首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The lactose operon from Lactobacillus casei is regulated by very tight glucose repression and substrate induction mechanisms, which made it a tempting candidate system for the expression of foreign genes or metabolic engineering. An integrative vector was constructed, allowing stable gene insertion in the chromosomal lactose operon of L. casei. This vector was based on the nonreplicative plasmid pRV300 and contained two DNA fragments corresponding to the 3' end of lacG and the complete lacF gene. Four unique restriction sites were created, as well as a ribosome binding site that would allow the cloning and expression of new genes between these two fragments. Then, integration of the cloned genes into the lactose operon of L. casei could be achieved via homologous recombination in a process that involved two selection steps, which yielded highly stable food-grade mutants. This procedure has been successfully used for the expression of the E. coli gusA gene and the L. lactis ilvBN genes in L. casei. Following the same expression pattern as that for the lactose genes, beta-glucuronidase activity and diacetyl production were repressed by glucose and induced by lactose. This integrative vector represents a useful tool for strain improvement in L. casei that could be applied to engineering fermentation processes or used for expression of genes for clinical and veterinary uses.  相似文献   

3.
Abstract A plasmid-based food-grade vector system was developed for Lactococcus lactis by exploiting the genes for lactose metabolism. L. lactis MGS267 is a plasmid-free strain containing the entire lactose operon as a chromosomal insertion. The lacF gene was deleted from this strain by a double cross-over homologous recombination event. The lacF -deficient strain produced a Lac phenotype on indicator agar. A cloned copy of the lacF gene expressed on a plasmid was capable of complementing the lacF -deficient strain resulting in a Lac+ phenotype. This stably maintained system fits the requirements of a self-selecting vector system and has the potential to be exploited in the food industry.  相似文献   

4.
5.
M Nardi  P Renault    V Monnet 《Journal of bacteriology》1997,179(13):4164-4171
The gene corresponding to the lactococcal oligopeptidase PepF1 (formerly PepF [V. Monnet, M. Nardi, A. Chopin, M.-C. Chopin, and J.-C. Gripon, J. Biol. Chem. 269:32070-32076, 1994]) is located on the lactose-proteinase plasmid of Lactococcus lactis subsp. cremoris NCDO763. Use of the pepF1 gene as a probe with different strains showed that pepF1 is present on the chromosome of Lactococcus lactis subsp. lactis IL1403, whereas there is a second, homologous gene, pepF2, on the chromosome of strain NCDO763. From hybridization, PCR amplification, and sequencing experiments, we deduced that (i) pepF1 and pepF2 exhibit 80% identity and encode two proteins which are 84% identical and (ii) pepF2 is included in an operon composed of three open reading frames and is transcribed from two promoters. The protein, encoded by the gene located downstream of pepF2, shows significant homology with methyltransferases. Analysis of the sequences flanking pepF1 and pepF2 indicates that only a part of the pepF2 operon is present on the plasmid of strain NCDO763, while the operon is intact on the chromosome of strain IL1403. Traces of several recombination events are visible on the lactose-proteinase plasmid. This suggests that the duplication of pepF occurred by recombination from the chromosome of an L. lactis subsp. lactis strain followed by gene transfer. We discuss the possible functions of PepF and the role of its amplification.  相似文献   

6.
The lactose operon from Lactobacillus casei is regulated by very tight glucose repression and substrate induction mechanisms, which made it a tempting candidate system for the expression of foreign genes or metabolic engineering. An integrative vector was constructed, allowing stable gene insertion in the chromosomal lactose operon of L. casei. This vector was based on the nonreplicative plasmid pRV300 and contained two DNA fragments corresponding to the 3′ end of lacG and the complete lacF gene. Four unique restriction sites were created, as well as a ribosome binding site that would allow the cloning and expression of new genes between these two fragments. Then, integration of the cloned genes into the lactose operon of L. casei could be achieved via homologous recombination in a process that involved two selection steps, which yielded highly stable food-grade mutants. This procedure has been successfully used for the expression of the E. coli gusA gene and the L. lactis ilvBN genes in L. casei. Following the same expression pattern as that for the lactose genes, β-glucuronidase activity and diacetyl production were repressed by glucose and induced by lactose. This integrative vector represents a useful tool for strain improvement in L. casei that could be applied to engineering fermentation processes or used for expression of genes for clinical and veterinary uses.  相似文献   

7.
8.
The Lactococcus lactis subsp. lactis 712 lacG gene encoding phospho-beta-galactosidase was isolated from the lactose mini-plasmid pMG820 and cloned and expressed in Escherichia coli and L. lactis. The low phospho-beta-galactosidase activity in L. lactis transformed with high-copy-number plasmids containing the lacG gene contrasted with the high activity found in L. lactis containing the original, low-copy-number lactose plasmid pMG820, and indicated that the original lactose promoter was absent from the cloned DNA. In E. coli the phospho-beta-galactosidase could be overproduced using the strong inducible lambda PL promoter, which allowed a rapid purification of the active enzyme. The complete nucleotide sequence of the L. lactis lacG gene and its surrounding regions was determined. The deduced amino acid sequence was confirmed by comparison with the amino acid composition of the purified phospho-beta-galactosidase and its amino-terminal sequence. This also allowed the exact positioning of the lacG gene and identification of its characteristic Gram-positive translation initiation signals. The homologous expression data and the sequence organization of the L. lactis lacG gene indicate that the gene is organized into a large lactose operon which contains an intergenic promoter located in an inverted repeat immediately preceding the lacG gene. The organization and sequence of the L. lactis lacG gene were compared with those of the highly homologous lacG gene from Staphylococcus aureus. A remarkable bias for leucine codons was observed in the lacG genes of these two species. Heterogramic homology was observed between the deduced amino acid sequence of the L. lactis phospho-beta-galactosidase, that of the functionally analogous E. coli phospho-beta-glucosidase, and that of an Agrobacterium beta-glucosidase (cellobiase).  相似文献   

9.
Glucose-lactose diauxie in Escherichia coli   总被引:10,自引:3,他引:7  
Growth of Escherichia coli in medium containing glucose, at a concentration insufficient to support full growth, and containing lactose, is diauxic. A mutation in the gene, CR, which determines catabolite repression specific to the lac operon, was found to relieve glucose-lactose but not glucose-maltose diauxie. Furthermore, a high concentration of lactose was shown to overcome diauxie in a CR(+) strain. Studies on the induction of beta-galactosidase by lactose suggested that glucose inhibits induction by 10(-2)m lactose. Preinduction of the lac operon was found to overcome this effect. The ability of glucose to prevent expression of the lac operon by reducing the internal concentration of inducer as well as by catabolite repression is discussed.  相似文献   

10.
Lactose-negative (Lac-) mutants were isolated from a variant of Streptococcus lactis C2 in which the lactose plasmid had become integrated into the chromosome. These mutants retained their parental growth characteristics on galactose (Lac- Gal+). This is in contrast to the Lac- variants obtained when the lactose plasmid is lost from S. lactis, which results in a slower growth rate on galactose (Lac- Gal+). The Lac- Gal+ mutants were defective in [14C]thiomethyl-beta-D-galactopyranoside accumulation, suggesting a defect in the lactose phosphoenolpyruvate-dependent phosphotransferase system, but still possessed the ability to form galactose-1-phosphate and galactose-6-phosphate from galactose in a ratio similar to that observed from the parental strain. The Lac- Gald variant formed only galactose-1-phosphate. The results imply that galactose is not translocated via the lactose phosphoenolpyruvate-dependent phosphotransferase system, but rather by a specific galactose phosphoenolpyruvate-dependent phosphotransferase system for which the genetic locus is also found on the lactose plasmid in S. lactis.  相似文献   

11.
Xanthomonas campestris is not able to grow in lactose media. The lactose operon from Escherichia coli as part of a mini-Mu phage was integrated at random sites in the chromosome of this bacterium. Clones expressing (beta)-galactosidase were selected. The resulting strain X. campestris 204, is suitable for production of xanthan gum directly from lactose.  相似文献   

12.
A beta-galactosidase gene from Clostridium acetobutylicum NCIB 2951 was expressed after cloning into pSA3 and electroporation into derivatives of Lactococcus lactis subsp. lactis strains H1 and 7962. When the clostridial gene was introduced into a plasmid-free derivative of the starter-type Lact. lactis subsp. lactis strain H1, the resulting construct had high beta-galactosidase activity but utilized lactose only slightly faster than the recipient. beta-galactosidase activity in the construct decreased by over 50% if the 63 kb Lac plasmid pDI21 was also present with the beta-galactosidase gene. Growth rates of Lac+ H1 and 7962 derivatives were not affected after introduction of the clostridial beta-galactosidase, even though beta-galactosidase activity in a 7962 construct was more than double that of the wild-type strain. When pDI21 was electroporated into a plasmid-free variant of strain 7962, the recombinant had high phospho-beta-galactosidase activity and a growth rate equal to that of the H1 wild-type strain. The H1 plasmid-free strain grew slowly in T5 complex medium, utilized lactose and contained low phospho-beta-galactosidase activity. We suggest that beta-galactosidase expression can be regulated by the lactose phosphotransferase system-tagatose pathway and that Lact. lactis subsp. lactis strain H1 has an inefficient permease for lactose and contains chromosomally-encoded phospho-beta-galactosidase genes.  相似文献   

13.
14.
A β-galactosidase gene from Clostridium acetobutylicum NCIB 2951 was expressed after cloning into pSA3 and electroporation into derivatives of Lactococcus lactis subsp. lactis strains H1 and 7962. When the clostridial gene was introduced into a plasmid-free derivative of the starter-type Lact. lactis subsp. lactis strain H1, the resulting construct had high β-galactosidase activity but utilized lactose only slightly faster than the recipient. β-galactosidase activity in the construct decreased by over 50% if the 63 kb Lac plasmid pDI21 was also present with the β-galactosidase gene. Growth rates of Lac+ H1 and 7962 derivatives were not affected after introduction of the clostridial β-galactosidase, even though β-galactosidase activity in a 7962 construct was more than double that of the wild-type strain. When pDI21 was electroporated into a plasmid-free variant of strain 7962, the recombinant had high phospho-β-galactosidase activity and a growth rate equal to that of the H1 wild-type strain. The H1 plasmid-free strain grew slowly in T5 complex medium, utilized lactose and contained low phospho-β-galactosidase activity. We suggest that β-galactosidase expression can be regulated by the lactose phosphotransferase system-tagatose pathway and that Lact. lactis subsp. lactis strain H1 has an inefficient permease for lactose and contains chromosomally-encoded phospho-β-galactosidase genes.  相似文献   

15.
When Lactococcus lactis subsp. lactis LM0230 is transformed by the lactose plasmid (pSK11L) from Lactococcus lactis subsp. cremoris SK11, variants with pSK11L in the integrated state can be derived (J. M. Feirtag, J. P. Petzel, E. Pasalodos, K. A. Baldwin, and L. L. McKay, Appl. Environ. Microbiol. 57:539-548, 1991). In the present study, a 1.65-kb XbaI-XhoI fragment of pSK11L was subcloned for use as a probe in Southern hybridization analyses of the mechanism of integration, which was shown to proceed via a Campbell-like, single-crossover event. Furthermore, the presence of the XbaI-XhoI fragment in a nonreplicating vector facilitated the stable, Rec-dependent integration of the vector into the chromosome of L. lactis subsp. lactis LM0230 and other lactococci. DNA sequence analysis of the fragment revealed an open reading frame of 885 bp with lactococcal expression sequences. The putative gene did not have significant homology with other genes in computer data bases. The XbaI-XhoI fragment is a naturally occurring piece of lactococcal DNA that can be used as a recombinogenic cassette in the construction of integration vectors for the industrially important lactococci.  相似文献   

16.
When Lactococcus lactis subsp. lactis LM0230 is transformed by the lactose plasmid (pSK11L) from Lactococcus lactis subsp. cremoris SK11, variants with pSK11L in the integrated state can be derived (J. M. Feirtag, J. P. Petzel, E. Pasalodos, K. A. Baldwin, and L. L. McKay, Appl. Environ. Microbiol. 57:539-548, 1991). In the present study, a 1.65-kb XbaI-XhoI fragment of pSK11L was subcloned for use as a probe in Southern hybridization analyses of the mechanism of integration, which was shown to proceed via a Campbell-like, single-crossover event. Furthermore, the presence of the XbaI-XhoI fragment in a nonreplicating vector facilitated the stable, Rec-dependent integration of the vector into the chromosome of L. lactis subsp. lactis LM0230 and other lactococci. DNA sequence analysis of the fragment revealed an open reading frame of 885 bp with lactococcal expression sequences. The putative gene did not have significant homology with other genes in computer data bases. The XbaI-XhoI fragment is a naturally occurring piece of lactococcal DNA that can be used as a recombinogenic cassette in the construction of integration vectors for the industrially important lactococci.  相似文献   

17.
18.
A food-grade gene expression system in Lactococcus lactis was established by the combination of a vector containing the lacF gene as the selection marker and a strain WZ103 carrying an in-frame deletion of this gene in the chromosome as the host. The human glutathione S-transferase A1-1 (hGSTA1) and Cu/Zn superoxide dismutase (hSOD) genes were respectively cloned into a food-grade vector under the control of the lactococcal inducible promoter P(lacA). The resulting expression plasmids were separately introduced into the lactose-deficient (Lac(-)) host, and the lactose-utilizing (Lac(+)) transformants were directly selected on a chemically defined medium, using lactose as the sole carbon source. The successful food-grade expression of hGSTA1 and hSOD in the L. lactis WZ103 transformed with these plasmids were analyzed by Western blotting and enzymatic activity assay, respectively.  相似文献   

19.
The genes coding for the binding-protein-dependent lactose transport system and beta-galactosidase in Agrobacterium radiobacter strain AR50 were cloned and partially sequenced. A novel lac operon was identified which contains genes coding for a lactose-binding protein (lacE), two integral membrane proteins (lacF and lacG), an ATP-binding protein (lacK) and beta-galactosidase (lacZ). The operon is transcribed in the order lacEFGZK. The operon is controlled by an upstream regulatory region containing putative -35 and -10 promoter sites, an operator site, a CRP-binding site probably mediating catabolite repression by glucose and galactose, and a regulatory gene (lacl) encoding a repressor protein which mediates induction by lactose and other galactosides in wild-type A. radiobacter (but not in strain AR50, thus allowing constitutive expression of the lac operon). The derived amino acid sequences of the gene products indicate marked similarities with other binding-protein-dependent transport systems in bacteria.  相似文献   

20.
Modulation of gene expression made easy   总被引:2,自引:0,他引:2  
A new approach for modulating gene expression, based on randomization of promoter (spacer) sequences, was developed. The method was applied to chromosomal genes in Lactococcus lactis and shown to generate libraries of clones with broad ranges of expression levels of target genes. In one example, overexpression was achieved by introducing an additional gene copy into a phage attachment site on the chromosome. This resulted in a series of strains with phosphofructokinase activities from 1.4 to 11 times the wild-type activity level. In this example, the pfk gene was cloned upstream of a gusA gene encoding beta-glucuronidase, resulting in an operon structure in which both genes are transcribed from a common promoter. We show that there is a linear correlation between the expressions of the two genes, which facilitates screening for mutants with suitable enzyme activities. In a second example, we show that the method can be applied to modulating the expression of native genes on the chromosome. We constructed a series of strains in which the expression of the las operon, containing the genes pfk, pyk, and ldh, was modulated by integrating a truncated copy of the pfk gene. Importantly, the modulation affected the activities of all three enzymes to the same extent, and enzyme activities ranging from 0.5 to 3.5 times the wild-type level were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号