首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rat liver triglyceride lipase   总被引:2,自引:0,他引:2  
  相似文献   

2.
Using affinity chromatography on heparin-Sepharose 4B, triglyceride lipase was isolated from rabbit liver tissue and purified. The specific activity of the enzyme isolated from the usual homogenate was equal to (3.8 +/- 1.2) x 10(3) mumol/hour/mg protein. After treatment of liver tissue homogenates with liquid nitrogen the enzyme activity increased severalfold as compared to the enzyme isolated from the usual homogenate. The dependences of the triglyceride lipase activity on the concentrations of the protein (enzyme), substrate (triglyceride), albumin (fatty acid acceptor) and pH were studied. The isolated form of liver triglyceride lipase was found to have two pH optima at 6.5 and 8.5.  相似文献   

3.
4.
Human mast cells (MCs) contain TG-rich cytoplasmic lipid droplets (LDs) with high arachidonic acid (AA) content. Here, we investigated the functional role of adipose TG lipase (ATGL) in TG hydrolysis and the ensuing release of AA as substrate for eicosanoid generation by activated human primary MCs in culture. Silencing of ATGL in MCs by siRNAs induced the accumulation of neutral lipids in LDs. IgE-dependent activation of MCs triggered the secretion of the two major eicosanoids, prostaglandin D2 (PGD2) and leukotriene C4 (LTC4). The immediate release of PGD2 from the activated MCs was solely dependent on cyclooxygenase (COX) 1, while during the delayed phase of lipid mediator production, the inducible COX-2 also contributed to its release. Importantly, when ATGL-silenced MCs were activated, the secretion of both PGD2 and LTC4 was significantly reduced. Interestingly, the inhibitory effect on the release of LTC4 was even more pronounced in ATGL-silenced MCs than in cytosolic phospholipase A2-silenced MCs. These data show that ATGL hydrolyzes AA-containing TGs present in human MC LDs and define ATGL as a novel regulator of the substrate availability of AA for eicosanoid generation upon MC activation.  相似文献   

5.
Human lipoprotein lipase and hepatic triglyceride lipase were purified to homogeneity from post-heparin plasma. These enzymes were purified 250,000- and 100,000-fold with yields of 27 +/- 15 and 19 +/- 6%, respectively. Molecular weight determination by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and reducing agents yielded Mr of 60,500 +/- 1,800 and 65,200 +/- 400, respectively, for lipoprotein lipase and hepatic triglyceride lipase. These lipase preparations were shown to be free of detectable antithrombin by measuring its activity and by probing of Western blots of lipases with a monospecific antibody against antithrombin. In additions, probing of Western blots with concanavalin A revealed no glycoproteins corresponding to the molecular weight of antithrombin. Four stable hybridoma-producing distinct monoclonal antibodies (mAb) to hepatic triglyceride lipase were isolated. The specificity of one mAb, HL3-5, was established by its ability to immunoprecipitate hepatic triglyceride lipase catalytic activity. Interaction of HL3-5 with this lipase did not inhibit catalytic activity. The three other mAb interacted with hepatic triglyceride lipase only after denaturation of the enzyme with detergents. The relatedness of these two enzymes was examined by comparing under the same conditions the thermal inactivation, the sensitivity to sulfhydryl and reducing agents, amino acid composition, and the mobility of peptide fragments generated by cyanogen bromide cleavage. The results of these studies strongly support the view that the two enzymes are different proteins. Immunological studies confirm this conclusion. Four mAb to hepatic triglyceride lipase did not interact with lipoprotein lipase in Western blots, enzyme-linked immunosorbent assay, and immunoprecipitation experiments. These immunological studies demonstrate that several epitopes of the hepatic triglyceride lipase protein moiety are not present in the lipoprotein lipase molecule.  相似文献   

6.
Adipose triglyceride lipase (ATGL) catalyzes the initial step in the lipid lipolysis process, hydrolyzing triglyceride (TG) to produce diacylglycerol (DG) and free fatty acids (FFA). In addition, ATGL regulates lipid storage and release in adipocyte cells. However, its role in mammary gland tissue remains unclear. To assess the role of the ATGL gene in the goat mammary gland, this study analyzed the tissue distribution and expression of key genes together with lipid accumulation after knockdown of the ATGL gene. The mRNA of ATGL was highly expressed in subcutaneous adipose tissue, the lung and the mammary gland with a significant increase in expression during the lactation period compared with the dry period of the mammary gland. Knockdown of the ATGL gene in goat mammary epithelial cells (GMECs) using siRNA resulted in a significant decrease in both ATGL mRNA and protein levels. Silencing of the ATGL gene markedly increased lipid droplet accumulation and intracellular TG concentration (P < 0.05), while it reduced FFA levels in GMECs (P < 0.05). Additionally, the expression of HSL for lipolysis, FABP3 for fatty acid transport, PPARα for fatty acid oxidation, ADFP, BTN1A1, and XDH for milk fat formation and secretion was down-regulated (P < 0.05) after knockdown of the ATGL gene, with increased expression of CD36 for fatty acid uptake (P < 0.05). In conclusion, these data suggest that the ATGL gene plays an important role in triglyceride lipolysis in GMECs and provides the first experimental evidence that ATGL may be involved in lipid metabolism during lactation.  相似文献   

7.
脂肪组织甘油三酯水解酶参与脂肪分解调控   总被引:2,自引:0,他引:2  
Xu C  Xu GH 《生理科学进展》2008,39(1):10-14
循环中游离脂肪酸增高与肥胖、胰岛素抵抗和2型糖尿病密切相关,其主要来源于脂肪细胞内甘油三酯水解.调控脂肪分解的脂肪酶主要包括激素敏感脂肪酶(hormone-sensitive lipase,HSL)和最近发现的脂肪组织甘油三酯水解酶(adipose triglyceride lipase,ATGL),后者主要分布在脂肪组织,特异水解甘油三酯为甘油二酯,其转录水平受多种因素调控.CGI-58(属于α/β水解酶家族蛋白),可以活化ATGL,基础条件下该蛋白和脂滴包被蛋白(perilipin)紧密结合于脂滴表面,蛋白激酶A激活刺激脂肪分解时,CGI-58与perilipin分离,进而活化ATGL.  相似文献   

8.
Evidence is presented that hepatic triglyceride lipase (H-TGL) and lipoprotein lipase (LPL), purified from human postheparin plasma, can each hydrolyze both glyceryl trioleate and palmitoyl-CoA. The average ratio of glyceryl trioleate/palmitoyl-CoA hydrolase activities, obtained with enzyme preparations from 15 human postheparin plasma samples was 1.30 (1.18-1.52) for H-TGL and 8.75 (7.45-10.25) for LPL. Albumin was identified as the serum cofactor required for the hydrolysis of palmitoyl-CoA by H-TGL. It protected this enzyme from inactivation by this substrate. In contrast, palmitoyl-CoA activated and protected LPL from denaturation by dilution and incubation at 25 degrees C. The effects of other detergents were investigated on glyceryl trioleate hydrolase activities of both enzymes. Sodium dodecyl sulfate (0.4 mM) and Trisoleate (0.4 mM), which also effectively activated and protected LPL against inactivation, had only moderate protective effect on H-TGL. Sodium dodecyl sulfate at a higher concentration (1 mM) produced little or no inhibition of LPL, while completely inactivating H-TGL. Conversely, sodium taurodeoxycholate (0.4 mM) protected and activated H-TGL, but had only moderate protective effect on LPL. Triton X-100 (0.1-0.8 mM) and egg lysolecithin (0.05-2 mM) also protected H-TGL, but not LPL. The very dissimilar effects of detergents on preparations on H-TGL and LPL may form the basis for the direct assay of each enzyme in the presence of the other.  相似文献   

9.
Hepatic triglyceride lipase was isolated from human post-heparin plasma by the method of Ehnholm et al. using modifications which increased the specific activity 12-fold to approximately 3,000 mumol of free fatty acid/h/mg of protein. Lipoprotein lipase with similar specific activity was prepared from the same plasma samples using heparin and concanavalin A affinity chromatography. The molecular weight of hepatic triglyceride lipase (69,000) was slightly greater than that of lipoprotein lipase (67,000) as determined by polyacrylamide electrophoresis in sodium dodecyl sulfate-containing buffers. These proteins had identical amino acid compositions, terminal amino acid residues, and tryptic peptide maps. However, the differences previously described regarding optima of pH and ionic strength and the requirement for apolipoprotein CII (only for lipoprotein lipase) were maintained in the highly purified state. It was found that both proteins contain approximately 8% carbohydrate. Antisera prepared in goats selectively precipitated each activity. Other antisera prepared in chickens reacted with both enzymes, suggesting a common antigenic determinant.  相似文献   

10.
Heparin-released triglyceride lipase from three sources, adipose tissue, liver, and postheparin plasma, was compared. Heparin-released triglyceride lipase from liver differed in several major respects from that in adipose tissue. These differences included response to inhibitors and to high density lipoprotein in the incubation media. Heparin-released triglyceride lipase from liver, when compared with that from adipose tissue, was relatively inactive against lipoprotein substrates. The triglyceride lipase from postheparin plasma exhibited properties more like those of liver. These studies raise the possibility that triglyceride lipase in postheparin plasma may be heterogeneous and that levels of the enzyme in postheparin plasma may not accurately reflect the capacity for clearance of triglyceride from the plasma.  相似文献   

11.
Lipid droplets (LDs) are multifunctional organelles that regulate energy storage and cellular homeostasis. The first step of triacylglycerol hydrolysis in LDs is catalyzed by adipose triglyceride lipase (ATGL), deficiency of which results in lethal cardiac steatosis. Although hormone-sensitive lipase (HSL) functions as a diacylglycerol lipase in the heart, we hypothesized that activation of HSL might compensate for ATGL deficiency. To test this hypothesis, we crossed ATGL-KO (AKO) mice and cardiac-specific HSL-overexpressing mice (cHSL) to establish homozygous AKO mice and AKO mice with cardiac-specific HSL overexpression (AKO+cHSL). We found that cardiac triacylglycerol content was 160-fold higher in AKO relative to Wt mice, whereas that of AKO+cHSL mice was comparable to the latter. In addition, AKO cardiac tissues exhibited reduced mRNA expression of PPARα-regulated genes and upregulation of genes involved in inflammation, fibrosis, and cardiac stress. In contrast, AKO+cHSL cardiac tissues exhibited expression levels similar to those observed in Wt mice. AKO cardiac tissues also exhibited macrophage infiltration, apoptosis, interstitial fibrosis, impaired systolic function, and marked increases in ceramide and diacylglycerol contents, whereas no such pathological alterations were observed in AKO+cHSL tissues. Furthermore, electron microscopy revealed considerable LDs, damaged mitochondria, and disrupted intercalated discs in AKO cardiomyocytes, none of which were noted in AKO+cHSL cardiomyocytes. Importantly, the life span of AKO+cHSL mice was comparable to that of Wt mice. HSL overexpression normalizes lipotoxic cardiomyopathy in AKO mice and the findings highlight the applicability of cardiac HSL activation as a therapeutic strategy for ATGL deficiency-associated lipotoxic cardiomyopathies.  相似文献   

12.
A simple radioactive assay for triglyceride lipase   总被引:5,自引:0,他引:5  
  相似文献   

13.
14.
Summary Enzymatic triglyceride synthesis from free fatty acid and glycerol is shown to be catalysed by both 1,3-specific lipase and non-specific lipase. This paper elucidates the mechanism of the reaction, showing that, with a 1,3-specific lipase, the 1,3-diolein enzymatically formed has to isomerise spontaneously to 1,2-diolein in presence of oleic acid, before being transformed to triolein by the enzyme.  相似文献   

15.
We have investigated the gene and protein expression of adipose triglyceride lipase (ATGL) and triglyceride (TG) lipase activity from subcutaneous and visceral adipose tissue of lean and obese subjects. Visceral and subcutaneous adipose tissue was obtained from 16 age-matched lean and obese subjects during abdominal surgery. Tissues were analyzed for mRNA expression of lipolytic enzymes by real-time quantitative PCR. ATGL protein content was assessed by Western blot and TG lipase activity by radiometric assessment. Subcutaneous and visceral adipose tissue of obese subjects had elevated mRNA expression of PNPLA2 (ATGL) and other lipases including PNPLA3, PNPLA4, CES1, and LYPLAL1 (P < 0.05). Surprisingly, ATGL protein expression and TG lipase activity were reduced in subcutaneous adipose tissue of obese subjects. Immunoprecipitation of ATGL reduced total TG lipase activity in adipose lysates by 70% in obese and 83% in lean subjects. No significant differences in the ATGL activator CGI-58 mRNA levels (ABHD5) were associated with obesity. These data demonstrate that ATGL is important for efficient TG lipase activity in humans. They also demonstrate reduced ATGL protein expression and TG lipase activity despite increased mRNA expression of ATGL and other novel lipolytic enzymes in obesity. The lack of correlation between ATGL protein content and in vitro TG lipase activity indicates that small decrements in ATGL protein expression are not responsible for the reduction in TG lipase activity observed here in obesity, and that posttranslational modifications may be important.  相似文献   

16.
Systemic knockout of adipose triglyceride lipase (ATGL), the pivotal enzyme of triglyceride lipolysis, results in a murine phenotype that is characterized by progredient cardiac steatosis and severe heart failure. Since cardiac and vascular dysfunction have been closely related in numerous studies we investigated endothelium-dependent and -independent vessel function of ATGL knockout mice. Aortic relaxation studies and Langendorff perfusion experiments of isolated hearts showed that ATGL knockout mice suffer from pronounced micro- and macrovascular endothelial dysfunction. Experiments with agonists directly targeting vascular smooth muscle cells revealed the functional integrity of the smooth muscle cell layer. Loss of vascular reactivity was restored ~ 50% upon treatment of ATGL knockout mice with the PPARα agonist Wy14,643, indicating that this phenomenon is partly a consequence of impaired cardiac contractility. Biochemical analysis revealed that aortic endothelial NO synthase expression and activity were significantly reduced in ATGL deficiency. Enzyme activity was fully restored in ATGL mice treated with the PPARα agonist. Biochemical analysis of perivascular adipose tissue demonstrated that ATGL knockout mice suffer from perivascular inflammatory oxidative stress which occurs independent of cardiac dysfunction and might contribute to vascular defects. Our results reveal a hitherto unrecognized link between disturbed lipid metabolism, obesity and cardiovascular disease.  相似文献   

17.
Unlike the rabbit blood plasma the high-activity triglyceride lipase which does not require a protein cofactor and is resistant to 1 M of NaCl has been revealed in the liver of this animal. Rapid freezing of the liver tissue by liquid nitrogen before homogenization induced a sharp increase in the enzyme activity level and extraction of the active enzyme without heparin usually added to the homogenate. The specific activity of hepatic lipase purified from the ordinary heparin-containing homogenate by affinity chromatography on heparin-sepharose 4B was equal to 3800 microM of FFA/h per mg of protein. If the homogenate previously treated with liquid nitrogen was used as a source of enzyme, the specific activity of hepatic lipase was higher, namely, 13,000 and 19,000 microM of FFA/h per mg of protein in the presence or absence of heparin, respectively.  相似文献   

18.
Endothelial lipase: a new member of the triglyceride lipase gene family   总被引:8,自引:0,他引:8  
The triglyceride lipase gene family plays a central role in intestinal lipid absorption, energy homeostasis, lipoprotein metabolism, and atherosclerosis. A new member of this gene family, termed endothelial lipase, was recently reported. The presence of key functional motifs, the endothelial synthesis, the enzymatic profile, and the in-vivo metabolic effects of endothelial lipase suggest that, like other members of this gene family, endothelial lipase may play a role in energy delivery to tissues and in modulating lipoprotein metabolism, and could impact on atherogenesis.  相似文献   

19.
Function of hepatic triglyceride lipase in lipoprotein metabolism   总被引:10,自引:0,他引:10  
Rat hepatic triglyceride lipase (H-TGL) was purified from liver tissue extracts by affinity chromatography on Sepharose 4B with covalently linked heparin. The purified rat H-TGL exhibited the properties previously described for this enzyme. Enzyme protein was injected into rabbits for anti-H-TGL antibody production. Antirat-H-TGL did not react against rat lipoprotein lipase (LPL) but inhibited H-TGL-activity both in vitro and in vivo greater than 90%. These antibodies were injected into rats and lipoprotein analyses were performed over a 36-hr period. It could be shown that inactivation of H-TGL by anti-H-TGL gamma-globulins in vivo led to an increase in total triglyceride concentration from 70 mg/dl to 230 mg/dl due to an increase in very low density lipoprotein (VLDL) and low density lipoprotein (LDL) triglycerides 4 hr after antibody injection; a marked increase in high density lipoprotein (HDL) phospholipid concentration was observed with almost no change in HDL-cholesterol and HDL-triglycerides. This study documents the ability of antirat-H-TGL-gamma-globulins to inhibit H-TGL in vitro and in vivo. Furthermore, the inhibition of triglyceride removal in vivo demonstrated that this enzyme together with LPL is responsible for the catabolism of VLDL-triglyceride.  相似文献   

20.
Previously [van Bennekum, A. M., et al. (1999) Biochemistry 38, 4150-4156] we showed that carboxyl ester lipase (CEL)-deficient (CELKO) mice have normal levels of pancreatic, bile salt-dependent retinyl ester hydrolase (REH) activity. In the present study, we further investigated this non-CEL REH activity in pancreas homogenates of CELKO and wild-type (WT) mice, and rats. REH activity was detected in both the presence and absence of tri- and dihydroxy bile salts in rats, WT mice, and CELKO mice. In contrast, pancreatic cholesteryl ester hydrolase (CEH) activity was only detected in the presence of trihydroxy bile salts and only in rats and WT mice, consistent with CEL-mediated cholesteryl ester hydrolysis. Enzyme assays of pancreatic triglyceride lipase (PTL) showed that there was a colipase-stimulated REH activity in rat and mouse (WT and CELKO) pancreas, consistent with hydrolysis of retinyl ester (RE) by PTL. Pancreatic enzyme activities related to either CEL or PTL were separated using DEAE-chromatography. In both rats and mice (WT and CELKO), REH activity could be attributed mainly to PTL, and to a much smaller extent to CEL. Finally, purified human PTL exhibited similar enzymatic characteristics for triglyceride hydrolysis as well as for retinyl ester hydrolysis, indicating that RE is a substrate for PTL in vivo. Altogether, these studies clearly show that PTL is the major pancreatic REH activity in mice, as well as in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号