首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The glutamine synthetase (GS)-glutamate synthase pathway is the primary route used by members of the family Rhizobiaceae to assimilate ammonia. Two forms of glutamine synthetase, GSI and GSII, are found in Rhizobium and Bradyrhizobium species. These are encoded by the glnA and glnII genes, respectively. Starting with a Rhizobium meliloti glnA mutant as the parent strain, we isolated mutants unable to grow on minimal medium with ammonia as the sole nitrogen source. For two auxotrophs that lacked any detectable GS activity, R. meliloti DNA of the mutated region was cloned and partially characterized. Lack of cross-hybridization indicated that the cloned regions were not closely linked to each other or to glnA; they therefore contain two independent genes needed for GSII synthesis or activity. One of the cloned regions was identified as glnII. An R. meliloti glnII mutant and an R. meliloti glnA glnII double mutant were constructed. Both formed effective nodules on alfalfa. This is unlike the B. japonicum-soybean symbiosis, in which at least one of these GS enzymes must be present for nitrogen-fixing nodules to develop. However, the R. meliloti double mutant was not a strict glutamine auxotroph, since it could grow on media that contained glutamate and ammonia, an observation that suggests that a third GS may be active in this species.  相似文献   

3.
A number of glutamine auxotrophs of Salmonella typhimurium were isolated and characterized genetically. Three of the mutations appear to be closely linked and are complemented by episomes carrying the glnA region of Escherichia coli. The lesions in these strains are approximately 20% linked by P1 transduction with a mutation in the rha gene, but are unlinked to ilv. Another mutation causing glutamine auxotrophy in strain JB674 is genetically distinct from the others. Strain JB674 grown in glucose medium containing ammonia as the nitrogen source has reduced levels of glutamine synthetase that is more adenylylated than in the parent strain, suggesting that the enzyme can not be deadenylylated normally. The lesion causing glutamine auxotrophy in JB674 lies in the region corresponding to the glnB and glnE genes affecting glutamine synthetase modification in Klebsiella areogenes. Four Gln+ revertants of JB674 have glutamine synthetase activities 4 to 6 fold higher than normal. One mutation causing this increased enzyme synthesis has been shown by three-factor crosses with the glnA mutations to lie near or within the glnA gene.  相似文献   

4.
5.
The structural gene for glutamine synthetase, glnA, from Amycolatopsis mediterranei U32 was cloned via screening a genomic library using the analog gene from Streptomyces coelicolor. The clone was functionally verified by complementing for glutamine requirement of an Escherichia coli glnA null mutant under the control of a lac promoter. Sequence analysis showed an open reading frame encoding a protein of 466 amino acid residues. The deduced amino acid sequence bears significant homologies to other bacterial type I glutamine synthetases, specifically, 71% and 72% identical to the enzymes of S. coelicolor and Mycobacterium tuberculosis, respectively. Disruption of this glnA gene in A. mediterranei U32 led to glutamine auxotrophy with no detectable glutamine synthetase activity in vivo. In contrast, the cloned glnA^+ gene can complement for both phenotypes in trans. It thus suggested that in A. mediterranei U32, the glnA gene encoding glutamine synthetase is uniquely responsible for in vivo glutamine synthesis under our laboratory defined physiological conditions.  相似文献   

6.
We isolated an F' episome of Escherichia coli carrying the glnA+ gene from K. aerogenes and an F' episome of E. coli carrying the glnA4 allele from K. aerogenes responsible for the constitutive synthesis of glutamine synthetase. Complementation tests with these episomes showed that the glnA4 mutation (leading to the constitutive synthesis of active glutamine synthetase) was in the gene identified by mutations glnA20, glnA51, and glnA5 as the structural gene for glutamine synthetase. By using these merodiploid strains we were able to show that the glnA51 mutation lead to the synthesis of a glutamine synthetase that lacked enzymatic activity but fully retained its regulatory properties. Finally, we discuss a model that explains the several phenotypes associated with mutations such as glnA4 located within the structural gene for glutamine synthetase leading to constitutive synthesis of active glutamine synthetase.  相似文献   

7.
8.
We have isolated three strains of Klebsiella aerogenes that failed to show repression of glutamine synthetase even when grown under the most repressing conditions for the wild-type strain. These mutant strains were selected as glutamine-independent derivatives of a strain that is merodiploid for the glnA region and contains a mutated glnF allele. The mutation responsible for the Gln+ phenotype in each strain was tightly linked to glnA, the structural gene for glutamine synthetase, and was dominant to the wild-type allele. These mutations are probably lesions in the control region of the glnA gene, since each mutation was cis-dominant for constitutive expression of the enzyme in hybrid merodiploid strains. Strains harboring this class of mutations were unable to produce a high level of glutamine synthetase unless they also contained an intact glnF gene, and unless cells were grown in derepressing medium. This study supports the idea that the glnA gene is regulated both positively and negatively, and that the deoxyribonucleic acid sites critical for positive control and negative control are functionally distinct.  相似文献   

9.
10.
We report the overexpression, purification, and properties of the regulatory protein, GlnR, for glutamine synthetase synthesis of Bacillus cereus. The protein was found to be a dimer with a molecular weight of approximately 30,000, and its subunit molecular weight was 15,000 in agreement with that (15,025) of deduced amino acid sequence of GlnR. The purified GlnR protein bound specifically to the promoter region of the glnRA operon of B. cereus and Bacillus subtilis. The binding of the GlnR protein to the DNA fragment was enhanced by the presence of glutamine synthetase, the product of glnA, of B. cereus or B. subtilis, although the affinity of the GlnR protein for DNA was not affected in the presence of glutamate, glutamine, Mg2+, Mn2+, or ammonia. These results indicate the existence of an interaction between GlnR and glutamine synthetase, and support the hypothesis that the regulation of glnA expression requires both GlnR protein and glutamine synthetase in Bacillus.  相似文献   

11.
12.
13.
14.
We have determined the complete nucleotide sequence of a 2.4 kb chromosomal EcoT22I-NspV fragment, containing the Bacillus cereus glnA gene (structural gene of glutamine synthetase). The deduced amino acid sequence indicates that the glutamine synthetase subunit consists of 444 amino acid residues (50,063 Da). Comparisons are made with reported amino acid sequences of glutamine synthetases from other bacteria. Upstrem of glnA we found an open reading frame of 129 codons (ORF129) preceded by the consensus sequence for a typical promoter. Maxicell experiments showed two polypeptide bands, with molecular weights in good agreement with that of glutamine synthetase and that of ORF129, in addition to vector-coded protein. It is possible that the product of this open reading frame upstream of glnA has a regulatory role in glutamine synthetase expression.  相似文献   

15.
Pantoea agglomerans strain Eh1087 produces the phenazine antibiotic D-alanylgriseoluteic acid. A glutamine auxotroph harboring an insertion in a putative glnA gene was obtained by transposon-mutagenesis of Eh1087 that produced less D-alanylgriseoluteic acid than the parental strain (strain Eh7.1). Cosmids encoding the Eh1087 glnA were isolated by their ability to complement the mutant for prototrophy. The role of the Eh1087 glnA locus was functionally confirmed by complementation of an Escherichia coli glnA mutant. Analysis of the nucleotide and deduced amino acid sequences of the Eh1087 glnA gene indicated a high degree of similarity to the glnA genes and glutamine synthetase enzymes of other Enterobacteriaceae. Isotopic labelling experiments with 15N-labelled ammonium sulfate demonstrated that wild-type Eh1087 incorporated 15N into griseoluteic acid more readily than the glnA mutant Eh7.1. We conclude that the 2 nitrogens in the phenazine nucleus originate from glutamine and the intracellular glutamine synthesized by Eh1087 is a source of the phenazine nucleus nitrogens even in glutamine-rich environments.  相似文献   

16.
The moderately halophilic, chloride-dependent bacterium Halobacillus halophilus produces glutamate and glutamine as main compatible solutes at external salinities of 1.0 to 1.5 M NaCl. The routes for the biosynthesis of these solutes and their regulation were examined. The genome contains two genes potentially encoding glutamate dehydrogenases and two genes for the small subunit of a glutamate synthase, but only one gene for the large subunit. However, the expression of these genes was not salt dependent, nor were the corresponding enzymatic activities detectable in cell extracts of cells grown at different salinities. In contrast, glutamine synthetase activity was readily detectable in H. halophilus. Induction of glutamine synthetase activity was strictly salt dependent and reached a maximum at 3.0 M NaCl; chloride stimulated the production of active enzyme by about 300%. Two potential genes encoding a glutamine synthetase, glnA1 and glnA2, were identified. The expression of glnA2 but not of glnA1 was increased up to fourfold in cells adapted to high salt, indicating that GlnA2 is the glutamine synthetase involved in the synthesis of the solutes glutamate and glutamine. Furthermore, expression of glnA2 was stimulated twofold by the presence of chloride ions. Chloride exerted an even more pronounced effect on the enzymatic activity of preformed enzyme: in the absence of chloride in the assay buffer, glutamine synthetase activity was decreased by as much as 90%. These data demonstrate for the first time a regulatory role of a component of common salt, chloride, in the biosynthesis of compatible solutes.  相似文献   

17.
The glnA gene from Synechocystis sp. strain PCC 6803 was cloned by hybridization with the glnA gene from Anabaena sp. strain PCC 7120, and a deletion-insertion mutation of the Synechocystis gene was generated in vitro. A strain derived from Synechocystis sp. strain PCC 6803 which contained integrated into the chromosome, in addition to its own glnA gene, the Anabaena glnA gene was constructed. From that strain, a Synechocystis sp. glnA mutant could be obtained by transformation with the inactivated Synechocystis glnA gene; this mutant grew by using Anabaena glutamine synthetase and was not a glutamine auxotroph. A Synechocystis sp. glnA mutant could not be obtained, however, from the wild-type Synechocystis sp. The Anabaena glutamine synthetase enzyme was subject to ammonium-promoted inactivation when expressed in the Synechocystis strain but not in the Anabaena strain itself.  相似文献   

18.
Glutamine synthetase gene of Bacillus subtilis   总被引:22,自引:0,他引:22  
The glutamine synthetase gene (glnA) of Bacillus subtilis was purified from a library of B. subtilis DNA cloned in phage lambda. By mapping the locations of previously identified mutations in the glnA locus it was possible to correlate the genetic and physical maps. Mutations known to affect expression of the glnA gene and other genes were mapped within the coding region for glutamine synthetase, as determined by measuring the sizes of truncated, immunologically cross-reacting polypeptides coded for by various sub-cloned regions of the glnA gene. When the entire B. subtilis glnA gene was present on a plasmid it was capable of directing synthesis in Escherichia coli of B. subtilis glutamine synthetase as judged by enzymatic activity, antigenicity, and ability to allow growth of a glutamine auxotroph. By use of the cloned B. subtilis glnA gene as a hybridization probe, it was shown that the known variability of glutamine synthetase specific activity during growth in various nitrogen sources is fully accounted for by changes in glnA mRNA levels.  相似文献   

19.
R K Koduri  D M Bedwell  J E Brenchley 《Gene》1980,11(3-4):227-237
The glnA gene, encoding glutamine synthetase in Salmonella typhimurium, has been cloned into the plasmid pBR322. One hybrid plasmid, pJB1, containing an 8.5 kb insert generated by a HindIII digest, was analyzed using eleven different restriction enzymes. Evidence that the region controlling glutamine synthetase expression remained on the insert was obtained by showing that the regulation is normal in cells carrying plasmids with the insert in the original and reversed orientation. Several new plasmids derived from pJB1 following SalI and EcoRI digestions were examined for their ability to complement a glnA202 mutation in order to locate the DNA segment needed for glutamine synthetase expression. The results show that cells containing plasmid pJB8, which has a 21 kb deletion, produce and regulate glutamine synthetase normally, whereas cells with a plasmid (pJB11) similar to pJB8, but lacking a 0.25 kb EcoRI fragment, do not exhibit glutamine synthetase activity. The analysis of proteins produced in minicells containing pJB8 and pJB11 show that they both produce a protein that migrates with the glutamine synthetase subunit. Because pJB11 makes an inactive protein of similar size to the glutamine synthetase subunit, the 0.25 kb deletion may encode only the C-terminus of this protein. Consistent with this finding is the presence of a strong RNA polymerase-binding site on pJB8 to the right of the 0.25 kb EcoRI that could correspond to a promoter near the N-terminus of the glnA gene.  相似文献   

20.
采用分子生物学的方法构建了含Bacillus subtilis glnA基因的重组菌株Escherichia coli DH5α(pMD19-glnA),用毛细管电泳和核磁共振对重组菌株的转化谷氨酸的产物进行定性鉴定,并进一步通过荧光定量RT-PCR测定谷氨酰胺合成酶基因(glnA)mRNA水平的相对表达量,最后用SDS-聚丙烯酰胺凝胶电泳对蛋白的相对表达情况进行了分析。结果表明重组菌株并没有增加谷氨酰胺的产量,而是明显增加了γ-氨基丁酸(GABA)的产量。实验表明重组菌株中的glnA基因可以正常转录,但是谷氨酰胺合成酶的蛋白表达量并没有增加。这种外源基因干扰大肠杆菌代谢的现象值得进一步研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号