共查询到20条相似文献,搜索用时 15 毫秒
1.
The extent of destruction of insulin-secreting beta cells of the Islets of Langerhans was investigated in an animal model using oral administration of glutamic acid decarboxylase (GAD) isolated from Escherichia coli. The extent of lymphocytic infiltration of the pancreatic Islet cells and the severity of diabetes were significantly reduced by oral administration of GAD to rats 14 days before intraperitoneal injections of streptozotocin (STZ, 40 mg/kg body wt on 5 consecutive days). In addition, oral administration of GAD to rats 14 days before or 3 days after STZ treatment significantly (p <0.05) reduced the levels of GAD-specific antibodies and improved the in vitro proliferative response of splenocytes to concanavalin A (Con A). These data demonstrate that oral GAD administration probably generates active cellular mechanisms which suppress the disease and therefore raise the possibility of using E. coli GAD as a new means for the immunomodulation of autoimmune diabetes. 相似文献
2.
We have undertaken studies in humans and animals that aimed to obtain further information about the intake and excretion of boron (B) as well as its effects on markers of coronary heart disease. In humans, we have shown that the intake of B is 2.2 mg/d; its urinary excretion is 1.9 mg/d, and there appears to be little intraindividual variation. Supplementation with 10 mg of B/d resulted in the recovery of 84% of the dose in the urine and a significant increase in plasma estradiol concentration, but no effect on plasma lipoproteins. In rats, increasing the intake of B through the drinking water is reflected in the tissue concentrations, results in an increase in plasma testosterone and vitamin D, and results in a decrease in HDL cholesterol. It is clear that B has the potential to impact significantly on a number of metabolic processes. 相似文献
3.
4.
E V Granowitz R Porat J W Mier J P Pribble D M Stiles D C Bloedow M A Catalano S M Wolff C A Dinarello 《Cytokine》1992,4(5):353-360
A phase I study of human recombinant interleukin-1 receptor antagonist (IL-1ra) was conducted in healthy males between the ages of 18 and 30. Twenty-five volunteers received a single, 3 h continuous intravenous infusion of doses ranging between 1 mg/kg and 10 mg/kg IL-1ra. At 3 h into the infusion, plasma IL-1ra levels were 3.1 micrograms/ml and 29 micrograms/ml for the 1 mg/kg and 10 mg/kg doses, respectively. Post-infusion plasma IL-1ra levels declined rapidly, exhibiting an initial half-life of 21 min and a terminal half-life of 108 min. Clinical, hematological, biochemical, endocrinological and immunomodulatory effects were monitored over 72 h and compared to those of four subjects receiving a 3 h infusion of saline. There were no clinically significant differences between the drug and saline groups in symptoms, physical examinations, complete blood counts, mononuclear cell phenotypes, blood chemistry profiles, serum iron and serum cortisol levels. Peripheral blood mononuclear cells (PBMC) obtained after completion of the IL-1ra infusion synthesized significantly less interleukin 6 ex vivo than PBMC from saline-injected controls. These data suggest that transient blockade of interleukin 1 receptors is safe and does not significantly affect homeostasis. 相似文献
5.
P. H. Winocour 《BMJ (Clinical research ed.)》1997,314(7075):223-224
6.
Three studies of the role of 1,3-butanediol (BD) in human nutrition are described. Isocaloric substitution of BD for starch in the diets of volunteers caused less negative nitrogen balance. Ingestion of urea also decreased negative nitrogen balance, and the effect of BD plus urea in the diets seemed to be additive. No effects were detected on many blood parameters measured during and after the study, except that BD feeding decreased blood glucose significantly. 1,3-Butanediol was shown to be a nontoxic metabolite providing a source of calories for human nutrition. In a second study, ingestion of BD was shown to cause slight increases in serum insulin and growth hormone concentrations in the fasting state. We next studied the effects of prior ingestion of BD on serum insulin, growth hormone, glucose, and lipids during glucose tolerance tests. No significant differences in these parameters were noted when prior ingestion of sucrose or an isocaloric quantity of BD were compared. Possible mechanisms whereby ingestion of BD spared nitrogen and caused decreased blood glucose are discussed. 相似文献
7.
8.
Schneider HJ Wallaschofski H Völzke H Markus MR Doerr M Felix SB Nauck M Friedrich N 《PloS one》2012,7(3):e33084
Background
Biomarkers may help clinicians predict cardiovascular risk. We aimed to determine if the addition of endocrine, metabolic, and obesity-associated biomarkers to conventional risk factors improves the prediction of cardiovascular and all-cause mortality.Methodology/Principal Findings
In a population-based cohort study (the Study of Health in Pomerania) of 3,967 subjects (age 20–80 years) free of cardiovascular disease with a median follow-up of 10.0 years (38,638 person-years), we assessed the predictive value of conventional cardiovascular risk factors and the biomarkers thyrotropin; testosterone (in men only); insulin-like growth factor-1 (IGF-1); hemoglobin A1c (HbA1c); creatinine; high-sensitive C-reactive protein (hsCRP); fibrinogen; urinary albumin-to-creatinine ratio; and waist-to-height ratio (WHtR) on cardiovascular and all-cause death.During follow-up, we observed 339 all-cause including 103 cardiovascular deaths. In Cox regression models with conventional risk factors, the following biomarkers were retained as significant predictors of cardiovascular death after backward elimination: HbA1c, IGF-1, and hsCRP. IGF-1 and hsCRP were retained as significant predictors of all-cause death.For cardiovascular death, adding these biomarkers to the conventional risk factors changed the C-statistic from 0.898 to 0.910 (p = 0.02). The net reclassification improvement was 10.6%. For all-cause death, the C-statistic changed from 0.849 to 0.853 (P = 0.09).Conclusions/Significance
HbA1c, IGF-1, and hsCRP predict cardiovascular death independently of conventional cardiovascular risk factors. These easily assessed endocrine and metabolic biomarkers might improve the ability to predict cardiovascular death. 相似文献9.
Cardiovascular, metabolic and endocrine effects of chemical sympathectomy and of adrenal demedullation in fetal sheep 总被引:1,自引:0,他引:1
C T Jones M M Roebuck D W Walker H Lagercrantz B M Johnston 《Journal of developmental physiology》1987,9(4):347-367
A procedure in fetal sheep for causing peripheral sympathectomy by regular intravascular guanethidine sulphate administration and for causing adrenal demedullation by intragland injection of acid formalin is reported. Demedullation substantially removed adrenaline from the fetal circulation, but has a small effect only on noradrenaline. Plasma noradrenaline levels were depressed by 50% when demedullated fetuses were also subject to peripheral sympathectomy by guanethidine sulphate treatment. This provides some evidence that the paraganglia in the sheep fetus contributes to resting plasma catecholamines. Furthermore the ability of adrenal demedullation to increase markedly this pool of extra-adrenal chromaffin tissue indicates that in the fetus adrenal activity regulates the growth of these para-aortic bodies. In response to sympathectomy plasma vasopressin concentrations rose substantially, whilst adrenal demedullation caused a small rise. Demedullation and sympathectomy depressed fetal plasma glucose and elevated plasma cortisol. In both sympathectomised and adrenal demedullated fetuses resting heart rate and blood pressure was not depressed. However in those with a depleted peripheral nervous system periods of cardiovascular instability were apparent after 2-3 days of treatment with guanethidine sulphate. Hence there were regular episodes where fetal blood pressure and heart rate fell sharply followed 60-90s later by very large increases in blood pressure sustained for up to 10 min and associated with substantial production of plasma vasopressin and catecholamines. These results show that fine cardiovascular control in the fetus requires an intact sympathetic system as the endocrine system is too slow responding to effectively maintain reflex vascular control. 相似文献
10.
Cryogenic storage is considered to be the most convenient method to maintain phenotypic and genetic stability of organisms. A cryopreservation technique based on encapsulation-drying of in vitro-produced arbuscular mycorrhizal fungi has been developed at the Glomeromycota In Vitro Collection. In this study, we investigated fungal morphology (i.e., number and size of spores, number of branched absorbing structures (BAS), hyphal length, and number of anastomosis per hyphal length), activity of acid phosphatase and alkaline phosphatase in extraradical hyphae, and variation in amplified fragment length polymorphism (AFLP) profiles of in vitro-produced isolates of five Rhizophagus species maintained by cryopreservation for 6 months at ?130 °C and compared to the same isolates preserved at 27 °C. Isolates were stable after 6 months cryopreservation. Comparing isolates, the number of BAS increased significantly in one isolate, and hyphal length decreased significantly in another isolate. No other morphological variable was impacted by the mode of preservation. Phosphatase activities in extraradical hyphae and AFLP profiles were not influenced by cryopreservation. These findings indicate that cryopreservation at ?130 °C of encapsulated-dried and in vitro-produced Rhizophagus isolates (i.e., Rhizophagus irregularis, Rhizophagus fasciculatus, Rhizophagus diaphanous, and two undefined isolates) is a suitable alternative for their long-term preservation. 相似文献
11.
Junker BH Wuttke R Nunes-Nesi A Steinhauser D Schauer N Büssis D Willmitzer L Fernie AR 《Plant & cell physiology》2006,47(2):277-289
Modification of tuber carbohydrate metabolism by the tuber-specific expression of a yeast invertase targeted to the cytosol or apoplast has previously been demonstrated to have diverse effects on tuber growth and metabolism. In the current study, we generated plants exhibiting tuber-specific expression of the same enzyme targeted to the vacuole. Enzymatic analysis of the carbohydrate levels of the tuber revealed dramatic decreases in sucrose content coupled with large increases in the levels of glucose and hexose phosphates, but unaltered starch content in the transformants. Analysis of the key enzyme of glycolysis suggests that this pathway is down-regulated in the transformants. Despite these changes in metabolite pools and enzyme activity, few consistent changes could be observed in the estimated metabolic fluxes following incubation of isolated tuber discs in labelled glucose. The analysis of the relative levels of a wide range of metabolites using a gas chromatography-mass spectrometry (GC-MS)-based metabolite profiling method revealed large changes in the levels of fructose and decreases in a range of other sugars, but very few changes in the contents of organic and amino acids. This metabolic profile is remarkably consistent with that obtained following expression of the invertase in the apoplastic compartment, providing circumstantial evidence for the endocytotic trafficking of sugars within potato tuber parenchyma. Finally, the results of this study are compared with those from other plant species and the relative roles of the vacuolar isoform of the enzyme are contrasted. 相似文献
12.
13.
Larqué C Velasco M Navarro-Tableros V Duhne M Aguirre J Gutiérrez-Reyes G Moreno J Robles-Diaz G Hong E Hiriart M 《IUBMB life》2011,63(10):831-839
The twenty-first century arrived in the middle of a global epidemic of metabolic syndrome (MS) and type 2 diabetes mellitus (DM2). It is generally accepted that an excess of nutrients linked to a low physical activity triggers the problem. However, the molecular features that interact to develop the MS are not clear. In an effort to understand and control them, they have been extensively studied, but this goal has not been achieved yet. Nonhuman animal models have been used to explore diet and genetic factors in which experimental conditions are controlled. For example, only one factor in the diet, such as fats or carbohydrates can be modified to better understand a single change that would be impossible in humans. Most of the studies have been done in rodents. However, it is difficult to directly compare them, because experiments are different in more than one variable; genetic strains, amount, and the type of fat used in the diet and sex. Thus, the only possible criteria of comparison are the relevance of the observed changes. We review different animal models and add some original observations on short-term changes in metabolism and beta cells in our own model of adult Wistar rats that are not especially prone to get fat or develop DM2, treated with 20% sucrose in drinking water. One early change observed in pancreatic beta cells is the increase in GLUT2 expression that is located to the membrane of the cells. This change could partially explain the presence of insulin hypersecretion and hyperinsulinemia in these rats. Understanding early changes that lead to MS and in time to pancreatic islet exhaustion is an important biomedical problem that may contribute to learn how to prevent or even reverse MS, before developing DM2. 相似文献
14.
The prevalence of cardiometabolic disease has reached an exponential rate of rise over the last decades owing to high fat/high caloric diet intake and satiety life style. Although the presence of dyslipidemia, insulin resistance, hypertension and obesity mainly contributes to the increased incidence of cardiometabolic diseases, population-based, clinical and genetic studies have revealed a rather important role for inherited myopathies and endocrine disorders in the ever-rising metabolic anomalies. Inherited metabolic and endocrine diseases such as glycogen storage and lysosomal disorders have greatly contributed to the overall prevalence of cardiometabolic diseases. Recent evidence has demonstrated an essential role for proteotoxicity due to autophagy failure and/or dysregulation in the onset of inherited metabolic and endocrine disorders. Given the key role for autophagy in the degradation and removal of long-lived or injured proteins and organelles for the maintenance of cellular and organismal homeostasis, this mini-review will discuss the potential contribution of autophagy dysregulation in the pathogenesis of inherited myopathies and endocrine disorders, which greatly contribute to an overall rise in prevalence of cardiometabolic disorders. Molecular, clinical, and epidemiological aspects will be covered as well as the potential link between autophagy and metabolic anomalies thus target therapy may be engaged for these comorbidities. 相似文献
15.
Chao Yang Kechao Zhu Xiangwei Yuan Xianlong Zhang Yebin Qian Tao Cheng 《Journal of cellular and molecular medicine》2020,24(2):1553-1567
Wear particle‐stimulated inflammatory bone destruction and the consequent aseptic loosening remain the primary causes of artificial prosthesis failure and revision. Previous studies have demonstrated that curcumin has a protective effect on bone disorders and inflammatory diseases and can ameliorate polymethylmethacrylate‐induced osteolysis in vivo. However, the effect on immunomodulation and the definitive mechanism by which curcumin reduces the receptor activators of nuclear factor‐kappa B ligand (RANKL)‐stimulated osteoclast formation and prevents the activation of osteoclastic signalling pathways are unclear. In this work, the immunomodulation effect and anti‐osteoclastogenesis capacities exerted by curcumin on titanium nanoparticle‐stimulated macrophage polarization and on RANKL‐mediated osteoclast activation and differentiation in osteoclastic precursor cells in vitro were investigated. As expected, curcumin inhibited RANKL‐stimulated osteoclast maturation and formation and had an immunomodulatory effect on macrophage polarization in vitro. Furthermore, studies aimed to identify the potential molecular and cellular mechanisms revealed that this protective effect of curcumin on osteoclastogenesis occurred through the amelioration of the activation of Akt/NF‐κB/NFATc1 pathways. Additionally, an in vivo mouse calvarial bone destruction model further confirmed that curcumin ameliorated the severity of titanium nanoparticle‐stimulated bone loss and destruction. Our results conclusively indicated that curcumin, a major biologic component of Curcuma longa with anti‐inflammatory and immunomodulatory properties, may serve as a potential therapeutic agent for osteoclastic diseases. 相似文献
16.
17.
In mammals, parathyroid hormone (PTH) is a key regulator of extracellular calcium and inorganic phosphorus homeostasis. Although the parathyroid glands were thought to be the only source of PTH, extra-parathyroid PTH production in the thymus, which shares a common origin with parathyroids during organogenesis, has been proposed to provide an auxiliary source of PTH, resulting in a higher than expected survival rate for aparathyroid Gcm2
−/− mutants. However, the developmental ontogeny and cellular identity of these “thymic” PTH–expressing cells is unknown. We found that the lethality of aparathyroid Gcm2
−/− mutants was affected by genetic background without relation to serum PTH levels, suggesting a need to reconsider the physiological function of thymic PTH. We identified two sources of extra-parathyroid PTH in wild-type mice. Incomplete separation of the parathyroid and thymus organs during organogenesis resulted in misplaced, isolated parathyroid cells that were often attached to the thymus; this was the major source of thymic PTH in normal mice. Analysis of thymus and parathyroid organogenesis in human embryos showed a broadly similar result, indicating that these results may provide insight into human parathyroid development. In addition, medullary thymic epithelial cells (mTECs) express PTH in a Gcm2-independent manner that requires TEC differentiation and is consistent with expression as a self-antigen for negative selection. Genetic or surgical removal of the thymus indicated that thymus-derived PTH in Gcm2
−/− mutants did not provide auxiliary endocrine function. Our data show conclusively that the thymus does not serve as an auxiliary source of either serum PTH or parathyroid function. We further show that the normal process of parathyroid organogenesis in both mice and humans leads to the generation of multiple small parathyroid clusters in addition to the main parathyroid glands, that are the likely source of physiologically relevant “thymic PTH.” 相似文献
18.
19.
Martín MA Fernández E Pascual-Leone AM Escrivá F Alvarez C 《American journal of physiology. Endocrinology and metabolism》2004,286(4):E542-E550
We previously demonstrated that fetuses from undernourished pregnant rats exhibited increased beta-cell mass and hyperinsulinemia, whereas keeping food restriction until adult age caused reduced beta-cell mass, hypoinsulinemia, and decreased insulin secretion. Because these alterations can be related to insulin availability, we have now investigated early and long-term effects of protein calorie food restriction on insulin mRNA levels as well as the possible mechanisms that could modulate the endogenous insulin mRNA content. We used fetuses at 21.5 days of gestation proceeding from food-restricted rats during the last week of pregnancy and 70-day-old rats undernourished from day 14 of gestation until adult age and with respective controls. Insulin mRNA levels, glucose transporters, and total glycolysis and mitochondrial oxidative fluxes were evaluated. We additionally analyzed undernutrition effects on signals implicated in glucose-mediated insulin gene expression, especially pancreatic duodenal homeobox-1 (PDX-1), stress-activated protein kinase-2 (p38/SAPK2), and phosphatidylinositol 3-kinase. Undernourished fetuses showed increased insulin mRNA, oxidative glucose metabolism, and p38/SAPK2 levels, whereas undernutrition until adult age provoked a decrease in insulin gene expression, oxidative glucose metabolism, and PDX-1 levels. The results indicate that food restriction caused changes in insulin gene expression and content leading to alterations in glucose-stimulated insulin secretion. The molecular events, increased p38/SAPK2 levels in fetuses and decreased PDX-1 levels in adults, seem to be the responsible for the altered insulin mRNA expression. Moreover, because PDX-1 activation appears to be regulated by glucose-derived metabolite(s), the altered glucose oxidation caused by undernutrition could in some manner affect insulin mRNA expression. 相似文献
20.
Regine Landmann Reto Obrist Hubert Denz Christian Ludwig Heiner Frost Martin Wesp Christine Rordorf Harry Towbin Daniel Gygax Lajos Tarcsay Jean -Paul Obrecht 《Biotherapy》1993,7(1):1-12
The macrophage activator muramyl tripeptide-phosphatidyl ethanolamine (MTP-PE) was infused in liposomal form in 14 metastatic cancer patients (4 mg i.v. during 30 min twice weekly for 12 weeks). Clinical, pharmacokinetic and immunological parameters were studied before and 0.5, 2, 4, 24 and 72h after start of drug infusion in week 1, 4, 8 and 12. No tumor regressions were seen. Tumors progressed in 11 patients, in 4 of them within 2 months; 3 patients had stable disease. The intensity and frequency of side effects (fever and nausea) diminished from week 1 to 12. The rate of disappearance of total and free MTP-PE from blood was rapid and mean serum concentration-time curves remained unchanged throughout 12 study weeks. MTP-PE caused a marked increase of serum TNFa, IL-1 receptor antagonist (IL-1ra) and IL-6 in week 1, but not thereafter. In contrast, MTP-PE caused a persistent, 2-fold increase in serum neopterin and young forms of granulocytes (bands) during week 1 to 12. Before therapy, monocyte tumor cytotoxicity and in-vitro monocyte derived TNFa, IL-1 and IL-6 production were low in 9 patients (group L, <15%) and high in 5 patients (group H, >40%). Monocyte cytotoxicity and in-vitro cytokine production was transiently enhanced in week 1 in group L, it declined under therapy in group H. In conclusion, MTP-PE induced marked initial immunomodulation; the extent of the ex vivo monocyte cytokine and tumor cytotoxic response was dependent on pretherapy cell activity. A decrease of the cytokine and IL-1ra response during prolonged therapy contrasted with a persistent increase of neopterin and juvenile blood granulocytes. The long lasting biologic effects may be relevant to direct future clinical studies with liposomal MTP-PE in an adjuvant setting.Abbreviations MTP-PE
muramyl tripeptide-phosphatidyl ethanolamine
- IL-1ra
IL1 receptor antagonist
- TNFa
tumor necrosis factor alpha
- IL-1
interleukin-1 beta
- IL-6
interleukin 6 相似文献