首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gossypol, a polyphenolic binaphthyl dialdehyde found in cotton seeds, is a dietary mutagen and a potential male contraceptive. In the presence of Cu(II), gossypol caused breakage of supercoiled plasmid pBR322 DNA. The products were relaxed circles or a mixture of these and linear molecules. Other metal ions tested [Ni(II), Co(II), Mn(II), and Fe(II)] were ineffective or less effective in the DNA breakage reaction. In the case of gossypol-Cu(II) mediated cleavage, (Cu(I) was shown to be an essential intermediate by using the Cud) sequestering reagent bathocuproine. By using job plots, it was established that in the absence of DNA, eight Cu(II) ions can be reduced by one gossypol molecule. The involvement of active oxygen species, such as singlet oxygen and H2O2, was established by the inhibition of DNA breakage by catalase and by sodium azide. It was further shown that gossypol is capable of directly producing H2O2.  相似文献   

2.
We compared the DNA damaging potency of acrylamide (AA) and its metabolite glycidamide (GA) in the comet assay in cell systems differing with respect to species origin and cytochrome P450-depended monooxygenase (CYP2E1) expression (V79, Caco-2, primary rat hepatocytes). Only after 24 h incubation in the highest concentration of AA (6 mM) a slight but significant increase in DNA damage was observed in V79 and Caco-2 cells. In primary rat hepatocytes, however, expressing substantial amounts of CYP2E1, no induction of DNA strand breaks was found. At the end of the incubation time period (24 h), still 67 ± 19% of the CYP2E1 protein was detected by Western blotting. Direct treatment with GA resulted in a significant increase in DNA damage in V79 cells and primary rat hepatocytes at concentrations ≥100 μM (24 h). Caco-2 cells were found to be less sensitive, exhibiting an increase in DNA strand breaks at concentrations ≥300 μM GA. These data confirm the higher genotoxic potential of GA compared to AA but also indicate that high expression of CYP2E1 per se is not necessarily associated with increased genotoxicity of AA. We, therefore, investigated whether the intracellular glutathione (GSH) level might be a critical determinant for the genotoxicity of AA in cells with different CYP2E1 status. Depletion of intracellular GSH by DL-buthionine-[S,R]-sulfoxime (BSO) in rat hepatocytes and V79 cells resulted in a significant induction of DNA strand breaks after incubation with 1 mM AA. However, at higher concentrations (≥1.25 mM) a strong increase in cytotoxicity, resulting in a severe loss of viability, was observed. In summary, the DNA strand breaking effect of AA appeared not to be directly correlated with the CYP2E1 status of the cells. Depletion of GSH is associated with an increase in AA genotoxicity but seems also to lead to a substantial enhancement of cytotoxicity.  相似文献   

3.
Treatment of mammalian cells with buthionine sulphoximine (BSO) or diethyl maleate (DEM) results in a decrease in the intracellular GSH (glutathione) and non-protein-bound SH (NPSH) levels. The effect of depletion of GSH and NPSH on radiosensitivity was studied in relation to the concentration of oxygen during irradiation. Single- and double-strand breaks (ssb and dsb) and cell killing were used as criteria for radiation damage. Under aerobic conditions, BSO and DEM treatment gave a small sensitization of 10-20 per cent for the three types of radiation damage. Also under severely hypoxic conditions (0.01 microM oxygen in the medium) the sensitizing effect of both compounds on the induction of ssb and dsb and on cell killing was small (0-30 per cent). At somewhat higher concentrations of oxygen (0.5-10 microM) however, the sensitization amounted to about 90 per cent for the induction of ssb and dsb and about 50 per cent for cell killing. These results strengthen the widely accepted idea that intracellular SH-compounds compete with oxygen and other electron-affinic radiosensitizers with respect to reaction with radiation-induced damage, thus preventing the fixation of DNA damages by oxygen. These results imply that the extent to which SH-compounds affect the radiosensitivity of cells in vivo depends strongly on the local concentration of oxygen.  相似文献   

4.
5.
Some hexavalent chromium (Cr(VI))-containing compounds are human lung carcinogens. While ample information is available on the genetic lesions produced by Cr, surprisingly little is known regarding the cellular mechanisms involved in the removal of Cr-DNA adducts. Nucleotide excision repair (NER) is a highly versatile pathway that is responsive to a variety of DNA helix-distorting lesions. Binary Cr-DNA monoadducts do not produce a significant degree of helical distortion. However, these lesions are unstable due to the propensity of Cr(III) to form DNA adducts (DNA interstrand crosslinks, DNA-protein/amino acid ternary adducts) which may serve as substrates for NER. Therefore, the focus of this study was to determine the role of NER in the processing of Cr-DNA damage using normal (CHO-AA8) and NER-deficient [UV-5 (XP-D); UV-41 (ERCC4/XP-F)] hamster cells. We found that both UV-5 and UV-41 cells exhibited an increased sensitivity towards Cr(VI)-induced clonogenic lethality relative to AA8 cells and were completely deficient in the removal of Cr-DNA adducts. In contrast, repair-complemented UV-5 (expressing hamster XPD) and UV-41 (expressing human ERCC4) cells exhibited similar clonogenic survival and removed Cr-DNA adducts to a similar extent as AA8 cells. In order to extend these findings to the molecular level, we examined the ability of Cr(III)-damaged DNA to induce DNA repair synthesis in cell extracts. Repair synthesis was observed in reactions using extracts derived from AA8, or repair-complemented, but not NER-deficient cells. Cr(III)-induced repair resynthesis was sensitive to inhibition by the DNA polymerase δ/ε inhibitor, aphidicolin, but not 2′,3′-dideoxythymidine triphosphate (ddTTP), a polymerase β inhibitor. These results collectively suggest that NER functions in the protection of cells from Cr(VI) lethality and is essential for the removal of Cr(III)-DNA adducts. Consequently, NER may represent an important mechanism for preventing Cr(VI)-induced mutagenesis and neoplastic transformation.  相似文献   

6.
In order to evaluate possible health effects of environmental exposure of humans towards methyl mercury species, relevant exposure experiments using methyl mercury chloride in aqueous solution and Chinese hamster ovary (CHO) cells were performed. The solution was monitored for the presence of monomethyl, dimethyl and elemental mercury by several analytical techniques including chromatographic as well as atomic absorption and mass spectrometric methods. Methyl mercury induces structural chromosomal aberrations (CA) and sister chromatid exchanges (SCE) in CHO cells. At a concentration of methyl mercury in the culture medium of 1.0 x 10(-6) M where the frequencies of CA and SCE are significantly elevated, the intracellular concentration was 1.99 x 10(-16) mol/cell. Possible biochemical processes leading to the cytogenetic effects are discussed together with toxicological consequences, when humans (e.g. workers at waste deposits) are exposed to environmental concentrations of methyl mercury.  相似文献   

7.
Lipid peroxidation, glutathione level and activity of glutathione-S-transferase were studied in liver and brain of rats 4 and 3 h after a single i.p. administration of 0, 25, 75, 100 mg/kg acrylamide or 0, 50, 100, 200, 600 mg/kg styrene, respectively. In liver both acrylamide and styrene caused an increase in lipid peroxidation and decrease in glutathione contents and activity of glutathione-S-transferase in a dose dependent manner, while in brain only acrylamide produced a decrease in glutathione content. The decrease in glutathione content was not always associated with increase of lipid peroxidation. The enhancement of lipid peroxidation occurred only when glutathione contents were depleted to certain critical levels. No effect of acrylamide or styrene was seen on lipid peroxidation under in vitro conditions. The addition of glutathione in the incubation mixture significantly inhibited the rate of lipid peroxidation of liver homogenates of acrylamide and styrene treated animals.The results suggest that enhancement of lipid peroxidation in liver on exposure to acrylamide or styrene is a consequence of depletion of glutathione to certain critical levels. The inhibition of glutathione-S-transferase activity by acrylamide and styrene suggests that detoxication of these neurotoxic compounds could be suppressed following acute exposure.  相似文献   

8.
The overexpression of bcl-2 and its homologues is a widely used strategy to inhibit apoptosis in mammalian cell culture systems. In this study, we have evaluated the Bcl-2 homologue, Bcl-x(L) and compared its effectiveness to a Bcl-x(L) mutant lacking most of the non-conserved unstructured loop domain, Bcl-x(L)Delta (deletion of amino acids 26 through 83). The cell line, Chinese hamster ovary (CHO), was genetically modified to express constitutively Bcl-x(L) or the Bcl-x(L) variant and subjected to model apoptotic insults including Sindbis virus (SV) infection, gradual serum withdrawal, and serum deprivation. When cells were engineered to overexpress Bcl-x(L)Delta, cell death due to the SV was inhibited, and Bcl-x(L)Delta provided comparable protection to the wild-type Bcl-x(L) even though expression levels were much lower for the mutant. Furthermore, the cells expressing Bcl-x(L)Delta continued to proliferate following infection while CHO-bcl-x(L) ceased proliferation immediately following infection. As a result, total production of a heterologous protein encoded on the SV was highest in cell lines expressing Bcl-x(L)Delta. Cells expressing the variant Bcl-x(L) also continued to proliferate and showed increased viable cell numbers following gradual serum withdrawal. In contrast, wild-type Bcl-x(L) expressing CHO cells were found to arrest growth but maintain viability following serum withdrawal. Interestingly, CHO cells expressing Bcl-x(L)Delta were also able to recover and return to rapid growth rates much faster than either the wild-type CHO-bcl-x(L) or CHO following the replenishment of fresh complete medium containing 10% FBS. Confocal imaging of yellow fluorescent protein (YFP) fused to the N terminus of Bcl-x(L) and Bcl-x(L)Delta indicated dense aggregates of the Bcl-x(L)Delta while the wild-type protein was distributed throughout the cell in a manner resembling transmembrane localization. As an alternative to complete removal of the loop domain, Bcl-x(L) variants were created in which aspartate residues containing potential caspase recognition sites within the loop domain of Bcl-x(L) were removed. Cell populations expressing various Bcl-x(L)-Asp mutants were exposed to an apoptotic spent medium stimulus, and the cells expressing these Bcl-x(L) variants provided increased viabilities as compared to cells containing wild-type Bcl-x(L) protein. These studies indicate that modification of anti-apoptotic genes can affect multiple cellular properties including response to apoptotic stimuli and cell growth. This knowledge can be valuable in the design of improved apoptosis inhibitors for biotechnology applications.  相似文献   

9.
In proliferating mammalian cells, DNA damage is detected by sensors that elicit a cellular response which arrests the cell cycle and repairs the damage. As part of the DNA damage response, DNA replication is inhibited and, within seconds, histone H2AX is phosphorylated. Here we describe a cell-free system that reconstitutes the cellular response to DNA double strand breaks using damage-activated cell extracts and naïve nuclei. Using this system the effect of damage signalling on nuclei that do not contain DNA lesions can be studied, thereby uncoupling signalling and repair. Soluble extracts from G1/S phase cells that were treated with etoposide before isolation, or pre-incubated with nuclei from etoposide-treated cells during an in vitro activation reaction, restrain both initiation and elongation of DNA replication in naïve nuclei. At the same time, H2AX is phosphorylated in naïve nuclei in a manner that is dependent upon the phosphatidylinositol 3-kinase-like protein kinases. Notably, phosphorylated H2AX is not focal in naïve nuclei, but is evident throughout the nucleus suggesting that in the absence of DNA lesions the signal is not amplified such that discrete foci can be detected. This system offers a novel screening approach for inhibitors of DNA damage response kinases, which we demonstrate using the inhibitors wortmannin and LY294002.  相似文献   

10.
The effects of two anthracenedione derivatives on in vitro cell survival and DNA of Chinese hamster ovary (CHO) cells were investigated. The two drugs studied were 1,4-dihydroxy-5,8-bis-(2-[2-hydroxyethyl)amino)ethylamino)-9,10-anthracenedione (DHAQ, NSC No. 279836) and 1,4-bis-(2-[2-hydroxyethyl)-amino)ethylamino)-9,10-anthracenedione (HAQ, NSC No. 287513). DHAQ was 100-fold more potent in reducing cell survival than HAQ. DNA strand breaks were assayed by alkaline elution. DHAQ (10 ng/ml) caused more strand breakage than 1000 ng/ml HAQ. This difference correlates well with their differences in ability to kill cells.  相似文献   

11.
The induction of mutations by the alkylating agent ethyl methanesulfonate (EMS) was determined with Chinese hamster ovary cells maintained in serum-free medium to arrest DNA synthesis and cell division. The arrested cultures were treated with EMS and maintained in serum-free medium for various time intervals post-treatment before serum containing medium was added to initiate DNA synthesis and cell division. The concentration-dependent increase in 6-thioguanine-resistant mutants in the arrested cultures was similar to that found with exponentially dividing cultures when serum was added to the arrested cultures immediately after the EMS treatment; the time course of phenotypic expression was also similar with both cultures. In addition, maintenance of the arrested cultures in serum-free medium for up to 18 days post-treatment resulted in no change in the mutant frequency. This suggests that the mutagenic damage is not removed in these arrested cultures. Furthermore, maintenance of the arrested state for increasing time intervals before serum addition results in decreases in the time necessary for maximum phenotypic expression. Cultures maintained in serum-free medium for 16 days after mutation treatment show complete expression of the mutations with no need for subculture. This last result suggests that the mutagenic damage induced by EMS in Chinese hamster ovary cells is not removed and that this damage results in both the induction and expression of mutation in the absence of DNA replication.  相似文献   

12.
The catechol-mediated DNA damage in the presence of Cu(II) ions involves oxidation of guanine to 8-oxoguanine (8-oxoG) and DNA strand scission. It proceeds through the reactive oxygen species (ROS) generation. The mutagenicity of 8-oxoG lesions is due to its miscoding propensity reflected in GC→TA transversion taking place during the DNA repair process. To gain new insights into the nature of catechol-mediated DNA damage and its prevention, we have investigated the changes in DNA melting characteristics and 8-oxoG formation as the indicators of DNA damage in a model calf-thymus DNA system. A novel fluorescence method for DNA melting temperature determination, based on DAPI fluorescent-probe staining, has been proposed. The DNA melting-onset temperature has been found to be more sensitive to DNA damage than the standard melting temperature due to the increased width of the melting transition observed in oxidatively damaged DNA. We have found that the efficiency of Fenton cascade in generating DNA-damaging ROS is higher for catechol than for GSH, two strong antioxidants, mainly due to the much longer distance between ROS-generating radical group in GS to nucleobases than that of semiquinone radical group to nucleobases (2.1nm vs. 0.27nm), making the ROS transport from GSH an order of magnitude less likely to damage DNA because of short lifetime of HO radicals. The antioxidant and DNA-protecting behaviors of GSH have been elucidated. We have found that the redox potential of GSH/GSSG couple is lower than that of catechol/semiquinone couple. Hence, GSH keeps catechol in the reduced state, thereby shutting down the initial step of the catechol-mediated Fenton cascade. The catechol-induced DNA damage in the presence of Cu(II) ions has also been confirmed in studies of ON-OFF hairpin-oligonucleotide beacons.  相似文献   

13.
A method was developed to determine the conditional association constants of cadmium(II) [Cd(II)] complexes based on the reagent FluoZin-1, which forms a fluorescent complex with Cd(II). A solution containing Cd(II) and FluoZin-1 was titrated with glutathione while determining fluorescence intensity of FluoZin-1 to estimate levels of free Cd(II). The results were analyzed with a nonlinear least-squares method using the Solver algorithm of Microsoft Excel to yield conditional association constants for 1:1 and 1:2 Cd(II)-glutathione complexes. The values obtained were consistent with those reported previously using isothermal titration calorimetry.  相似文献   

14.
An intracellular effect of nickel(II) which may be involved in its carcinogenic action is the alteration of normal DNA-protein binding. This effect of ionic nickel was studied in Chinese hamster ovary cells using several chromatin isolation methods in combination with SDS-polyacrylamide gel electrophoresis. DNA from cells incubated with (35S)-methionine or (35S)-cysteine to radiolabel protein was prepared by three methods: (solation of nuclei or nucleoids followed by chloroform-isoamyl alcohol (24:1 v/v) extraction and in some cases an additional extraction in the absence or presence of 2M NaCl, 40 mM EDTA or SDS; by isopycnic centrifugation through Cs2SO4 gradients containing 0.8% sarkosyl, 2.2 MCs2SO4, 1 mM NaCl and 10 mM EDTA; or by chromatin disaggregation and denaturation using 9 M urea, 2% 2-mercaptoethanol, 4% Nonidet P-40 +/- 2 M NaCl. DNA from nickel-treated cells consistently had more (35S)-methionine radioactivity associated with it than did DNA from untreated cells. This radioactivity was resistant to ribonuclease but sensitive to protease. Differential extraction using denaturing agents and high ionic strength followed by SDS-polyacrylamide gel electrophoresis revealed that most of the tightly bound proteins were nonhistone chromosomal proteins, and possibly histone 1. The enhancement of DNA-protein binding from nickel-treated cells was disrupted by SDS, suggesting that nickel ions do not function as classical bifunctional crosslinking agents. Since regulation of DNA replication and gene expression is dependent upon DNA-protein interactions, the effect of nickel in altering the extent of DNA-protein binding may interfere with this regulation and may contribute to the carcinogenic activity of nickel compounds.  相似文献   

15.
Ternary complex formation of some potent insulin-mimetic zinc(II) complexes of bidentate ligands: maltol and 3-hydroxy-1,2-dimethyl-pyridinone with (O,O), 2-picolinic acid and 6-methylpicolinic acid with (N,O) and the tridentate 2,6-dipicolinic acid with (O,N,O) coordination modes was studied in aqueous solutions by pH-potentiometry and spectroscopic (UV, CD, ESI-MS) methods in the presence of critical cell constituents such as l-glutathione reduced (GSH) and adenosine 5′-triphosphate (ATP). Results showed that formation of the ternary complexes was hindered in the case of 2,6-dipicolinic acid, especially with ATP, while it was favoured with the bidentate ligands in the physiological pH range. Driving force of the formation of mixed-ligand species was found to be a more enhanced coordination of GSH and ATP as second ligands in the ternary complexes than in their binary ones due to steric and electrostatic reasons. The mitochondrial dehydrogenase activity of the zinc(II) complexes, as an indirect indicator for the glucose intake, was measured on Mono Mac and 3T3-L1 adipocyte cell lines. The activity of the complexes up to ∼10-100 μM concentration was in the range of the effect of 0.75-1.5 μM insulin, while at higher concentration it was broken down due to the sensitivity of the cells to toxicity of the complexes.  相似文献   

16.
This article describes the leading steps to develop an assay of DNA damage for the marine amphipod Gammarus locusta, using agarose gel electrophoresis (AGE). To test the sensitivity and feasibility of the AGE technique, X-ray assays were performed with naked DNA and with live amphipods. These positive controls demonstrated the effectiveness of the AGE technique to not only discriminate distinct levels of DNA strand breakage in a dose-dependent manner, but also to identify and quantify the type of strand breakage induced. It was also shown that it is possible to detect DNA damage using whole-body DNA extracts from amphipods. To explore the potential of this technique for use in ecotoxicological studies with amphipods, a 96-h waterborne-copper toxicity test was performed. Copper-induced DNA strand breakage was first observed after 24 h of exposure, and was recorded again at 96 h, at a copper concentration of 20 μg l -1 . The absence of strand breakage after 48 h of exposure is discussed in the light of the underlying mechanisms of copper toxicity and DNA repair. These studies demonstrated the feasibility of including DNA damage as a biomarker in ecotoxicological studies with amphipods. Information gained from the use of this biomarker would help with the interpretation of chronic toxicity tests and would contribute to our understanding of the impact of genotoxic insult in marine invertebrates, particularly crustaceans.  相似文献   

17.
DNA synthesis, as well as respiration, has been studied in CV-1 cells incubated with 5 or 25 micrograms/cm3 haematoporphyrin derivative Photofrin II (PF II) for 1, 24 or 48 h and then irradiated with various doses of UVA light (365 nm). The impairments of DNA synthesis increased with the duration of incubation with the porphyrin, its concentration and the dose of irradiation. The cellular consumption of oxygen is also inhibited by the treatment, but less severely. In the case of the higher PF II concentration (25 micrograms/cm3), the impairment of DNA synthesis after illumination seems to be mainly due to 3HTdR transport inhibition. This effect can be related to plasma membrane damage as shown by lactate dehydrogenase leakage. At 5 micrograms/cm3 PF II, DNA synthesis inhibition is observed even after short exposure to PF II and light without 3HTdR transport impairment. In that case, DNA and/or mitochondrial photodamage may explain the inhibition.  相似文献   

18.
One mechanism by which communication between the endoplasmic reticulum (ER) and mitochondria is achieved is by close juxtaposition between these organelles via mitochondria-associated membranes (MAM). The MAM consist of a region of the ER that is enriched in several lipid biosynthetic enzyme activities and becomes reversibly tethered to mitochondria. Specific proteins are localized, sometimes transiently, in the MAM. Several of these proteins have been implicated in tethering the MAM to mitochondria. In mammalian cells, formation of these contact sites between MAM and mitochondria appears to be required for key cellular events including the transport of calcium from the ER to mitochondria, the import of phosphatidylserine into mitochondria from the ER for decarboxylation to phosphatidylethanolamine, the formation of autophagosomes, regulation of the morphology, dynamics and functions of mitochondria, and cell survival. This review focuses on the functions proposed for MAM in mediating these events in mammalian cells. In light of the apparent involvement of MAM in multiple fundamental cellular processes, recent studies indicate that impaired contact between MAM and mitochondria might underlie the pathology of several human neurodegenerative diseases, including Alzheimer's disease. Moreover, MAM has been implicated in modulating glucose homeostasis and insulin resistance, as well as in some viral infections.  相似文献   

19.
Glutathione (L-γ-Glutamyl-L-Cysteinylglycine) appears as the major nonprotein thiol compound in yeasts. Recent advances have shown that glutathione (GSH) seems to be involved in the response of yeasts to different nutritional and oxidative stresses. When the yeast Saccharomyces cerevisiae is starved for sulfur or nitrogen nutrients, GSH may be mobilized to ensure cellular maintenance. Glutathione S-transferases may be involved in the detoxification of electrophilic xenobiotics. Vacuolar transport of metal derivatives of GSH ensure resistance to metal stress. Growth of methylotrophic yeasts on methanol results in the formation of an excess formaldehyde that is detoxified by a GSH-dependent formaldehyde dehydrogenase. Growth of yeasts on glycerol results in the accumulation of methylglyoxal detoxified by the glyoxalase pathway. Glutathione per se can react with oxidative agents or is involved in the oxidative stress response through glutathione peroxidase.  相似文献   

20.
Induction of DNA single-strand breaks (ssb), their resealing and cytotoxicity by tert-butyl hydroperoxide (t-BuOOH) were investigated in cultured Chinese hamster V79 cells. The effect of the depletion of cellular glutathione (GSH), iron chelation and induction of metallothionein (MT) on these parameters was studied. t-BuOOH in a concentration range of 0.02-0.5 mM induced DNA ssb in a dose-dependent fashion. Strand breakage increased as a function of time up to 1 h. Divalent iron chelator o-phenanthroline suppressed markedly the induction of DNA ssb while the trivalent iron chelator desferrioxamine had no effect. GSH-depletion increased cytotoxicity of t-BuOOH. In contrast, the depletion of GSH did not affect the efficiency of formation of DNA ssb by t-BuOOH and the rate of resealing of the DNA damage. The induction of MT did not influence the efficiency of formation of DNA ssb by t-BuOOH. In summary, while GSH depletion and MT induction affected the formation of DNA ssb and cytotoxicity differently divalent iron was required for both. Therefore, appears likely that DNA breakage and cytotoxicity by t-BuOOH are caused by independent mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号