首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Eremothecium ashbyii T30发酵产脂肪酶特性的研究   总被引:1,自引:0,他引:1  
惠明  赵坤  张星元 《生物技术》2001,11(5):15-18
研究了一株核黄素高产突变株E.ashbyii T30产脂肪酶的条件,确定了比较合适的脂肪酶发酵培养基,豆饼粉30g/L,玉米浆30ml/L,豆油5ml/L,KH2PO45g/L,MgSO4.7H2O 0.15g/L,pH消前7.5,T30在此培养基上振荡培养28h,既定条件下测脂肪酶活力可达232酶活单位/ml(较原株提高36.5%),从一个侧面证实其突变株特性,另外,对T30所产脂肪酶的诱导酶属性及脂肪酶在T30核黄素发酵过程中的作用也进行了初步探讨。  相似文献   

3.
Cell cultures prepared from transplanted Morris Hepatoma #44 and host liver were grown in media containing 10% fetal calf serum depleted of iodothyronines. Addition of 200 nM triiodothyronine significantly stimulated the rate of cell replication and thymidine kinase activity of hepatoma cells. The responses of adult liver cells were similar but less marked. This study documents for the first time that the growth of hepatoma cells in vitro is thyroid dependent.  相似文献   

4.
Reaction of gibberellin A3 (GA3) with carrier-free tritium gas and 5% palladium on calcium carbonate as catalyst gave a complex mixture of products, several of which were isolated and identified. Three of the purified products are the radioactive forms of naturally occurring gibberellins: [3H]GA3 (1), [3H]GA1 (2) and [3H]tetrahydro GA3 (4). Another substance was isolated and tentatively identified as [3H]16,17-dihydro GA3 (3). GLC was used to determine the specific activities of 1 and 2. [3H]GA3 likely arises from palladium catalysed nonspecific exchange of GA3 alkane hydrogen atoms with tritium. [3H]GA1 is also exchange labeled but most of its radioactivity is due to tritium addition to the C-1,2 olefinic bond of GA3.  相似文献   

5.
The interaction of ribonuclease T1 with DNA and nucleotides was investigated by fluorescence titration to establish whether or not this enzyme is a helix-destabilizing protein. Binding of the enzyme to DNA, ribonucleotides and oligodeoxyribonucleotides of chain length ten or more leads to enhancement of fluorescence emission of the enzyme as a function of increasing nucleotide/protein ratio. For deoxyribonucleotides of chain length less than ten, only quenching is observed. Energy transfer from the bases is postulated to be the source of the enhancement of fluorescence, while the decrease can be ascribed to changes in the distribution of charged groups in or near the binding site.  相似文献   

6.
Prostaglandin (PG) D3 has been identified as an inhibitor of human platelet aggregation, but little is known of the hemodynamic activity of this material. In morphine pretreated, chloralose-urethan anesthetized dogs, bolus intravenous injections (1, 3.2 and 10 μg/kg) of PGD3 and also PGD2 were associated with marked, dose-related increases in pulmonary arterial pressure. Cardiac index and rate increased, while peripheral vascular resistance decreased in response to injections of PGD3. A biphasic (depressor followed by a pressor phase) effect on systemic arterial pressure was observed after PGD2, while PGD3 was associated with dose-related depressor responses. Graded intravenous infusions (0.25, 0.50 and 1.0 μg/kg/min) of PGD3 and PGD2 were associated with qualitatively similar cardiovascular responses. Quantitatively, PGD3 infusions were associated with greater decreases in peripheral vascular resistance and greater increases in cardiac output, heart rate, and peak left ventricular dp/dt than were infusions of PGD2. In contrast, PGD3 was less potent than PGD2 as a pulmonary pressor material. Systemic arterial pressure responses to infusions of the prostaglandins were variable. In these experiments, PGD3 and PGD2 were associated with qualitatively similar cardiovascular responses characterized by peripheral vasodilatation.  相似文献   

7.
8.
The molecular structures of dimethylbis(trichlorosilyl)germane [Me2Ge(SiCl3)2] and trimethyl(trichlorosilyl)germane (Me3GeSiCl3) have been determined in the gas phase. Me3GeSiCl3 was found ab initio to possess C3v symmetry, with a low-lying torsional motion of the SiCl3 group relative to the GeMe3 group. The gas electron diffraction data were modelled with C3 symmetry, although little deviation from C3v symmetry was observed. Me2Ge(SiCl3)2 (C2v symmetry) was also found to have a very low-lying vibrational frequency relating to the rotation of the SiCl3 groups. This led to the gas electron diffraction data being modelled in C2 symmetry, with the observed combined deviation of the SiCl3 groups being 14° from the eclipsed structure calculated ab initio. The Ge-C bond lengths were unaffected by the addition of an extra SiCl3 group to the central germanium atom, but the Ge-Si bond lengths were observed to increase by over 1 pm.  相似文献   

9.
Dark-brown single crystals of the title compound 1 were obtained in high yield by layering a CuCl2 solution in 25% aqueous ammonia on a glycerol solution of K6[W4Te4(CN)12]·5H2O. The complex 1 was characterized by single crystal X-ray diffraction analysis and IR spectroscopy. The X-ray structure of 1 reveals a polymeric chain cyano-bridged cluster-metal coordination compound. The [W4Te4(CN)12]6− cluster anions are linked one to another by Cu2+ cations through coordination by nitrogen atoms of the CN groups.  相似文献   

10.
We previously designed and synthesized a series of histamine analogues with an imidazolylcyclopropane scaffold and identified potent non-selective antagonists for histamine H3 and H4 receptor subtypes. In this study, to develop H4 selective ligands, we newly designed and synthesized cyclopropane-based derivatives having an indole, benzimidazole, or piperazine structure, which are components of representative H4 selective antagonists such as JNJ7777120 and JNJ10191584. Among the synthesized derivatives, imidazolylcyclopropanes 12 and 13 conjugated with a benzimidazole showed binding affinity to the H3 and H4 receptors comparable to that of a well-known non-selective H3/H4 antagonist, thioperamide. These results suggest that the binding modes of the cyclopropane-based H3/H4 ligands in the H4 receptor can be different from those of the indole/benzimidazole-piperazine derivatives.  相似文献   

11.
12.
We analyzed growth data from model aspen (Populus tremuloides Michx.) forest ecosystems grown in elevated atmospheric carbon dioxide ([CO2]; 518 μL L?1) and ozone concentrations ([O3]; 1.5 × background of 30–40 nL L?1 during daylight hours) for 7 years using free‐air CO2 enrichment technology to determine how interannual variability in present‐day climate might affect growth responses to either gas. We also tested whether growth effects of those gasses were sustained over time. Elevated [CO2] increased tree heights, diameters, and main stem volumes by 11%, 16%, and 20%, respectively, whereas elevated ozone [O3] decreased them by 11%, 8%, and 29%, respectively. Responses similar to these were found for stand volume and basal area. There were no growth responses to the combination of elevated [CO2+O3]. The elevated [CO2] growth stimulation was found to be decreasing, but relative growth rates varied considerably from year to year. Neither the variation in annual relative growth rates nor the apparent decline in CO2 growth response could be explained in terms of nitrogen or water limitations. Instead, growth responses to elevated [CO2] and [O3] interacted strongly with present‐day interannual variability in climatic conditions. The amount of photosynthetically active radiation and temperature during specific times of the year coinciding with growth phenology explained 20–63% of the annual variation in growth response to elevated [CO2] and [O3]. Years with higher photosynthetic photon flux (PPF) during the month of July resulted in more positive growth responses to elevated [CO2] and more negative growth responses to elevated [O3]. Mean daily temperatures during the month of October affected growth in a similar fashion the following year. These results indicate that a several‐year trend of increasingly cloudy summers and cool autumns were responsible for the decrease in CO2 growth response.  相似文献   

13.
Two new zincophosphites [C6H14N2]0.5[Zn(H2PO3)2] 1 and [C4H12N2]0.5[(CH3)2NH2][Zn2(HPO3)3] 2 have been solvothermally synthesized in mixed solvents of N,N-dimethylformamide (DMF) and 1,4-dioxane (DOA), respectively. Single-crystal X-ray diffraction analysis reveals that compound 1 exhibits a neutral inorganic chain formed by ZnO4 and HPO2(OH) units. Interestingly, the left- and right-handed hydrogen-bonded helical chains are alternately formed via the hydrogen-bonds between two adjacent chains. Compound 2 exhibits a layer structure with 4- and 12-MRs formed by ZnO4 and HPO3 units, in which two kinds of organic amine molecules both act as countercations to compensate the overall negative electrostatic charge of the anionic network.  相似文献   

14.
15.
The reaction of ReH92− with Mo(diglyme)(CO)3 leads to the formation of the mixed metal cluster trianion, ReMo3H4(CO)123−. This species has been characterized analytically, spectroscopically and through X-ray diffraction analysis. A pseudo-tetrahedral arrangement of M(CO)3 fragments is adopted, such that each set of three carbonyl ligands eclipses the adjacent three tetrahedral edges, an apparent result of the location of the hydride ligands on the tetrahedral faces. Variable temperature NMR studies revealed a fluctional process for some of the carbonyl ligands, but not for the hydrides. Crystal data for [Me4N]3[ReMo3H4(CO)12]·THF; space group P21/n, a = 12.157(2), B = 21.480(4), C = 15.964(3) Å, β = 98.26(1)°, Z = 4, R = 0.067 and Rw = 0.076.  相似文献   

16.
17.
The organotin complex [Ph3SnS(CH2)3SSnPh3] (1) was synthesized by PdCl2 catalyzed reaction between Ph3SnCl and disodium-1,3-propanedithiolate which in turn was prepared from 1,2-propanedithiol and sodium in refluxing THF. Reaction of 1 with Ru3(CO)12 in refluxing THF affords the mononuclear complex trans-[Ru(CO)4(SnPh3)2] (2) and the dinuclear complex [Ru2(CO)6(μ-κ2-SCH2CH2CH2S)] (3) in 20 and 11% yields, respectively, formed by cleavage of Sn-S bond of the ligand and Ru-Ru bonds of the cluster. Treatment of pymSSnPPh3 (pymS = pyrimidine-2-thiolate) with Ru3(CO)12 at 55-60 °C also gives 2 in 38% yield. Both 1 and 2 have been characterized by a combination of spectroscopic data and single crystal X-ray diffraction analysis.  相似文献   

18.
In this study, we used molecules with either of the structural differences in the side chains of vitamin D2 and vitamin D3 to investigate which feature is responsible for the significant differences in their respective metabolism, pharmacokinetics and toxicity. We used two cell model systems—HepG2 and HPK1A-ras—to study hepatic and target cell metabolism, respectively. Studies with HepG2 revealed that the pattern of 24- and 26-hydroxylation of the side chain reported for 1α-hydroxyvitamin D2 (1α-OH-D2) but not for 1α-OH-D3 is also observed in both 1α-OH-D4 and Δ22-1α-OH-D3 metabolism. This suggests that the structural feature responsible for targeting the enzyme to the C24 or C26 site could be either the C24 methyl group or the 22–23 double bond. In HPK1A-ras cells, the pattern of metabolism observed for the 24-methylated derivative, 1α,25-(OH)2D4, was the same pattern of multiple hydroxylations at C24, C26 and C28 seen for vitamin D2 compounds without evidence of side chain cleavage observed for vitamin D3 derivatives, suggesting that the C24 methyl group plays a major role in this difference in target cell metabolism of D2 and D3 compounds. Novel vitamin D4 compounds were tested and found to be active in a variety of in vitro biological assays. We conclude that vitamin D4 analogs and their metabolites offer valuable insights into vitamin D analog design, metabolic enzymes and maybe useful clinically.  相似文献   

19.
Refluxing WCl4(PMe3)3 under a nitrogen atmosphere in the presence of two equivalents of sodium amalgam leads to a reduction to the W(II) complex [cis,mer-WCl2(PMe3)3]2N2 (1), which can be converted to [mer,trans-WCl3(PMe3)2]2N2 (2) via appropriate oxidation/chlorination. Structural data have been obtained for both complexes, and demonstrate significantly increased steric crowding in 1 due to PMe3/PMe3 interactions. The N-N bond distances in the two compounds are similar, at 1.279(4) and 1.243(18) Å, respectively.  相似文献   

20.
Reaction of HSi(OEt)3 with IrCl(CO)(PPh3)2 (5:1 molar ratio) at room temperature for 1 h gives IrCl(H){Si(OEt)3}(CO)(PPh3)2 (1), which is observed by the 1H and 31P{1H} NMR spectra of the reaction mixture. The same reaction, but in 20:1 molar ratio at 50 °C for 24 h produces IrCl(H)2(CO)(PPh3)2 (2) rather than the expected product Ir(H)2{Si(OEt)3}(CO)(PPh3)2 (3) that was previously reported to be formed by this reaction. Accompanying formation of Si(OEt)4, (EtO)3SiOSi(OEt)3, and (EtO)2HSiOSi(OEt)3 is observed. On the other hand, trialkylhydrosilane HSiEt3 reacts with IrCl(CO)(PPh3)2 (10:1 molar ratio) at 80 °C for 84 h to give Ir(H)2(SiEt3)(CO)(PPh3)2 (4) in a high yield, accompanying with a release of ClSiEt3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号