MBP antibody. The protein was shown to be a major substrate contained in the cytoskeletal preparation of synaptosome obtained from cerebrum except for contaminating MBP. Only serine residue of the 17K Mr protein was phosphorylated by the kinase C endogenous to the preparation. The results suggest strongly that the synaptic role of protein kinase C through phosphorylation of the 17K Mr protein.Abbreviations used EGTA ethyleneglycol-bis(-aminoethyl ether) - HEPES N-2-hydroxyethyl-piperazine-N-2-ethanesulfonic acid - MBP myelin basic protein - SDS sodium dodecyl sulfate - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - SPM synaptic plasma membrane  相似文献   

8.
Protein phosphorylation of quiescent human skin fibroblasts was analyzed following stimulation by epidermal growth factor, fibroblast growth factor, platelet-derived growth factor, serum, or 12-O-tetradecanoyl-phorbol-13-acetate. In mitogen-treated cells, a markedly increased phosphorylation of two Mr = 43,000 proteins and two Mr = 41,000 proteins was always detected by two-dimensional gel electrophoresis. More acidic forms were the dominant species and contained phosphotyrosine, phosphoserine, and phosphothreonine, while the basic forms contained phosphotyrosine and phosphoserine. The two Mr = 41,000 proteins were structurally related to each other. All mitogens seemed to stimulate the phosphorylation of each protein with the same site specificity. Induction of the same set of phosphoproteins was observed in mitogen-stimulated rat and mouse fibroblasts as well. These stimulated phosphorylations occurred rapidly, were maximal 5 min after exposure of cells to mitogens, and diminished gradually after 30 min. Mitogen-induced phosphorylation of these proteins was correlated to the extent of mitogen-stimulated DNA synthesis. In addition, such increased protein phosphorylation was not observed in exponentially growing cells, nor in Rous sarcoma virus-transformed rat cells. Thus, phosphorylation of the Mr = 43,000 and 41,000 proteins, which represents a common and specific response of cells to mitogens, could constitute an early event involved in the control of cellular G0----G1 transition.  相似文献   

9.
Homogenates, membranes and cytosol of rat and human platelets were found to contain cGMP-dependent protein kinase immunoreactivity. Specific cGMP-dependent protein kinase immunoreactivity was about 1.7 pmol protein kinase/mg protein for homogenates of human platelets and 0.7 pmol/mg for homogenates of rat platelets; the majority appeared to be associated with the membrane fraction. In membranes of platelets low concentrations of cAMP (0.5-2 microM) stimulated the phosphorylation of five major proteins with apparent relative molecular masses, Mr, of 240 000, 130 000, 50 000, 42 000 and 22 000 while low concentrations of cGMP (0.5-2 microM) stimulated the phosphorylation of three major proteins with apparent Mr of 130 000, 50 000 and 46 000. An affinity-purified antibody against the cGMP-dependent protein kinase was prepared which specifically inhibited the activity of cGMP-dependent protein kinase. In membranes of human platelets this affinity-purified antibody inhibited the cGMP-stimulated phosphorylation of the three proteins with Mr of 130 000, 50 000 and 46 000 while it had no effect on the cAMP-dependent and cyclic-nucleotide-independent protein phosphorylation. The results demonstrate that platelets contain a cGMP-dependent protein kinase and at least three specific substrates for this enzyme. Two of these substrates, the proteins with apparent molecular Mr of 130 000 and 50 000, are substrates for both cAMP- and cGMP-dependent protein kinase. The protein with apparent Mr of 130 000 appears to be closely related to an intrinsic plasma membrane protein of vascular smooth muscle cells which is a substrate for a membrane-associated cGMP-dependent protein kinase. Therefore, cGMP-dependent protein kinase and cGMP-regulated phosphoproteins may mediate in platelets the intracellular effects of those hormones, vasodilators and drugs which elevate the level of cGMP and inhibit platelet aggregation.  相似文献   

10.
Summary Pancreatic islet cytosol contains a calcium-calmodulin dependent protein kinase that can mediate the phosphorylation of an endogenous protein that has an Mr of 57 000, as well as exogenous muscle pyruvate kinase (subunit Mr, 57000). EGTA and trifluoperazine decreased the phosphorylation. Alkaline inactivation of pyruvate kinase made it a better substrate for the kinase. As in rat islet cytosol, rabbit islet cytosol catalyzed the phosphorylation of a 57 000 Mr protein in the presence of calcium and calmodulin. This phosphoprotein was immunoprecipitated with anti-pyruvate kinase antibody. This is consistent with the idea that the 57 000 Mr phosphoprotein in islet cytosol is the subunit of pyruvate kinase. The paper following this paper shows that the kinetic and immunologic properties of the islet pyruvae kinase indicate it is the M2 isoenzyme and that its phosphorylation does not affect its catalytic activity.  相似文献   

11.
We have used digitonin permeabilization to study the mechanism of bombesin-induced activation of protein kinase C in Swiss 3T3 cells. Protein kinase C-mediated phosphorylations in permeabilized cells were identified using phorbol esters and diacylglycerols. Addition of phorbol 12,13-dibutyrate (PDBu) in the presence of [gamma-32P]ATP and digitonin caused a marked and rapid time- and dose-dependent increase in the phosphorylation of an Mr 80,000 cellular protein (maximum stimulation = 12.6 +/- 1.6-fold after 1 min, EC50 = 27 nM). 1-oleoyl-2-acetylglycerol substituted for PDBu in stimulating the phosphorylation of Mr 80,000 protein (EC50 = 13 microM). Bombesin also caused a striking increase in the phosphorylation of Mr 80,000 protein with a time course similar to that observed with PDBu. This phosphorylation was mimicked by mammalian bombesin-like peptides and blocked by the bombesin antagonists [D-Arg1,D-Phe5,D-Trp7,9,Leu11]substance P and [Leu13 psi (CH2NH)Leu14]bombesin. Down-regulation of protein kinase C in intact cells by prolonged exposure to PDBu prevented Mr 80,000 protein phosphorylation upon subsequent bombesin addition in digitonin-permeabilized cells. Comigration on one- and two-dimensional gel electrophoresis and phosphopeptide mapping confirmed that the Mr 80,000 protein phosphorylated in permeabilized cells was indistinguishable from the Mr 80,000 protein which is the major protein kinase C substrate in intact cells. The GDP analogue guanosine-5'-O-(2-thiodiphosphate) (GDP beta S) caused a 70% inhibition of the bombesin-induced phosphorylation of Mr 80,000 protein but had no effect on the phosphorylation induced by PDBu. Bombesin stimulated Mr 80,000 protein phosphorylation in permeabilized cells in a dose-dependent manner (EC50 = 4 nM), and GDP beta S shifted the bombesin dose response curve to higher bombesin concentrations (EC50 = 14 nM). These results demonstrate for the first time a growth factor receptor-mediated activation of protein kinase C in permeabilized cells and provide functional evidence for the involvement of a G protein in the transmembrane signaling pathway that mediates the stimulation of protein kinase C by bombesin in Swiss 3T3 cells.  相似文献   

12.
Insulin in the presence of Mn2+ and [gamma 32P]ATP promoted the phosphorylation of two proteins of Mr 95 000 and Mr 210 000 in detergent extracts of rat liver microsomes. The Mr 210 000 protein was identified as a component od the insulin receptor by immunoprecipitation. It also bound [125I]insulin specifically, was phosphorylated largely on a tyrosine residue and could not be cleaved to smaller subunits under extreme reducing conditions. The Mr 210 000 protein appears to be a component of a sub-population of liver membrane insulin receptors in which insulin-binding and insulin-stimulated tyrosine kinase phosphorylation site(s) reside in a single polypeptide chain.  相似文献   

13.
Cardiac sarcolemma was purified from canine ventricles. Enrichment of the sarcolemmal membranes was demonstrated by the high (Na+ + K+)-ATPase activity of 28.0 +/- 1.5 mumol Pi/mg protein per h and the high concentration of muscarinic receptors with the Bmax of 8.2 +/- 2.5 pmol/mg protein as determined by [3H]QNB binding. The purified sarcolemma also contains significant levels of a membrane-bound Ca2+ and phospholipid-dependent protein kinase (protein kinase C). To elucidate the protein kinase C activity in sarcolemma, a prior incubation of the membranes with EGTA and Triton X-100 was necessary. The specific activity of protein kinase C was found to be 131.4 pmol Pi/mg per min, in the presence of 6.25 micrograms phosphatidylserine and 0.5 mM CaCl2. Treatment of sarcolemma with 12-O-tetradecanoylphorbol 13-acetate (TPA) and phorbol 12,13-dibutyrate (PBu2) resulted in a concentration-dependent activation of protein kinase C activity. The effect of TPA and PBu2 on protein kinase C in sarcolemma was independent of exogenous Ca2+ and phosphatidylserine. Polymyxin B inhibited phorbol-ester-induced activation of protein kinase C activity. The distribution of protein kinase C in the cytosolic fraction was also examined. The specific activity of the kinase in the cytosolic fraction was 59.7 pmol Pi/mg per min. However, the total protein kinase C activity in the cytosol was 213500 pmol Pi/min, compared to that of 1025 pmol Pi/min in the sarcolemma isolated from approx. 100 g of canine ventricular muscle. Several endogenous proteins in cardiac sarcolemma were phosphorylated in the presence of Ca2+ and phosphatidylserine. The major substrates for protein kinase C were proteins of Mr 94 000, 87 000, 78 000, 51 000, 46 000, 11 500 and 10 000. Most of these substrate proteins have not been identified before. Other proteins of Mr 38 000, 31 000 and 15 000 were markedly phosphorylated in the presence of Ca2+ only. Phosphorylation of phospholamban (Mr 27 000 and 11 000) was also stimulated in the presence of Ca2+ and phosphatidylserine, but the low Mr form of phospholamban was distinct from two other low Mr substrate proteins for protein kinase C. Polymyxin B was more selective in inhibiting the protein kinase C dependent phosphorylation. On the other hand, trifluoperazine selectively inhibited the phosphorylation of phospholamban and Mr 15 000 protein. Although the exact function of this kinase is unknown, based on these observations, we believe that protein kinase C in the cardiac sarcolemma may play an important role in the cell-surface-signal regulated cardiac function.  相似文献   

14.
A Molla  J G Demaille 《Biochemistry》1986,25(11):3415-3424
Phospholamban, the cardiac sarcoplasmic reticulum proteolipid, is phosphorylated by cAMP-dependent protein kinase, by Ca2+/phospholipid-dependent protein kinase, and by an endogenous Ca2+/calmodulin-dependent protein kinase, the identity of which remains to be defined. The aim of this study was therefore to characterize the latter kinase, called phospholamban kinase. Phospholamban kinase was purified approximately 42-fold with a yield of 11%. The purified fraction exhibits a specific activity of 6.5 nmol of phosphate incorporated into exogenous phospholamban per minute per milligram of protein. Phospholamban kinase appears to be a high molecular weight enzyme and presents a broad substrate specificity, synapsin-1, glycogen synthase, and smooth muscle myosin regulatory light chain being the best substrates. Phospholamban kinase phosphorylates synapsin-1 on a Mr 30 000 peptide. The enzyme exhibits an optimum pH of 8.6, a Km for ATP of 9 microM, and a requirement for Mg2+ ions. These data suggest that phospholamban kinase might be an isoenzyme of the multifunctional Ca2+/calmodulin-dependent protein kinase. Consequently we have searched for Mr 50 000-60 000 phosphorylatable subunits among cardiac sarcoplasmic reticulum proteins. A Mr 56 000 protein was found to be phosphorylated in the presence of Ca2+/calmodulin. Such phosphorylation alters the electrophoretic migration velocity of the protein. In addition, this protein that binds calmodulin was always found to be present in fractions containing phospholamban kinase activity. This Mr 56 000 protein is therefore a good candidate for being a subunit of phospholamban kinase. However, the Mr 56 000 calmodulin-binding protein and the Mr 53 000 intrinsic glycoprotein which binds ATP are two distinct entities.  相似文献   

15.
beta-N-Acetylhexosaminidase from boar epididymis was separated into two forms, A and B, on DEAE-cellulose. Both these forms were excluded from Sepharose S-200 and had apparent Mr values of 510 000 on gradient gel electrophoresis under non-denaturing conditions. Affinity chromatography on 2-acetamido-N-(6-aminohexanoyl)-2-deoxy-beta-D-glucopyranosylam ine coupled to CNBr-activated Sepharose 4B was used to separate and purify beta-N-acetylhexosaminidases A and B that had specific activities of 115 and 380 mumol/min per mg of protein respectively. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of denatured beta-N-acetylhexosaminidase A gave a single major component of Mr 67 000. beta-N-Acetylhexosaminidase B also had this component, and in addition had polypeptides of Mr 29 000 and 26 000. All these polypeptides were glycosylated. Antiserum to the B form precipitated form A from solution and reacted with the 67 000-Mr component or form A after electrophoretic transfer from sodium dodecyl sulphate/polyacrylamide gels to nitrocellulose sheets. The 67 000-Mr components of forms A and B yielded identical peptide maps when digested with Staphylococcus aureus V8 proteinase, and the 29 000-Mr and 26 000-Mr components in form B may be related to the 67 000-Mr polypeptide.  相似文献   

16.
The main sulphated proteins secreted by rat mammary gland tissue have Mr of approximately 32 000, 27 000 and 25 000 Da. In addition, there are high Mr components which have a diffuse electrophoretic mobility (Mr > 200 000) and most likely corresponded to proteoglycans. The sulphate groups in the proteins with discrete Mr are most likely all linked to carbohydrates. These sulphated molecules were partially purified and identified to isoforms of rat alpha-lactalbumin for the 25-27 kDa bands and to kappa-casein for the 32 kDa band. This pattern of protein sulphation is, as far as we know, quite specific to rat mammary epithelial cells.  相似文献   

17.
The membrane-bound protein kinase activity in plasma membranes (PM) and sarcoplasmic reticulum (SR) of rabbit myometrium was revealed, which catalyzes the synthesis of protein phosphoester products. cAMP had no effect on the phosphorylation of membrane substrates by soluble protein kinases I and II as well as by the membrane-bound enzyme of SR. At the same time, cAMP (10(-8) stimulated by 200% the phosphorylation of sarcolemmal components at functional rest (FR). In preparations obtained from pregnant animals, cAMP (10(-8) and 10(-5) M) stimulated the phosphorylation of PM 7- and 3-fold, respectively. cGMP had no effect on the phosphorylation of PM and SR proteins at FR. At 10(-5) and 10(-8) M, cGMP stimulated endogenous phosphorylation of PM and SR 7- and 4-fold, respectively. In pregnancy, the degree of endogenous phosphorylation of PM and SR increased by 70% and 260% as compared to that at FR; the activity of soluble protein kinases decreased two times under these conditions. At FR, the sarcolemmal proteins with Mr 35 000, 57 000, 89 000 and 174 000 underwent phosphorylation. The phosphorylation of the proteins with Mr 35 000 and 57 000 was cAMP-dependent. In pregnant animals sarcolemma, the phosphorylation affected the proteins with Mr 47 000, 57 000 and 174 000 and was cAMP-dependent for the former two proteins and cGMP-dependent for the latter protein. At FR, two SR proteins with Mr 47 000 and 168 000, while in pregnant animals the proteins with Mr 47 000, 132 000 and 168 000 were phosphorylatable.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
S L Pelech  L Meijer  E G Krebs 《Biochemistry》1987,26(24):7960-7968
DEAE-Sephacel chromatography of cytosolic extracts from sea star oocytes resolved at least two distinct peaks of maturation-activated protein kinase activity, each of which catalyzed the phosphorylation of histone H1, ribosomal protein S6, and Arg-Arg-Leu-Ser-Ser-Leu-Arg-Ala (RRLSSLRA), a synthetic peptide based on the sequence of a phosphorylation site in the latter protein. The first peak (elution conductivity approximately equal to 6 mmho) contained the major activated kinase with respect to the phosphorylation of histone H1, and the second peak (elution conductivity approximately equal to 10.5 mmho) contained the major activated kinase with respect to the phosphorylation of S6 and RRLSSLRA. These kinase activities were barely detectable in extracts from immature oocytes. The major stimulated histone H1 kinase exhibited an apparent Mr of approximately 90 000 on Sephacryl S-300 but eluted from TSK-400 with an apparent Mr of approximately 10 000. After DEAE-Sephacel fractionation, this kinase was shown to utilize both ATP (apparent Km approximately equal to 45 microM) and GTP (apparent Km approximately equal to 10 microM), although the Vmax was 8-fold higher with ATP than with GTP. The enzyme phosphorylated histone H1 with an apparent Km approximately equal to 50 micrograms/mL. Its properties resembled those of the growth-associated histone kinase. The major stimulated RRLSSLRA kinase had an apparent Mr of approximately 84 000 on Sephacryl S-300 and approximately 40 000 on TSK-400. After DEAE-Sephacel chromatography, this kinase selectively utilized ATP (apparent Km approximately equal to 25 microM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Alterations in tubulin immunoreactivity; relation to secondary structure   总被引:2,自引:0,他引:2  
Blood sinusoidal plasma membrane subfractions were isolated from normal mouse liver in the presence of the proteinase inhibitors PhMeSO2F and iodoacetamide. They were purified from smooth microsomal and Golgi vesicle contaminants. The phosphorylation reaction was studied at 33 degrees C, in the presence of 2 mM MnCl2. Addition of epidermal growth factor (EGF) to the preparations stimulated 32P incorporation from [gamma-32P]ATP or [gamma-32P]GTP essentially into one 170 000 Mr protein. Some incorporation was observed in a minor 120 000-Mr component which appears to be a degradation product of the 170 000-Mr component. No EGF-dependent phosphorylation of other membrane proteins or various exogenous proteins could be detected in vitro. The dephosphorylation of the 170 000-Mr component was observed after 4 min of incubation at 33 degrees C. This dephosphorylation reaction was inhibited by addition of 5 mM p-nitrophenyl phosphate but not by addition of micromolar Zn2+, Be2+ or orthovanadate. The 170 000-Mr protein specifically bound 125I-labeled EGF and thus appeared to be the hepatic EGF receptor. The EGF stimulatable kinase activity considerably enhances incorporation of 32P into tyrosine residues of the 170 000-Mr EGF receptor at 33 degrees C. Tryptic peptide maps of the 32P-labeled 170 000-Mr protein revealed a multiplicity of phosphorylated sites. Seven 32P-labeled phosphopeptides were observed after EGF stimulation, three of them being largely prominent. Tryptic peptide maps of the 170 000-Mr protein after it was covalently linked to 125I-labeled EGF showed only one 125I-labeled peptide, the migration of which appeared different from that of 32P-labeled phosphopeptides. These findings were confirmed by V8 protease unidimensional peptide mapping of the 170 000-Mr protein, labeled with 32P or 125I-EGF.  相似文献   

20.
Calmodulin-stimulated protein kinase activity from rat pancreas   总被引:8,自引:1,他引:7       下载免费PDF全文
Previous work from our laboratory has demonstrated that neurohumoral stimulation of the exocrine pancreas is associated with the phosphorylation of the Mr 29,000 ribosomal protein S6. In a cell-free system using pancreatic postmicrosomal supernatant as the kinase donor, we found that the following co-factors stimulate the phosphorylation of the Mr 29,000 ribosomal protein: calcium with calmodulin, calcium with phosphatidyl serine, and cAMP. These findings suggest that the pancreas contains a calcium-calmodulin-dependent protein kinase (CaM-PK) that can phosphorylate the Mr 29,000 ribosomal protein. A CaM-PK activity was partially purified sequentially by ion exchange, gel filtration, and calmodulin-affinity chromatography. Phosphorylation of the Mr 29,000 ribosomal protein by the partially purified CaM-PK was dependent on the presence of both calcium and calmodulin and not on the other co- factors. The CaM-PK fraction contained a phosphoprotein of Mr 51,000 whose phosphorylation was also dependent on calcium and calmodulin. When 125I-calmodulin-binding proteins from the CaM-PK fraction were identified using electrophoretic transfers of SDS-polyacrylamide gels, a single Mr 51,000 protein was labeled. The preparation enriched in CaM- PK activity contained an Mr 51,000 protein that underwent phosphorylation in a calcium-calmodulin-dependent manner and an Mr 51,000 calmodulin-binding protein. It is therefore possible that the CaM-PK may comprise a calmodulin-binding phosphoprotein component of Mr 51,000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号