首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Anatomic dead space (VD) is known to increase with end-inspiratory lung volume (EILV), and the gradient of the relationship has been proposed as an index of airway distensibility (DeltaVD). The aims of this study were to apply a rapid method for measuring DeltaVD and to determine whether it was affected by lung volume history. VD of 16 healthy and 16 mildly asthmatic subjects was measured at a number of known EILVs by using a tidal breathing, CO(2)-washout method. The effect of lung volume history was assessed by using three tidal breathing regimens: 1) three discrete EILVs (low/medium/high; LMH); 2) progressively decreasing EILVs from total lung capacity (TLC; TLC-RV); and 3) progressively increasing EILVs from residual volume (RV; RV-TLC). DeltaVD was lower in the asthmatic group for the LMH (25.3 +/- 2.24 vs. 21.2 +/- 1.66 ml/l, means +/- SE) and TLC-RV (24. 3 +/- 1.69 vs. 18.7 +/- 1.16 ml/l) regimens. There was a trend for a lower DeltaVD in the asthmatic group for the RV-TLC regimen (23.3 +/- 2.19 vs. 18.8 +/- 1.68 ml/l). There was no difference in DeltaVD between groups. In conclusion, mild asthmatic subjects have stiffer airways than normal subjects, and this is not obviously affected by lung volume history.  相似文献   

3.
4.
Influence of sleep on lung volume in asthmatic patients and normal subjects   总被引:3,自引:0,他引:3  
To assess the effect of sleep on functional residual capacity (FRC) in normal subjects and asthmatic patients, 10 adult subjects (5 asthmatic patients with nocturnal worsening, 5 normal controls) were monitored overnight in a horizontal volume-displacement body plethysmograph. With the use of a single inspiratory occlusion technique, we determined that when supine and awake, asthmatic patients were hyperinflated relative to normal controls (FRC = 3.46 +/- 0.18 and 2.95 +/- 0.13 liters, respectively; P less than 0.05). During sleep FRC decreased in both groups, but the decrease was significantly greater in asthmatic patients such that during rapid-eye-movement (REM) sleep FRC was equivalent between the asthmatic and normal groups (FRC = 2.46 +/- 0.23 and 2.45 +/- 0.09 liters, respectively). Specific pulmonary conductance decreased progressively and significantly in the asthmatic patients during the night, falling from 0.047 +/- 0.007 to 0.018 +/- 0.002 cmH2O-1.s-1 (P less than 0.01). There was a significant linear relationship through the night between FRC and pulmonary conductance in only two of the five asthmatic patients (r = 0.55 and 0.65, respectively). We conclude that 1) FRC falls during sleep in both normal subjects and asthmatic patients, 2) the hyperinflation observed in awake asthmatic patients is diminished during non-REM sleep and eliminated during REM sleep, and 3) sleep-associated reductions in FRC may contribute to but do not account for all the nocturnal increase in airflow resistance observed in asthmatic patients with nocturnal worsening.  相似文献   

5.
The purpose of the present study was to determine the responsiveness of airway vascular smooth muscle (AVSM) as assessed by airway mucosal blood flow (Qaw) to inhaled methoxamine (alpha(1)-agonist; 0.6-2.3 mg) and albuterol (beta(2)-agonist; 0.2-1.2 mg) in healthy [n = 11; forced expiratory volume in 1 s, 92 +/- 4 (SE) % of predicted] and asthmatic (n = 11, mean forced expiratory volume in 1 s, 81 +/- 5%) adults. Mean baseline values for Qaw were 43.8 +/- 0.7 and 54.3 +/- 0.8 microl. min(-1). ml(-1) of anatomic dead space in healthy and asthmatic subjects, respectively (P < 0.05). After methoxamine inhalation, the maximal mean change in Qaw was -13.5 +/- 1.0 microl. min(-1). ml(-1) in asthmatic and -7.1 +/- 2.1 microl. min(-1). ml(-1) in healthy subjects (P < 0.05). After albuterol, the mean maximal change in Qaw was 3.0 +/- 0.8 microl. min(-1). ml(-1) in asthmatic and 14.0 +/- 1.1 microl. min(-1). ml(-1) in healthy subjects (P < 0.05). These results demonstrate that the contractile response of AVSM to alpha(1)-adrenoceptor activation is enhanced and the dilator response of AVSM to beta(2)-adrenoceptor activation is blunted in asthmatic subjects.  相似文献   

6.
Beta-adrenergic refractoriness was assessed in human lymphocytes following in vivo administration of the beta-adrenergic agonist, metaproterenol, the phosphodiesterase inhibitor, theophylline, or both concomitantly, to normal and asthmatic subjects. In normal subjects both beta-adrenergic receptor number and isoproterenol stimulated cAMP response decreases during therapy with metaproterenol (59±3; 51±16% of control, respectively), theophylline (76±6; 78±16), or concommitant metaproterenol and theophylline (47±4; 69±13). The asthmatic subjects were of two types; one type responding to metaproterenol or theophylline therapy by down regulation of receptor number to zero or near zero values, and a second group of asthmatics insensitive to down regulation of receptor number. The results suggest that the induction of the refractory state is different between asthmatics and non-asthmatics, and that there may be a role for cAMP in the development of beta-adrenergic refractoriness, in vivo.  相似文献   

7.
Upright posture leads to rapid pooling of blood inthe lower extremities and shifts plasma fluid into surrounding tissues. This results in a decrease in plasma volume (PV) and inhemoconcentration. There has been no integrative evaluation ofconcomitant neurohumoral and PV shifts with upright posture in normalsubjects. We studied 10 healthy subjects after 3 days of stableNa+ andK+ intake. PV wasassessed by the Evans blue dye method and by changes in hematocrit.Norepinephrine (NE), NE spillover, epinephrine (Epi), vasopressin,plasma renin activity, aldosterone, osmolarity, and kidney responseexpressed by urine osmolality and byNa+ andK+ excretion of the subjects inthe supine and standing postures were all measured. Wefound that PV fell by 13% (375 ± 35 ml plasma) over ~14 min,after which time it remained relatively stable. There was a concomitantdecrease in systolic blood pressure and an increase in heart rate thatpeaked at the time of maximal decrease in PV. Plasma Epi and NEincreased rapidly to this point. Epi approached baseline by 20 min ofstanding. NE spillover increased 80% and clearance decreased 30% with30 min of standing. The increase in plasma renin activity correlatedwith an increase in aldosterone. Vasopressin increased progressively,but there was no change in plasma osmolarity. The kidney responseshowed a significant decrease inNa+ and an increase inK+ excretion with upright posture.We conclude that a cascade of neurohumoral events occurs with uprightposture, some of which particularly coincide with the decrease in PV.Plasma Epi levels may contribute to the increment in heart rate withmaintained upright posture.

  相似文献   

8.
Deep breaths taken before inhalation of methacholine attenuate the decrease in forced expiratory volume in 1 s and forced vital capacity in healthy but not in asthmatic subjects. We investigated whether this difference also exists by using measurements not preceded by full inflation, i.e., airway conductance, functional residual capacity, as well as flow and residual volume from partial forced expiration. We found that five deep breaths preceding a single dose of methacholine 1) transiently attenuated the decrements in forced expiratory volume in 1 s and forced vital capacity in healthy (n = 8) but not in mild asthmatic (n = 10) subjects and 2) increased the areas under the curve of changes in parameters not preceded by a full inflation over 40 min, during which further deep breaths were prohibited, without significant difference between healthy (n = 6) and mild asthmatic (n = 16) subjects. In conclusion, a series of deep breaths preceding methacholine inhalation significantly enhances bronchoconstrictor response similarly in mild asthmatic and healthy subjects but facilitates bronchodilatation on further full inflation in the latter.  相似文献   

9.
Examination of anterior cruciate ligament (ACL) anatomy is of great interest both in studying injury mechanisms and surgical reconstruction. However, after a typical acute ACL rupture it is not possible to measure the dimensions of the ACL itself due to concomitant or subsequent degeneration of the remaining ligamentous tissue. The contralateral ACL may be an appropriate surrogate for measuring anatomical dimensions, but it remains unknown whether side-to-side differences preclude using the contralateral as a valid surrogate for the ruptured ACL. This study examined whether the ACL volume is significantly different between the left and right knees of uninjured subjects. ACL volumes were calculated for the left and right sides of 28 individuals using a previously validated MRI-based method. The mean ACL volume was not significantly different (p=0.2331) between the two sides in this population. Side-to-side ACL volume was also well correlated (correlation=0.91, p<0.0001). The results of this study show that the volume of the contralateral ACL is a valid surrogate measure for a missing ACL on the injured side. This non-invasive, in vivo technique for measuring ACL volume may prove useful in future large-scale comprehensive studies of potential risk factors for ACL rupture, in quantifying potential loading effects on ACL size as a prophylactic measure against ACL rupture, and in the use of ACL volume as a screening tool for assessing risk of injury.  相似文献   

10.
A role of nitric oxide (NO) has been suggested in the airway response to exercise. However, it is unclear whether NO may act as a protective or a stimulatory factor. Therefore, we examined the role of NO in the airway response to exercise by using N-monomethyl-L-arginine (L-NMMA, an NO synthase inhibitor), L-arginine (the NO synthase substrate), or placebo as pretreatment to exercise challenge in 12 healthy nonsmoking, nonatopic subjects and 12 nonsmoking, atopic asthmatic patients in a double-blind, crossover study. Fifteen minutes after inhalation of L-NMMA (10 mg), L-arginine (375 mg), or placebo, standardized bicycle ergometry was performed for 6 min using dry air, while ventilation was kept constant. The forced expiratory volume in 1-s response was expressed as area under the time-response curve (AUC) over 30 min. In healthy subjects, there was no significant change in AUC between L-NMMA and placebo treatment [28.6 +/- 17.0 and 1.3 +/- 20.4 (SE) for placebo and L-NMMA, respectively, P = 0.2]. In the asthmatic group, L-NMMA and L-arginine induced significant changes in exhaled NO (P < 0.01) but had no significant effect on AUC compared with placebo (geometric mean +/- SE: -204.3 +/- 1.5, -186.9 +/- 1.4, and -318.1 +/- 1.2%. h for placebo, L-NMMA, and L-arginine, respectively, P > 0.2). However, there was a borderline significant difference in AUC between L-NMMA and L-arginine treatment (P = 0.052). We conclude that modulation of NO synthesis has no effect on the airway response to exercise in healthy subjects but that NO synthesis inhibition slightly attenuates exercise-induced bronchoconstriction compared with NO synthase substrate supplementation in asthma. These data suggest that the net effect of endogenous NO is not inhibitory during exercise-induced bronchoconstriction in asthma.  相似文献   

11.
We measured forced expiratory volume in 1 s (FEV1), respiratory impedance (Zrs) from 4 to 60 Hz, and a multibreath N2 washout (MBNW) in 6 normal, 10 asthmatic, and 5 cystic fibrosis (CF) subjects. The MBNW were characterized by the mean dilution number (MDN) derived by a moment analysis. The Zrs spectra were characterized by the minimum resistance (Rmin), the drop in resistance (Rdrop) from 4 Hz to Rmin, and the first resonance frequency (Fr1). Measurements were repeated after bronchodilation in three normal and all asthmatic subjects. Before bronchodilation, six of the asthmatic subjects showed close to normal FEV1. The Zrs in the normal subjects showed low Rmin (1.9 +/- 0.7 cmH2O.l-1.s), Rdrop (0.4 +/- 0.4), and Fr1 (10 +/- 2 Hz). Four of the mildly obstructed asthmatic subjects had normal Zrs but elevated MDNs (i.e., abnormal ventilation distribution). The other six asthmatic subjects had significantly elevated Rmin (4.1 +/- 0.8), Rdrop (6.3 +/- 5.8), and Fr1 (34 +/- 0.4 Hz) and elevated MDNs. The CF patients had elevated Zrs features and MDNs. After bronchodilation, no changes in FEV1, MDN, or Zrs occurred in the normal subjects. All asthmatic subjects showed increased FEV1 and decreased MDN, but the Zrs was unaltered in the four asthmatic subjects whose base-line Zrs was normal. For the other six asthmatic subjects, there were large decreases in the Rmin, Rdrop, and Fr1. Finally, there was a poor correlation between the MDN and the Zrs features but high correlation between the Zrs features alone. These results imply that significant nonuniform peripheral airway obstruction can exist such that ventilation distribution is abnormal but Zrs from 4 to 60 Hz is not. Abnormalities in Zrs from 4 to 60 Hz occur only after significant overall obstruction in the peripheral and more central airways. Combining Zrs and the MBNW may permit us to infer whether the disease is predominantly in the lung periphery or in the more central airways.  相似文献   

12.
13.
To better characterize the relationship between left ventricular volume response and improved ventricular ejection and output during supine exercise in normal subjects, 36 healthy asymptomatic volunteers (age 39 +/- 17 yr) were studied with radionuclide ventriculography during recumbent bicycle ergometry. Relative changes in left ventricular end-diastolic and end-systolic volume were measured at rest and during exercise by a modification of the radionuclide counts-based method that accounted for variability in stress blood pool counts. A biphasic response was noted in left ventricular end-diastolic volume with an initial increase in early exercise (8.5 +/- 11% at 200 kpm/min and 11 +/- 12% at 300 kpm/min) followed by a progressive and significant decline at peak exercise (-3.3 +/- 18% at 547 +/- 140 kpm/min; P < 0.05). There was substantial variation in end-diastolic volume response at peak exercise in the group as a whole, which could be more closely related to changes in end-systolic volume (r = 0.84, P < 0.0001) than in heart rate (r = -0.57, P < 0.01) or age (r = 0.36, P < 0.05) of the study subjects. Despite the decline in ventricular filling, systolic function appeared to improve dramatically at peak exercise (change in left ventricular ejection fraction 15.5 +/- 6.4, P < 0.0001). Although not directly related to increasing systolic ejection, end-diastolic volume was directly related to the percent change in stroke volume at peak exercise among the study subjects (r = 0.88, P < 0.0001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
Sleep and Biological Rhythms - Hippocampal volume loss has been described in several pathological conditions including sleep disorders. Whether differences in normal sleep are associated with...  相似文献   

16.
17.
A Jensen  H Atileh  B Suki  E P Ingenito  K R Lutchen 《Journal of applied physiology》2001,91(1):506-15; discussion 504-5
In 9 healthy and 14 asthmatic subjects before and after a standard bronchial challenge and a modified [deep inspiration (DI), inhibited] bronchial challenge and after albuterol, we tracked airway caliber by synthesizing a method to measure airway resistance (Raw; i.e., lung resistance at 8 Hz) in real time. We determined the minimum Raw achievable during a DI to total lung capacity and the subsequent dynamics of Raw after exhalation and resumption of tidal breathing. Results showed that even after a bronchial challenge healthy subjects can dilate airways maximally, and the dilation caused by a single DI takes several breaths to return to baseline. In contrast, at baseline, asthmatic subjects cannot maximally dilate their airways, and this worsens considerably postconstriction. Moreover, after a DI, the dilation that does occur in airway caliber in asthmatic subjects constricts back to baseline much faster (often after a single breath). After albuterol, asthmatic subjects could dilate airways much closer to levels of those of healthy subjects. These data suggest that the asthmatic smooth muscle resides in a stiffer biological state compared with the stimulated healthy smooth muscle, and inhibiting a DI in healthy subjects cannot mimic this.  相似文献   

18.
Stroke volume (SV) increases above the resting level during exercise and then declines at higher intensities of exercise in sedentary subjects. The purpose of this study was to determine whether an attenuation of the decline in SV at higher exercise intensities contributes to the increase in maximal cardiac output (Qmax) that occurs in response to endurance training. We studied six men and six women, 25 +/- 1 (SE) yr old, before and after 12 wk of endurance training (3 days/wk running for 40 min, 3 days/wk interval training). Cardiac output was measured at rest and during exercise at 50 and 100% of maximal O2 uptake (Vo2max) by the C2H2-rebreathing method. VO2max was increased by 19% (from 2.7 +/- 0.2 to 3.2 +/- 0.3 l/min, P less than 0.001) in response to the training program. Qmax was increased by 12% (from 18.1 +/- 1 to 20.2 +/- 1 l/min, P less than 0.01), SV at maximal exercise was increased by 16% (from 97 +/- 6 to 113 +/- 8 ml/beat, P less than 0.001) and maximal heart rate was decreased by 3% (from 185 +/- 2 to 180 +/- 2 beats/min, P less than 0.01) after training. The calculated arteriovenous O2 content difference at maximal exercise was increased by 7% (14.4 +/- 0.4 to 15.4 +/- 0.4 ml O2/100 ml blood) after training. Before training, SV at VO2max was 9% lower than during exercise at 50% VO2max (P less than 0.05). In contrast, after training, the decline in SV between 50 and 100% VO2max was only 2% (P = NS). Furthermore, SV was significantly higher (P less than 0.01) at 50% VO2max after training than it was before. Left ventricular hypertrophy was evident, as determined by two-dimensional echocardiography at the completion of training. The results indicate that in young healthy subjects the training-induced increase in Qmax is due in part to attenuation of the decrease in SV as exercise intensity is increased.  相似文献   

19.
Exercise Physiol. 52: 638-641, 1982) have shown in dogs that airway closure may induce rib cage deformation and nonhomogeneous alveolar pressure swings, and they have suggested that this could lead to thoracic gas volume (TGV) overestimation by body plethysmography. However, in humans the rib cage is less easy to distort than in dogs. In four healthy volunteers we measured TGV by plethysmography before (B) and during (D) the occlusion of the middle and lower right lobes by a balloon (attached to a double-lumen catheter) positioned in the intermediate right bronchus. Subjects were trained to perform panting maneuvers preferentially with intercostals and accessory muscles or the diaphragm. Five to eleven TGV measurements were made in each subject with each panting pattern B and D occlusion. Balloon inflation resulted in no change in TGV whether low [13.3 +/- 3.4 (SD) cmH2O] or high (46.8 +/- 8.4 cmH2O) transdiaphragmatic pressures (Pdi) were used: TGV 4.0 +/- 0.4 (B) vs. 4.0 +/- 0.4 liters (D) and 4.3 +/- 0.4 (B) vs. 4.3 +/- 0.4 liters (D) for low and high Pdi, respectively. Thus, in trained subjects performing maneuvers aimed to distort the rib cage, no pressure difference was observed between the occluded and the nonoccluded lung during panting against the closed shutter. We conclude that it is unlikely that the mechanism proposed by Brown et al. might explain errors in lung volume measurements by body plethysmography in humans.  相似文献   

20.
Frequency dependence and competition   总被引:3,自引:0,他引:3  
Intraspecific competition implies interaction among the individuals of a population, so natural selection on genotypic variation in characters related to the competition will necessarily be frequency dependent. Intraspecific antagonistic competition exhibits properties similar to other behavioural interactions between individuals. In exploitative intraspecific competition the interactions among individuals are less direct. Exploitation modifies the abundance of the various limiting resources according to the use of these resources by the individual members of the population. The amount of resource available to an individual is therefore a function of the phenotypes present in the population, through their density and frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号