首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fungal enzyme galactose oxidase is a radical copper oxidase that catalyzes the oxidation of a broad range of primary alcohols to aldehydes. Previous mechanistic studies have revealed a large substrate deuterium kinetic isotope effect on galactose oxidase turnover whose magnitude varies systematically over a series of substituted benzyl alcohols, reflecting a change in the character of the transition state for substrate oxidation. In this work, these detailed mechanistic studies have been extended using a series of stereospecifically monodeuterated substrates, including 1-O-methyl-alpha-D-galactose as well as unsubstituted benzyl alcohol and 3- and 4-methoxy and 4-nitrobenzyl derivatives. Synthesis of all of these substrates was based on oxidation of the alpha,alpha'-dideuterated alcohol to the corresponding (2)H-labeled aldehyde, followed by asymmetric hydroboration using alpha-pinene/9-BBN reagents to form the stereoisomeric alcohols. Products from enzymatic oxidation of each of these substrates were characterized by mass spectrometry to quantitatively evaluate the substrate dependence of the stereoselectivity of the catalytic reaction. For all of these substrates, the selectivity for pro-S hydrogen abstraction was at least 95%. This selectivity appears to be a direct consequence of constraints imposed by the enzyme on the orientation of substrates bearing a branched beta-carbon. Steady state analysis of kinetic isotope effects on V/K has resolved individual contributions from primary and alpha-secondary kinetic isotope effects in the reaction, providing a test for the involvement of an electron transfer redox equilibrium in the oxidation process. Multiple isotope effect measurements utilizing simultaneous labeling of the substrate and solvent have contributed to refinement of the relation between proton transfer and hydrogen atom transfer steps in substrate oxidation.  相似文献   

2.
Summary Specific oxidation of D-galactose present in the carbohydrate moiety of glucose oxidase from Aspergillus niger by galactose oxidase in the presence of catalase (48% efficiency) did not change the activity of the enzyme. Oxidized enzyme was coupled to hydrazide derivatives of O--D-galactosyl Separon H 1000 or of Sepharose 4B. Both solid supports were modified with adipic acid dihydrazide after their activation with galactose oxidase. Each immobilized preparation of glucose oxidase showed higher activity than was achieved by other immobilizing procedures.  相似文献   

3.
A multi-coupled enzyme assay system for determining sialidase activity is described. Enzymes, substrates and chromogens are reacted in situ and determined spectrophotometrically in ELISA microtiter plates. Sialidase is assayed by the extent of desialylated galactose on an appropriate sialoglycoconjugate (fetuin), which is otherwise unavailable for oxidation by galactose oxidase. The oxidation is monitored by the coupling of H2O2 released to a third enzyme, peroxidase. The rate of change of absorbance at 405 nm, resulting from the oxidized chromogen is a measure of the reaction rate of the coupled enzyme system. A similar system can be used for determining galactose oxidase in solution, or on blots using galactose as substrate. Due to the small-scale single-step measurement, the described assay is a sensitive, convenient, and inexpensive alternative to the classic colorimetric determination.  相似文献   

4.
Patterns of oxidation of dilute solutions of desialylated fetuin and submaxillary mucin by galactose oxidase have been examined. A significant portion (20-40%) of the terminal galactosyls exposed on the glycoproteins, which theoretically were expected to be accessible to the enzyme, was not oxidized. In comparison, galactosyls in oligosaccharides released from completely desialylated glycoproteins were oxidized more effectively with an apparently lower degree of crypticity to the enzyme. Partial desialylation usually resulted in a reduction of both the rate and the final level of substrate oxidation. A second cycle of oxidation of a desialylated substrate earlier oxidized by galactose oxidase and then reduced by NaB3H4 revealed a selectivity in the pattern of galactosyl oxidation. The same galactosyl residues oxidized in the first cycle were again the most susceptible to oxidation in the second cycle, leaving unmodified the same fraction of galactosyls throughout both cycles. The relevance of these results to the application of the galactose oxidase-NaBH4 procedure for detecting and measuring desialylated glycoconjugates in solution and in biological membranes is discussed.  相似文献   

5.
Expression of recombinant galactose oxidase by Pichia pastoris   总被引:5,自引:0,他引:5  
Galactose oxidase catalyzes the oxidation of a variety of primary alcohols, producing hydrogen peroxide as a product. Among hexose sugars, the enzyme exhibits a high degree of specificity for the C6-hydroxyl of galactose and its derivatives, underlying a number of important bioanalytical applications. Galactose oxidase cDNA has been cloned for expression in Pichia pastoris both as the full-length native sequence and as a fusion with the glucoamylase signal peptide. Expression of the full-length native sequence results in a mixture of partly processed and mature galactose oxidase. In contrast, the fusion construct directs efficient secretion of correctly processed galactose oxidase in high-density, methanol-induced fermentation. Culture conditions (including induction temperature and pH) have been optimized to improve the quality and yield (500 mg/L) of recombinant enzyme. Lowering the temperature from 30 to 25 degrees C during the methanol induction phase results in a fourfold increase in yield. A simple two-step purification and one-step activation produce highly active galactose oxidase suitable for a wide range of biomedical and bioanalytical applications.  相似文献   

6.
Alcohol oxidase (alcohol:oxygen oxidoreductase) was crystallized from a methanolgrown yeast, Pichia sp. The crystalline enzyme is homogenous as judged from polyacrylamide gel electrophoresis. Alcohol oxidase catalyzed the oxidation of short-chain primary alcohols (C1 to C6), substituted primary alcohols (2-chloroethanol, 3-chloro-1-propanol, 4-chlorobutanol, isobutanol), and formaldehyde. The general reaction with an oxidizable substrate is as follows: Primary alcohol + O2 → aldehyde + H2O2 Formaldehyde + O2 → formate + H2O2. Secondary alcohols, tertiary alcohols, cyclic alcohols, aromatic alcohols, and aldehydes (except formaldehyde) were not oxidized. The Km values for methanol and formaldehyde are 0.5 and 3.5 mm, respectively. The stoichiometry of substrate oxidized (alcohol or formaldehyde), oxygen consumed, and product formed (aldehyde or formate) is 1:1:1. The purified enzyme has a molecular weight of 300,000 as determined by gel filtration and a subunit size of 76,000 as determined by sodium dodecyl sulfate-gel electrophoresis, indicating that alcohol oxidase consists of four identical subunits. The purified alcohol oxidase has absorption maxima at 460 and 380 nm which were bleached by the addition of methanol. The prosthetic group of the enzyme was identified as a flavin adenine dinucleotide. Alcohol oxidase activity was inhibited by sulfhydryl reagents (p-chloromercuribenzoate, mercuric chloride, 5,5′-dithiobis-2-nitrobenzoate, iodoacetate) indicating the involvement of sulfhydryl groups(s) in the oxidation of alcohols by alcohol oxidase. Hydrogen peroxide (product of the reaction), 2-aminoethanol (substrate analogue), and cupric sulfate also inhibited alcohol oxidase activity.  相似文献   

7.
FAD-dependent polyamine oxidase (PAO; EC 1.5.3.11) is one of the key enzymes in the catabolism of polyamines spermidine and spermine. The natural substrates for the enzyme are N1-acetylspermidine, N1-acetylspermine, and N1,N12-diacetylspermine. Here we report that PAO, which normally metabolizes achiral substrates, oxidized (R)-isomer of 1-amino-8-acetamido-5-azanonane and N1-acetylspermidine as efficiently while (S)-1-amino-8-acetamido-5-azanonane was a much less preferred substrate. It has been shown that in the presence of certain aldehydes, the substrate specificity of PAO and the kinetics of the reaction are changed to favor spermine and spermidine as substrates. Therefore, we examined the effect of several aldehydes on the ability of PAO to oxidize different enantiomers of alpha-methylated polyamines. PAO supplemented with benzaldehyde predominantly catalyzed the cleavage of (R)-isomer of alpha-methylspermidine, whereas in the presence of pyridoxal the (S)-alpha-methylspermidine was preferred. PAO displayed the same stereospecificity with both singly and doubly alpha-methylated spermine derivatives when supplemented with the same aldehydes. Structurally related ketones proved to be ineffective. This is the first time that the stereospecificity of FAD-dependent oxidase has been successfully regulated by changing the supplementary aldehyde. These findings might facilitate the chemical regulation of stereospecificity of the enzymes.  相似文献   

8.
Ligand interactions with galactose oxidase: mechanistic insights.   总被引:1,自引:1,他引:0  
Interactions between galactose oxidase and small molecules have been explored using a combination of optical absorption, circular dichroism, and electron paramagnetic resonance (EPR) spectroscopies to detect complex formation and characterize the products. Anions bind directly to the cupric center in both active and inactive galactose oxidase, converting to complexes with optical and EPR spectra that are distinctly different from those of the starting aquo enzyme. Azide binding is coupled to stoichiometric proton uptake by the enzyme, reflecting the generation of a strong base (pKa > 9) in the active site anion adduct. At low temperature, the aquo enzyme converts to a form that exhibits the characteristic optical and EPR spectra of an anion complex, apparently reflecting deprotonation of the coordinated water. Anion binding results in a loss of the optical transition arising from coordinated tyrosine, implying displacement of the axial tyrosine ligand on forming the adduct. Nitric oxide binds to galactose oxidase, forming a specific complex exhibiting an unusual EPR spectrum with all g values below 2. The absence of Cu splitting in this spectrum and the observation that the cupric EPR signal from the active site metal ion is not significantly decreased in the complex suggest a nonmetal interaction site for NO in galactose oxidase. These results have been interpreted in terms of a mechanistic scheme where substrate binding displaces a tyrosinate ligand from the active site cupric ion, generating a base that may serve to deprotonate the coordinated hydroxyl group of the substrate, activating it for oxidation. The protein-NO interactions may probe a nonmetal O2 binding site in this enzyme.  相似文献   

9.
Source of pyrrole-2-carboxylate in mammalian urine   总被引:1,自引:0,他引:1  
Pyrrole-2-car?ylate, earlier reported in human urine and labeled in rat urine after administration of radioactive proline, arises more directly from labeled hydroxyproline. Antibiotic treatment appeared to exclude epimerization of administered hydroxy-L-proline to a D-epimer by intestinal bacteria. A likely reaction for the in vivo conversion is hydroxy-L-proline oxidation by the L-amino acid oxidase of rat kidney, demonstrable with purified enzyme. Crystalline D-amino acid oxidase also catalyzes a slow oxidation of hydroxy-L-proline. These two reactions are adequate to account for the normal excretion of pyrrole-2-car?ylate by a number of species.  相似文献   

10.
The utility of both galactose oxidase and alcohol oxidase for alcohol-to-aldehyde oxidation has been investigated, from a synthetic point of view. The speed of reaction and degree of conversion has been measured for 29 different primary alcohols. The two oxidative enzymes show complementary synthetic use, i.e. galactose oxidase for galactose-derived polyols and alcohol oxidase for aliphatic mono- and diols. Alcohol oxidase has been successfully used in combination with the aldolase DERA in a two-step, one-pot reaction cascade.  相似文献   

11.
Previous results indicate that a tryptophan residue(s) may interact with the sugar substrate and Cu(II) atom of galactose oxidase (Ettinger, M. J., and Kosman, D. J. (1974), Biochemistry 13, 1248). We now show that N-bromosuccinimide (NBS) reduces enzymatic activity to 2% as two tryptophans are oxidized; only four residues are easily oxidized in the holoenzyme. An enzymatic activity vs. number of residues oxidized profile suggests that this inactivation is probably associated with only one of the first 2 residues oxidized. There is no evidence for chain cleavage or modification of amino acids other than tryptophan. While substrate protection is not afforded by the sugar substrate, the activity-related tryptophan is placed within the active-site locus by spectral evidence. NBS oxidation of two tryptophans results in a marked diminution of the large copper optical-activity transition at 314 nm. Under some reaction conditions, a doubling of ellipticity in the 600-nm region of copper CD is also observed. The effects of the NBS oxidation on the CD spectra of galactose oxidase permit the assignment of the 314-nm CD band to a charge-transfer transition and the 229-nm extremum to a specific tryptophan contribution. The AZZ parameter from electron spin resonance spectra is also markedly reduced by the NBS oxidation. Moreover, while cyanide binds to the native enzyme without reducing the Cu(II) atom, cyanide rapidly reduces the Cu(II) atom to Cu(I) in the NBS-oxidized enzyme. These CD and ESR results are taken to suggest that one aspect of the inactivation by NBS oxidation may be a conversion of the pseudosquare planar copper complex in the native enzyme to a more distorted, towards tetrahedral, complex in the inactivated enzyme. Since the inactivation can be accomplished without affecting binding of the sugar substrate, tryptophan oxidation must affect catalysis per se.  相似文献   

12.
The intracellular galactose oxidase from Dactylium dendroides was purified to homogeneity with a 64% yield. The enzyme is a glycoprotein (7.7% neutral sugars, 1.7% aminosugars) with 72,000 Da of molecular mass. The enzyme showed nonlinear double reciprocal plots with O2 and D-galactose, suggesting cooperative binding for both substrates. The intracellular galactose oxidase catalyzes the oxidation of galactose derivatives and dihydroxyacetone but not of glycerol, glycolaldehyde, beta-hydroxipyruvate, and allyl alcohol which are substrates for the extracellular enzyme. Compared with the extracellular galactose oxidase, the intracellular enzyme showed higher carbohydrate content and sensitivity to diethyldithiocarbamate.  相似文献   

13.
The copper enzyme galactose oxidase (GOase, EC 1.1.3.9) catalyses the oxidation of D-galactose and other primary alcohols in air to the corresponding aldehydes and hydrogen peroxide. The current mechanistic hypothesis for this two-electron redox reaction involves a Cu(I)/Cu(II) couple and the reversible oxidation of a ligating phenolate (tyrosine residue of the Tyr272-Cys228 conjugate) to a phenoxyl radical. Our approaches to functional models for galactose oxidase comprise both the use of low-molecular-weight copper complexes of a Schiff-base and sulfonamide ligands, and the synthesis/screening of combinatorial libraries. With regard to the latter, we have synthesized (by the IRORI-directed synthesis approach) peptide libraries carrying either His or the redox-active amino acids Tyr, mod-Cys (a model for the Tyr272-Cys228 conjugate) or TOAC (a TEMPO-derived alpha-amino acid) at four variable positions. After incubation with copper ions, the catalytically active library members were identified by specially designed screening methods.  相似文献   

14.
S I Rao  M W Duffel 《Chirality》1991,3(2):104-111
Aryl sulfotransferase IV catalyzes the 3'-phosphoadenosine-5'-phosphosulfate (PAPS)-dependent formation of sulfuric acid esters of benzylic alcohols. Since the benzylic carbon bearing the hydroxyl group can be asymmetric, the possibility of stereochemical control of substrate specificity of the sulfotransferase was investigated with benzylic alcohols. Benzylic alcohols of known stereochemistry were examined as potential substrates and inhibitors for the homogeneous enzyme purified from rat liver. For 1-phenylethanol, both the (+)-(R)- and (-)-(S)-enantiomers were substrates for the enzyme, and the kcat/Km value for the (-)-(S)-enantiomer was twice that of the (+)-(R)-enantiomer. The enzyme displayed an absolute stereospecificity with ephedrine and pseudoephedrine, and with 2-methyl-1-phenyl-1-propanol; that is, only (-)-(1R,2S)-ephedrine, (-)-(1R,2R)-pseudoephedrine, and (-)-(S)-2-methyl-1-phenyl-1-propanol were substrates for the sulfotransferase. In the case of 1,2,3,4-tetrahydro-1-naphthol, only the (-)-(R)-enantiomer was a substrate for the enzyme. Both (+)-(R)-2-methyl-1-phenyl-1-propanol and (+)-(S)-1,2,3,4-tetrahydro-1-naphthol were competitive inhibitors of the aryl sulfotransferase-catalyzed sulfation of 1-naphthalenemethanol. Thus, the configuration of the benzylic carbon bearing the hydroxyl group determined whether these benzylic alcohols were substrates or inhibitors of the rat hepatic aryl sulfotransferase IV. Furthermore, benzylic alcohols such as (+)-(S)-1,2,3,4-tetrahydro-1-naphthol represent a new class of inhibitors for the aryl sulfotransferase.  相似文献   

15.
The contributions of the authors to the research program 'Radicals in Enzymatic Catalysis' over the last ca. 5 years are summarized. Significant efforts were directed towards the design and testing of phenol-containing ligands for synthesizing radical-containing transition metal complexes as potential candidates for catalysis of organic substrates like alcohols, amines, aminophenols and catechols. Functional models for different copper oxidases, such as galactose oxidase, amine oxidases, phenoxazinone synthase and catechol oxidase, are reported. The copper complexes synthesized can mimic the function of the metalloenzymes galactose oxidase and amine oxidases by catalyzing the aerial oxidation of alcohols and amines. Even methanol could be oxidized, albeit with a low conversion, by a biradical-copper(II) compound. The presence of a primary kinetic isotope effect, similar to that for galactose oxidase, provides compelling evidence that H-atom abstraction from the alpha-C-atom of the substrates is the rate-limiting step. Although catechol oxidase and phenoxazinone synthase contain copper, manganese(IV) complexes containing radicals have been found to be useful to study synthetic systems and to understand the naturally occurring processes. An 'on-off' mechanism of the radicals without redox participation from the metal centers seems to be operative in the catalysis involving such metal-radical complexes.  相似文献   

16.
The stability of intracellular, extracellular, and deglycosylated forms of galactose oxidase was compared with respect to the denaturing effects of heat, pH, and guanidine hydrochloride. The highly glycosylated forms were found to be more stable to pH and thermal inactivation. All forms were reversibly denaturated by guanidine hydrochoride, but the extent was dependent on the carbohydrate content. Deglycosylation did not affect the affinity of the enzyme for dihydroxyacetone and galactose. Exposure of different forms of galactose oxidase to proteases like pronase and trypsin resulted in a rapid degradation of the glycoenzymes with the formation of stable products. After pronase digestion of intra- and extracellular forms of galactose oxidase catalytic species were isolated by gel filtration. The species (61 and 42 kDa) isolated from pronase-digested extracellular enzyme lost their ability to oxidize primary alcohols. Species (67 and 46 kDa) obtained from the intracellular enzyme kept the specificity of the original enzyme. Active pronase-derived peptides (42 and 46 kDa, respectively) had a higher carbohydrate content than the inactive ones.  相似文献   

17.
Summary The oxidation of primary aliphatic alcohols by microsomal membrane fractions of alkane grown Candida tropicalis was shown to be due to the action of an inducible alcohol oxidase with a wide substrate specificity towards aliphatic alcohols. Stoichiometric studies showed that NADH production, in the presence of fatty alcohols, was due to the activity of an inducible fatty aldehyde dehydrogenase. The oxidase activity could be measured directly by hydrogen peroxide production via a peroxidase and a chromogenic redox indicator.  相似文献   

18.
Summary The whole cell ofHumicola spp. ATCC 20620 with rifamycin oxidase activity was immobilized by copolymerization with acrylamide. The whole cell was defatted by treatment with acetone to reduce the diffusional resistance through the cell membrane. The recovery of enzyme activity after the immobilization step was about 50%. The acetone-defatted cell showed the maximum activity at pH 7.5 for both free and the immobilized forms. No appreciable activity loss could be detected when stored at 4 °C and pH 7.8 for one month, while the half life at 40 °C and pH 8 was decreased to about 8 days. The apparent Km values of rifamycin oxidase for the free and immobilized acetonedefatted cells were 0.3mM and 0.6mM, respectively. The enzyme demonstrated substrate inhibition, but the degree of substrate inhibition was different between two forms of the enzyme preparation. A complete substrate inhibition was observed for the immobilized cell, whereas the enzyme activity was partially inhibited at high substrate concentration in the acetone-defatted cells.  相似文献   

19.
Oxidation of glycolipids in liposomes by galactose oxidase   总被引:1,自引:0,他引:1  
Small unilamellar phosphatidylcholine vesicles containing globo-series glycolipids were labeled by the galactose oxidase/NaB[3H]4 procedure. The major glycolipid of human red cells, globoside, was the best substrate for galactose oxidase both in vesicles and in tetrahydrofuran-containing buffer. The oxidation rates of membrane-bound ceramide trihexoside and Forssman glycolipid were one-fourth and one-tenth, respectively, of the oxidation rate of globoside. Membrane-bound ceramide dihexoside was not a substrate for galactose oxidase, although it was readily oxidized in tetrahydrofuran-containing buffer. Soluble sialoglycoproteins and membrane-incorporated glycophorin A stimulated the oxidation of globoside-containing vesicles, whereas membrane-bound GD1a ganglioside had no effect on globoside oxidation.  相似文献   

20.
1. Some aspects of the substrate specificities of liver and yeast alcohol dehydrogenases have been investigated with pentan-3-ol, heptan-4-ol, (+)-butan-2-ol, (+/-)-butan-2-ol, (+/-)-hexan-3-ol and (+/-)-octan-2-ol as potential substrates. The liver enzyme is active with all substrates tested, including both isomers of each optically active alcohol. In contrast, the yeast enzyme is completely inactive towards those secondary alcohols where both alkyl groups are larger than methyl and active with only the (+)-isomers of butan-2-ol and octan-2-ol. 2. The absence of stereospecificity of liver alcohol dehydrogenase towards optically active secondary alcohols and its broad specificity towards secondary alcohols in general are explained in terms of an alkyl-binding site that will react with a variety of alkyl groups and the ability of the enzyme to accommodate a fairly large unbound alkyl group in an active enzyme-NAD(+)-secondary alcohol ternary complex. The absolute optical specificity of the yeast enzyme towards n-alkylmethyl carbinols and its unreactivity towards pentan-3-ol, hexan-3-ol and heptan-4-ol are explained by its inability to accept alkyl groups larger than methyl in the unbound position in a viable ternary complex. 3. Comparison of the known configurations of the n-alkylmethyl carbinols and [1-(2)H]ethanol and [1-(3)H]geraniol, which have been used in stereospecificity studies with these enzymes by other workers, provides strong evidence for which alkyl group of the substrate is bound to the enzyme in the oxidation of n-alkylmethyl carbinols. The conclusions reached are, for butan-2-ol oxidation with the liver enzyme, confirmed by deductions from kinetic data obtained with (+)-butan-2-ol and a sample of butan-2-ol containing 66% of (-)-butan-2-ol. 4. Initial-rate parameters for the oxidations of (+)-butan-2-ol, 66% (-)-butan-2-ol and pentan-3-ol by NAD with liver alcohol dehydrogenase are presented. The data are completely consistent with a general mechanism of catalysis previously proposed for this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号