首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mode of [14C]nicotinamide conversion to NAD and 1-methylnicotinamide and the effects of exogenous 1-methylnicotinamide on this metabolic conversion were studied using rat liver slices incubated in a chemically defined culture medium. It was shown that at the physiological nicotinamide concentrations tested (11-500 microM), 1-methylnicotinamide is preferentially produced, rather than NAD. Upon increasing nicotinamide concentration to the levels that cause cytotoxicity (1-10 mM and higher), the rate of NAD synthesis dramatically increased and reached a level 6-fold higher than that of 1-methylnicotinamide. A dose-dependent inhibition (up to 60%) of NAD synthesis was seen by the exogenous addition of 1-methylnicotinamide; the degree of inhibition is affected also by the concentration of nicotinamide present as a precursor. A large depletion of intracellular ATP, associated with a marked accumulation of NAD, occurred in slices in response to the addition of high amounts of nicotinamide. However, the loss of ATP was overcome, when nicotinamide was given together with 1-methylnicotinamide. Finally, 1-methylnicotinamide per se was proven active in regulating cell growth by comparing the cytosolic activity of 1-methylnicotinamide oxidation of cultured RLC cells with that of rat liver. Thus, the previously observed growth stimulation of hepatic cells by 1-methylnicotinamide can reasonably been explained by its ATP-sparing effect due to the inhibition of NAD synthesis, a reaction which requires ATP.  相似文献   

2.
The mode of [14C]lnicotinamide conversion to NAD and 1-methylnicotinamide and the effects of exogenous 1-methylnicotinamide on this metabolic conversion were studied using rat livers slices incubated in a chemically defined culture medium. It was shown that at the physiological nicotinamide concentrations tested (11–500 μM), 1-methylnicotinamide is preferentially produced, rather than NAD. Upon increasing nicotinamide concentration to the levels that cause cytotoxicity (1–10 mM and higher), the rate of NAD synthesis dramatically increased and reached a level 6-fold higher than that of 1-methylnicotinamide. A dose-dependent inhibition (up to 60%) of NAD synthesis was seen by the exogenous addition of 1-methylnicotinamide; the degree of inhibition is affected also by the concentrations of nicotinamide present as a precursor. A large depletion of intracellular ATP, associated with a marked accumulation of NAD, occurred in slices in response to the addition of high amounts of nicotinamide. However, loss of ATP was overcome, when nicotinamide was given together with 1-methylnicotinamide. Finally, 1-methylnicotinamide per se was proven active in regulating cell growth by comparing the cytosolic activity of 1-methylnicotinamide oxidation of cultured RLC cells with that of rat liver. Thus, the previously observed growth stimulation of hepatic cells by 1-methylnicotinamide can reasonably been explained by its ATP-sparing effect due to the inhibition of NAD synthesis, a reaction which requires ATP.  相似文献   

3.
Nicotinamide is metabolized primarily into NAD and N1-methylnicotinamide in cultured cells of normal rat kidney. The metabolic pathways for the nicotinamide metabolites are independently regulated and are influenced by the growth stage of the cells. N1-Methylnicotinamide levels are 1.5--2-fold elevated in cells growth-arrested by treatment with histidinol, thymidine, or picolinic acid, or by serum starvation. This increase is due to a more rapid rate of synthesis rather than decrease in excretion. The rates of both synthesis and degradation of NAD are increased in serum-starved cells so that the NAD concentration is the same as it is in growing cells. NAD and N1- methylnicotinamide levels are not significantly increased when the intracellular nicotinamide concentration is increased 20-fold by addition of excess nicotinamide to the culture medium, demonstrating that the size of the nicotinamide pool does not limit synthesis of these compounds. In medium containing normal amounts of nicotinamide, the apparent first-order rate constant for the decay of NAD, radioactively labeled in the nicotinamide moiety, is about 4 h-1. Labeled N1-methylnicotinamide is not metabolized, but rather is excreted into the medium with a first-order rate constant of 3.9 h-1. The rate of loss of label from NAD, but not from N1-methylnicotinamide, is increased about twofold by addition of excess nicotinamide to the culture medium. This could be explained by a dilution of a labeled nicotinamide pool which is formed during NAD degradation and which is recycled into NAD but not into N1-methylnicotinamide. The results demonstrate a rapid turnover of NAD at the bond joining nicotinamide and ADP-ribose, in agreement with previous studies. In addition, the results show that nicotinamide is metabolized into N1-methylnicotinamide with what appears to be a carefully regulated synthetic mechanism. The existence of significant amounts of N1-methylnicotinamide in cultured cells raises the question of the physiological importance of this compound.  相似文献   

4.
The changes in the activity of nicotinamide: S-adenosylmethionine methyltransferase (nicotinamide methylase) were studied in rat liver which was subjected to different rates of cellular proliferation. The cytosolic enzyme activity increased 3-4-fold in the first 24-48 h after partial hepatectomy and decreased again to the basal levels until 4 days post-operatively, whereas it remained unchanged in the livers of sham-operated animals. A single administration of thioacetamide at a dose of 50-250 mg/kg body weight, a treatment which induces hepatocellular proliferation as well, also enhanced the enzyme activity 2-3-fold 24 h after drug administration. This activity increase was associated with a marked lowering of intracellular NAD content of as much as 50% of the control levels. D-Galactosamine, a known hepatotoxic agent causing acute hepatitis in experimental animals and preventing DNA synthesis in regenerating liver, blocked the activity increase in regenerating rat liver. The rate of 1-methylnicotinamide synthesis, as measured by incubating liver slices in the culture medium supplemented with [14C]nicotinamide as a precursor, was found to be 2-4 times higher in the slices from regenerating liver and thioacetamide-treated rat liver than those from non-proliferating control liver. These results, together with our previous finding on the enhancement by 1-methylnicotinamide of the growth of cultured rat liver cells (Hoshino, J., Kühne, U. and Kr?ger, H. (1982) Biochem. Biophys. Res. Commun. 105, 1446-1452), support the view that nicotinamide methylase and its product, 1-methyl-nicotinamide, are involved in the control of hepatocellular DNA synthesis and proliferation.  相似文献   

5.
1. The effects of injecting nicotinamide, 5-methylnicotinamide, ethionine, nicotinamide+5-methylnicotinamide and nicotinamide+ethionine on concentrations in rat liver of NAD, NADP and ATP were investigated up to 5hr. after injection. 2. Nicotinamide induced three- to four-fold increases in hepatic NAD concentration even in the presence of 5-methylnicotinamide or ethionine, whereas 5-methylnicotinamide or ethionine alone did not cause marked changes in hepatic NAD concentration. 3. Nicotinamide alone also induced a twofold increase in hepatic NADP concentration. However, in the presence of 5-methylnicotinamide+nicotinamide, the NADP concentration decreased by 25% after 5hr., and in the presence of nicotinamide+ethionine by 30% in the same time. In the presence of 5-methylnicotinamide or ethionine alone hepatic NADP concentrations fell by 50% after 5hr. 4. 5-Methylnicotinamide inhibited the microsomal NAD(+) glycohydrolase (EC 3.2.2.6) by 60% at a concentration of 1mm and the NADP(+) glycohydrolase by 40% at the same concentration. 5. The rat liver NAD(+) kinase (EC 2.7.1.23) was found to have V(max.) 4.83mumoles/g. wet wt./hr. and K(m) (NAD(+)) 5.8mm. This enzyme was also inhibited by 5-methylnicotinamide in a ;mixed' fashion. 6. The results are discussed with respect to the control of NAD synthesis. It is suggested that in vivo the NAD(P)(+) glycohydrolases are effectively inactive and that the increased NAD concentrations induced by nicotinamide are due to increased substrate concentration available to both the nicotinamide and nicotinic acid pathways of NAD formation.  相似文献   

6.
The changes in the activity of nicotinamide: S-adenosylmethionine methyltransferase (nicotinamide methylase) were studied in rat liver which was subjected to different rates of cellular proliferation. The cytosolic enzyme activity increased 3–4-fold in the first 24–48 h after partial hepatectomy and decreased again to the basal levels until 4 days post-operatively, whereas it remained unchanged in the livers of sham-operated animals. A single administration of thioacetamide at a dose of 50–250 mg/kg body weight, a treatment which induces hepatocellular proliferation as well, also enhanced the enzyme activity 2–3-fold 24 h after drug administration. This activity increase was associated with a marked lowering of intracellular NAD content of as much as 50% of the control levels. d-Galactosamine, a known hepatotoxic agent causing acute hepatitis in experimental animals and preventing DNA synthesis in regenerating liver, blocked the activity increase in regenerating rat liver. The rate of 1-methylnicotinamide synthesis, as measured by incubating liver slices in the culture medium supplemented with [14C]nicotinamide as a precursor, was found to be 2–4 times higher in the slices from regenerating liver and thioacetamide-treated rat liver than those from non-proliferating control liver. These results, together with our previous finding on the enhancement by 1-methylnicotinamide of the growth of cultured rat liver cells (Hoshino, J., Kühne, U. and Kröger, H. (1982) Biochem. Biophys. Res. Commun. 105, 1446–1452), support the view that nicotinamide methylase and its product, 1-methylnicotinamide, are involved in the control of hepatocellular DNA synthesis and proliferation.  相似文献   

7.
NAD, 1-methylnicotinamide, S-adenosylmethionine, and S-adenosylhomocysteine levels were analyzed in different clones of untransformed normal rat kidney cells and in cells transformed by different viruses. No consistent changes in the levels of these metabolites were apparent as a result of malignant transformation, and also differences in the levels of metabolites did not correlate with growth rate in the various cell lines. 3-Deazaadenosine prevented synthesis of 1-methylnicotinamide but not of NAD. The S-denosylmethionine/S-adenosylhomocysteine ratio did not change in serum-starved, growth-arrested cells although 1-methylnicotinamide synthesis increased about twofold. These results were used to consider possible physiological roles for 1-methylnicotinamide. Its intracellular levels did not correlate with growth rate and were not altered by transformation. No evidence was obtained that its synthesis is involved with maintenance of nicotinamide of S-adenosylmethionine levels. Thus the biological function for 1-methylnicotinamide remains a mystery.  相似文献   

8.
The culture of Nil hamster fibroblasts in MEM lacking nicotinamide (NAm-MEM) leads to: (1) the rapid loss of intracellular total nicotinamide adenine dinucleotide (NAD(H)) content in these cells from a level of 150-200 pmoles/10(5) cells to less than 20 pmoles/10(5) cells; (2) the cessation of cell division and inhibition of DNA synthesis; and (3) a reduction of glucose consumption and lactic acid production. In most situations, following nicotinamide starvation, the restoration of intracellular NAD(H) follows rapidly the readdition of NAD+ (oxidized), nicotinamide mononucleotide (NMN), nicotinamide, or nicotinic acid. Resumption of cell division occurs after only a lag of about 24 hours. Nil cells subcultured for three consecutive times in the absence of nicotinamide (3(0) NAm- cells) exhibit different behavior. These severely starved cells are incapable of quickly restoring their intracellular NAD(H) content to normal levels when provided with any pyridine ring compound except NAD+. One-hour exposure of such cells to NAD+ allows utilization of nicotinamide to rapidly restore intracellular NAD(H). This short incubation with NAD+ does not result in any significant restoration of intracellular NAD(H) or lead to the accumulation of an intracellular pool of some precursor. This function of NAD+ as a stimulatory signal to the NAD(H)-biosynthetic pathway in severely starved Nil cells is a previously unreported role of NAD+, and does not require protein synthesis.  相似文献   

9.
When hepatocytes isolated from adult rats were cultured in the presence of 10 mM nicotinamide, insulin- and epidermal growth factor-induced DNA synthesis and cell proliferation were found to be greatly stimulated, and the cells were able to be kept alive for more than one month. In the nicotinamide-treated hepatocytes, albumin and tryptophan 2,3-dioxygenase mRNAs were present at much higher levels than in the untreated control, and the inducibility of tryptophan oxygenase gene expression by dexamethasone and glucagon was also preserved. Without nicotinamide, primary cultured hepatocytes were viable for only 5-7 days and the hepatocyte-specific phenotypes were rapidly lost. The intracellular NAD level was maintained in the nicotinamide-treated hepatocytes at or above the level in intact liver but depleted in hepatocytes without nicotinamide. These results suggest that the maintenance of the intracellular NAD level is essential for the growth and functioning of hepatocytes and that nicotinamide can preserve the NAD level by blocking NAD degradation as well as by acting as a precursor for NAD synthesis.  相似文献   

10.
1-methylnicotinamide (MNA) is a primary metabolite of nicotinamide. In recent years several activities of MNA have been described, such as anti-inflammatory activity in skin diseases, induction of prostacyclin synthesis via COX-2, aortal endothelium protection in diabetes and hypertriglyceridaemia and increased survival rate of diabetic rats. 1-methylnicotinamide was also suggested to protect pancreatic cells from streptozotocin in vivo. Streptozotocin toxicity is known to be mediated by poly-ADP-ribose polymerase. Nicotinamide and its derivatives have been shown to ameliorate poly-ADP-ribose polymerase-dependent nucleotide pool reduction. We aimed to verify if 1-methylnicotinamide and its metabolite, N-methyl-2-pyridone-5-carboxamide, can protect insulinoma cells from streptozotocin-induced toxicity. We found that N-methyl-2-pyridone-5-carboxamide, but not 1-methylnicotinamide, restores the pool of ATP and NAD+ in streptozotocin-treated cells, but neither compound improved the cell viability. We conclude that inhibition of poly-ADP-ribose polymerase-dependent nucleotide pool reduction may not be sufficient to protect cells from streptozotocin toxicity.  相似文献   

11.
Exposure of Ehrlich ascites tumor cells to 3-aminobenzamide for 60 min resulted in a dose-dependent increase of cellular NAD and ATP levels at a concentration range of 0.3-5 mM. In the cells exposed to 5-methylnicotinamide there was a decrease of both nucleotide levels. As a possible cause for these changes we found a marked inhibition of microsomal NAD glycohydrolase activity by 3-aminobenzamide and a moderate stimulation of this enzyme by 5-methylnicotinamide. Furthermore, 3-aminobenzamide significantly enhanced the cellular uptake of nicotinamide and NAD synthesis, probably by the stimulation of nuclear ATP-NMN adenylyltransferase activity. We show also that the cells containing elevated NAD and ATP levels by the exposure to 3-aminobenzamide became resistant to the 5-azacytidine cytotoxicity.  相似文献   

12.
1. Glucocorticoids have a decisive function in the immune system. In this paper, special attention is paid to the DNA and the NAD metabolism in T-lymphocytes of mice stimulated by Con A under the influence of dexamethasone phosphate. 2. Nicotinamide increases the incorporation of [3H]thymidine into the DNA of T-cells in dependence on the concentration. There is a similar but less pronounced effect with 1-methylnicotinamide. 3. Dexamethasone phosphate even at 10(-9) M inhibits the incorporation of [3H]thymidine into DNA. 4. The incorporation of [3H]thymidine into the DNA is reduced after preincubation of the T-cells with 6-aminonicotinamide or with 3-acetylpyridine. 5. Dexamethasone phosphate decreases the content of NAD in the T-cells. 6. The activity of the ADPR transferase increases after addition of Con A. Presence of nicotinamide stimulates the effect of Con A on this enzyme. This is not the case with 1-methylnicotinamide. The enzyme is inhibited drastically by dexamethasone phosphate. 7. It may be concluded that the NAD-adenoribosylation metabolism is markedly influenced by the mitogen Con A and by dexamethasone phosphate.  相似文献   

13.
J L Czeisler  D P Hollis 《Biochemistry》1975,14(12):2781-2785
A Model system for NAD+ has been investigated using a paramagnetic transition metal ion as a probe. The well-known complexation of Mn2+ by adenine nucleotides was utilized to "label" adenosine 5'-diphosphate. A broadening effect on the 100-MHz proton nuclear magnetic resonance spectrum of N1-methylnicotinamide due to the adenine-metal ion complex was observed. It was found that the nicotinamide species showed no evidence for interaction with Mn2+ in the absence of the adenine nucleotide. These observations have led to the proposal that N1-methylnicotinamide associates with the adenine moiety of the adenine nucleotide-metal complex. This suggests a tendency of adenine and nicotinamide rings to interact in aqueous solution implying some tendency of the coenzyme NAD+ to occur in a folded or stacked conformation.  相似文献   

14.
1. The effect of injecting nicotinamide on the incorporation of [(14)C]orotate into the hepatic nucleic acids of rats after partial hepatectomy was investigated. 2. At 3h after partial hepatectomy the rapid incorporation of [(14)C]orotate into RNA, and at 20h after partial hepatectomy the incorporation of [(14)C]orotate into both RNA and DNA, were inhibited in a dose-dependent fashion by the previous injection of nicotinamide. 3. The injection of nicotinamide at various times before the injection of [(14)C]orotate at 20h after partial hepatectomy revealed an inhibition of the incorporation of orotate into RNA and DNA which was non-linear with respect to the duration of nicotinamide pretreatment. 4. The induction of a hepatic ATP depletion by ethionine demonstrated that the synthesis of hepatic NAD and NADP in partially hepatectomized rats was more susceptible to an ATP deficiency than in control rats. 5. The total hepatic activity of ribose phosphate pyrophosphokinase (EC 2.7.6.1) was assayed at various times after partial hepatectomy and found to be only marginally greater than the maximum rate of hepatic NAD synthesis induced in vivo by nicotinamide injection between 12 and 24h after partial hepatectomy. 6. It is suggested that a competition exists between NAD synthesis and purine and pyrimidine nucleotide synthesis for available ATP and particularly 5-phosphoribosyl 1-pyrophosphate. In regenerating liver the competition is normally in favour of the synthesis of nucleic acid precursors, at the expense of NAD synthesis. This situation may be reversed by the injection of nicotinamide with a subsequent inhibition of nucleic acid synthesis.  相似文献   

15.
Nicotinamide nucleotide synthesis in regenerating rat liver   总被引:1,自引:1,他引:0  
1. The concentrations and total content of the nicotinamide nucleotides were measured in the livers of rats at various times after partial hepatectomy and laparotomy (sham hepatectomy) and correlated with other events in the regeneration process. 2. The NAD content and concentration in rat liver were relatively unaffected by laparotomy, but fell to a minimum, 25 and 33% below control values respectively, 24h after partial hepatectomy. NADP content and concentration were affected similarly by both laparotomy and partial hepatectomy, falling rapidly and remaining depressed for up to 48h. 3. The effect of injecting various doses of nicotinamide on the liver DNA and NAD 18h after partial hepatectomy was studied and revealed an inverse correlation between NAD content and DNA content. 4. Injections of nicotinamide at various times after partial hepatectomy revealed that the ability to synthesize NAD from nicotinamide was impaired during the first 12h, rose to a peak at 26h and fell again by 48h after partial hepatectomy. 5. The total liver activity of NAD pyrophosphorylase (EC 2.7.7.1) remained at or slightly above the initial value for 12h after partial hepatectomy and then rose continuously until 48h after operation. The activity of NMN pyrophosphorylase (EC 2.4.2.12) showed a similar pattern of change after partial hepatectomy, but was at no time greater than 5% of the activity of NAD pyrophosphorylase. 6. The results are discussed with reference to the control of NAD synthesis in rapidly dividing tissue. It is suggested that the availability of cofactors and substrates for NAD synthesis is more important as a controlling factor than the maximum enzyme activities. It is concluded that the low concentrations of nicotinamide nucleotides in rapidly dividing tissues are the result of competition between NAD synthesis and nucleic acid synthesis for common precursor and cofactors.  相似文献   

16.
Poly(ADP-ribose) polymerase activity in nuclei isolated from differentiating cardiac muscle of the rat has been characterized and its activity measured during development. Optimum enzyme activity is observed at pH 8.5. Poly(ADP-ribose) polymerase is inhibited by ATP, thymidine, nicotinamide, theophylline, 3-isobutyl-1-methylxanthine and caffeine and stimulated by actinomycin D. The activity measured under optimal assay conditions increases during differentiation of cardiac muscle and is inversely related to the rate of DNA synthesis and to the activities of DNA polymerase alpha and thymidine kinase. When DNA synthesis and the activity of DNA polymerase alpha are inhibited in cardiac muscle of the 1-day-old neonatal rat by dibutyryl cyclic AMP or isoproterenol, the specific activity of poly(ADP-ribose) polymerase measured in isolated nuclei is increased. The concentration of NAD+ in cardiac muscle increases during postnatal development. In the adult compared with the 1-day-old neonatal rat the concentration of NAD+ relative to fresh tissue weight, DNA or protein increased 1.7-fold, 5.2-fold or 1.4-fold respectively. The concentration of NAD+ in cardiac muscle of the 1-day-old neonatal rat can be increased by approx. 20% by dibutyryl cyclic AMP. These data suggest that NAD+ and poly(ADP-ribose) polymerase may be involved with the repression of DNA synthesis and cell proliferation in differentiating cardiac muscle.  相似文献   

17.
The inhibitory effects of nicotinamide analogs on the activity of poly(ADP-ribose)) synthetase were compared to effects on precursor incorporation into macromolecules in three lines of hepatoma cells (Morris hepatomas 5123C, 7777 and HTC). N'-methylnicotinamide was a less effective inhibitor of poly (ADP-ribose) synthetase than was 1-methylnicotinamide while both these compounds had smaller inhibitory effects on the enzyme than were seen with nicotinamide or 3-aminobenzamide. On the other hand, the incorporation of [3H]thymidine into DNA and of [3H]uridine into RNA were inhibited by N'-methylnicotinamide in the concentration range 2-20 mM but not by 1-methylnicotinamide. Under the conditions examined there were no significant effects on the incorporation of [14C]lysine and [3H]leucine in hepatoma cells. The data indicated that the inhibitory effect of N'-methylnicotinamide on nucleic acid synthesis may be unrelated to action on poly (ADP-ribose) synthetase.  相似文献   

18.
Previous work has suggested that the activation of the sea urchin egg at fertilization is the result of a transient increase in intracellular free calcium and an increase in intracellular pH. We have investigated the absence of nuclear activation in incompletely activated eggs and have found a correlation between nuclear activation and the levels of total reduced nicotinamide nucleotides (NAD[P]H). Eggs activated with ammonia show a similar correlation: besides its action as a weak base in raising intracelluar pH (which we conclude is insufficient to stimulate or maintain nuclear activation as judged by nuclear envelope breakdown or DNA synthesis), ammonia increases NAD(P)H. This increase is associated with the stimulation of 6-3H-thymidine incorporation into egg DNA. Removing ammonia decreases NAD(P)H, and tritiated thymidine incorporation ceases. We conclude that a critical level of NAD(P)H is essential to nuclear activation and that the increase of NAD(P)H at fertilization must be included with the increase in calcium and pH as a causal agent in development.  相似文献   

19.
NAD(+) is both a co-enzyme for hydride transfer enzymes and a substrate of sirtuins and other NAD(+) consuming enzymes. NAD(+) biosynthesis is required for two different regimens that extend lifespan in yeast. NAD(+) is synthesized from tryptophan and the three vitamin precursors of NAD(+): nicotinic acid, nicotinamide and nicotinamide riboside. Supplementation of yeast cells with NAD(+) precursors increases intracellular NAD(+) levels and extends replicative lifespan. Here we show that both nicotinamide riboside and nicotinic acid are not only vitamins but are also exported metabolites. We found that the deletion of the nicotinamide riboside transporter, Nrt1, leads to increased export of nicotinamide riboside. This discovery was exploited to engineer a strain to produce high levels of extracellular nicotinamide riboside, which was recovered in purified form. We further demonstrate that extracellular nicotinamide is readily converted to extracellular nicotinic acid in a manner that requires intracellular nicotinamidase activity. Like nicotinamide riboside, export of nicotinic acid is elevated by the deletion of the nicotinic acid transporter, Tna1. The data indicate that NAD(+) metabolism has a critical extracellular element in the yeast system and suggest that cells regulate intracellular NAD(+) metabolism by balancing import and export of NAD(+) precursor vitamins.  相似文献   

20.
NNMT (nicotinamide N-methyltransferase, E.C. 2.1.1.1) catalyses the N-methylation of nicotinamide to 1-methylnicotinamide. NNMT expression is significantly elevated in a number of cancers, and we have previously demonstrated that NNMT expression is significantly increased in the brains of patients who have died of Parkinson's disease. To investigate the cellular effects of NNMT overexpression, we overexpressed NNMT in the SH-SY5Y cell line, a tumour-derived human dopaminergic neuroblastoma cell line with no endogenous expression of NNMT. NNMT expression significantly decreased SH-SY5Y cell death, which correlated with increased intracellular ATP content, ATP/ADP ratio and Complex I activity, and a reduction in the degradation of the NDUFS3 [NADH dehydrogenase (ubiquinone) iron-sulfur protein 3] subunit of Complex I. These effects were replicated by incubation of SH-SY5Y cells with 1-methylnicotinamide, suggesting that 1-methylnicotinamide mediates the cellular effects of NNMT. Both NNMT expression and 1-methylnicotinamide protected SH-SY5Y cells from the toxicity of the Complex I inhibitors MPP+ (1-methyl-4-phenylpyridinium ion) and rotenone by reversing their effects upon ATP synthesis, the ATP/ADP ratio, Complex I activity and the NDUFS3 subunit. The results of the present study raise the possibility that the increase in NNMT expression that we observed in vivo may be a stress response of the cell to the underlying pathogenic process. Furthermore, the results of the present study also raise the possibility of using inhibitors of NNMT for the treatment of cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号