首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect(s) of a new imipramine analogue, 2-nitroimipramine, on high affinity [3H] imipramine binding and [3H] serotonin uptake in human platelets were studied. 2-Nitroimipramine was found not only to be a very potent inhibitor of [3H] imipramine binding and [3H] serotonin uptake but was found to irreversibly inhibit binding and uptake simultaneously. This finding supports previous observations from our laboratory and others that high affinity imipramine binding labels serotonin uptake or transport sites. 2-Nitroimipramine should prove an important tool for subsequent studies of the molecular mechanism(s) involved in the transport of serotonin and the binding of imipramine to platelet and brain membranes.  相似文献   

2.
Abstract: Ascorbate-induced lipid peroxidation, as measured by malonyldialdehyde (MDA) production, caused irreversible decreases in Bmax of both [3H]5-HT and [3H]spiperone binding. Cacl2 (4mM) inhibited ascorbateinduced MDA formation at ascorbate concentrations >0.57 mM, but not at ≤ 0.57 mM. Under the standard assay conditions (5.7 mM ascorbate and 4mM CaCl2), Cacl2 inhibited the MDA production casued by ascorbate by 88%, and the loss in [3H]5-HT binding by 57%. Ascorbate still decreased [3H]5-HT binding by 57%. Ascorbate still decreased [3H]5-HT binding when lipid peroxidation was completely inhibited by EDTA. This additional effect of ascorbate was reversible after washing the membranes. Other reducing agents (dithiothreitol, glutathione, and metabisulfite) also decreased the binding of [3H]serotonin. In contrast, [3H]spiperone binding was not affected by ascorbate in the absence of lipid peroxidation or by other reducing agents. These experiments demonstrate that ascorbate has a dual and differential effect on serotonin binding sites. First, ascorbate-induced lipid peroxiation irreversibly inactivates both [3H]5-HT and [3H]spiperone binding. Second, independent of lipid peroxidation, there is a direct, reversible effect of ascorbate on [3H]serotonin but not on [3H]spiperone binding, which is probably due to the difference in the biochemical nature of the two serotonin binding sites.  相似文献   

3.
The binding to isolated hepatocyte plasma membranes of radioactively labelled inhibitors of microfilamentous and microtubular protein function ([3H]cytochalasin B and [3H]colchicine, respectively) was studied as one means of assessing the degree of association of these proteins with cell surface membranes. [3H]Cytochalasin B which behaved identically to the unlabelled compound with respect to binding to these membranes was prepared by reduction of cytochalasin A with NaB3H4. The binding was rapid, readily reversible, proportional to the amount of membrane and relatively insentive to changes of pH or ionic strength. At 10?6 M [3H]cytochalasin B, glucose or p-chloromercuribenzoate, an inhibitor of glucose transport inhibited binding by about 20%; treatment of membranes with 0.6 M KI which depolymerizes F actin to G actin caused about 60% inhibition of binding. These two types of inhibition were additive indicating two separate classes of binding sites, one associated with sugar transport and one with microfilaments. Filamentous structures with the diameter of microfilaments (50 Å) were seen in electron micrographs of thin sections of the membranes. At concentrations greater than 10?5 M [3H]cytochalasin B, binding was proportional to drug concentration, characteristic of non-specific adsorption or partitioning. Intracellular membranes of the hepatocyte also bound [3H]cytochalasin B, those of the smooth endoplasmic reticulum to a greater extent than plasma membranes.[3H]Colchicine bound to plasma membranes in proportion to the amount of membrane and at a rate compatible with binding to tubulin. However, other properties of the binding including effects of temperature, drug concentration and antisera against tubulin were different from those of binding to tubulin. Hence, no evidence was obtained for association of microtubular elements with these membranes. Despite this there appeared to be an interdependence between microtubule and microfilament inhibitors: vinblastine sulfate stimulated [3H]cytochalasin B binding and cytochalasin B stimulated 3H colchicine binding. [3H]Colchicine also bound to intracellular membranes, especially smooth microsomes.  相似文献   

4.
Influences of dithiothreitol (DTT), p-chloromercuriphenyl sulfonate (PCMPS) and ascorbate on CuCl2-induced elevation of [3H]cimetidine binding were investigated in brain membranes of rats. CuCl2 (10–500 μM) elevated specific [3H]cimetidine binding in a concentration-dependent manner. There were two types of [3H]cimetidine binding in the presence of 50 μM CuCl2: high affinity binding with Kd = 1.97 nM and low affinity with Kd = 21.6 nM. PCMPS (10 and 100 μM) reduced the binding in both media with and without CuCl2. DTT (1–30 μM) or ascorbate (0.1 and 1.0 mM) markedly elevated the binding in the presence of CuCl2 but showed no effect and ascorbate rather inhibited the binding in the absence of CuCl2. DTT (0.1 mM) diminished the binding in the presence and absence of CuCl2. CuCl2 (50 μM) significantly (P < 0.01) increased the IC50 of histamine for [3H]cimetidine binding and the effect was greater than that from 100 μM GTP. It is suggested that sulfhydryl groups sensitive to PCMPS could interact with Cu2+ and thus be involved in an elevation of cimetidine binding. Cu2+ seems to regulate affinity of agonist binding for cimetidine binding sites presumably by acting on cimetidine binding sites and/or GTP binding regulatory proteins.  相似文献   

5.
I. Binding of [3H]apomorphine to dopaminergic receptors in rat striatum was most reproducible and clearly detectable when incubations were run at 25°C in Tris-HCl buffer, pH 7.5, containing 1 mM-EDTA and 0.01% ascorbic acid, using a washed total-membrane fraction. The receptor binding was stereospecifically inhibited by (+)-butaclamol, and dopamine agonists and antagonists showed high binding affinity for these sites. Unlabelled apomorphine inhibited an additional nonstereospecific binding site, which was unrelated to dopamine receptors. EDTA in the incubation mixture considerably lowered nonstereospecific [3H]apomorphine binding, apparently by preventing the complexation of the catechol moiety with metal ions which were demonstrated in membrane preparations. Stereospecific [3H]apomorphine binding was not detectable in the frontal cortex, whereas in the absence of EDTA much saturable nonstereospecific binding occurred. II. Kinetic patterns of stereospecific [3H]spiperone and [3H] apomorphine binding to rat striatal membranes and the inhibition patterns of a dopamine antagonist and an agonist were evaluated at different temperatures in high-ionic-strength Tris buffer with salts added and low-ionic-strength Tris buffer with EDTA. Apparent KD, values of spiperone decreased with decreasing tissue concentrations. KD, values of both spiperone and apomorphine were little influenced by temperature changes. Scatchard plots of the stereospecific binding changed from linear to curved; the amount of nonstereospecific binding of the 3H ligands varied considerably, but in opposite directions for spiperone and apomorphine in the different buffers. In various assay conditions, interactions between agonists, and between antagonists, appeared fully competitive, but agonist-antagonist interactions were of mixed type. The anomalous binding patterns are interpreted in terms of surface phenomena occurring upon reactions of a ligand with complex physicochemical properties and nonsolubilized sites on membranes suspended in a buffered aqueous solution. It is concluded that anomalous binding patterns are not necessarily an indication of binding to multiple sites or involvement of distinct receptors for high-affinity agonist and antagonist binding.  相似文献   

6.
Crude membrane fractions were prepared from rat retinae and used to study the specific binding of [3H]muscimol, a potent GABA agonist. Specific [3H]muscimol binding was enhanced 2–3 fold by pretreatment of the membranes with 0.025% Triton X-100. Two muscimol binding sites were demonstrated with KD values of 4.4 and 12.3 nM. GABA, muscimol, and 3-aminopropanesulfonic acid were the most potent inhibitors of specific [3H]muscimol binding with KI values of 15, 10, and 50 nM, respectively. These data are consistent with binding to the synaptic GABA receptor.  相似文献   

7.
In the present study we investigated the binding characteristics of estrogen and antiestrogen-receptor complexes to rabbit uterine chromatin. Activated or nonactivated estrogen receptors were partially purified by DEAE-cellulose chromatography using low (1 mM) or high (10 mM) concentrations of sodium molybdate. Activated [3H]estradiol-receptor complexes showed enhanced binding to chromatin acceptor sites unmasked by 1 M, 4 M and 6 M guanidine hydrochloride. We also examined the chromatin-binding characteristics of the estrogen receptors when bound by the high-affinity triphenylethylene antiestrogen, H1285. The acceptor site activity for the [3H]H1285-receptor complexes was markedly decreased at sites unmasked by 4 M and 6 M guanidine hydrochloride. Further, the nonactivated receptor complexes showed very low binding to deproteinized chromatin. The estrogen-receptor chromatin-acceptor sites were tissue specific and saturable. These chromatin acceptor sites differ in their affinity and capacity (number of binding sites per cell) for the estrogen- and antiestrogen-receptor complexes. Thus, we suggest that the differences in the physiological and physicochemical properties of estrogens and antiestrogens may be related to their differential interaction with uterine chromatin subfractions.  相似文献   

8.
Ascorbic acid is found in very high concentrations in cells of neural crest origin such as the central nervous system and the adrenal gland. A variety of evidence has been marshalled to support a role for ascorbate as a chemical messenger. One of the first non-biosynthetic biochemical effects ascribed to ascorate in the CNS was its ability to inhibit dopamine-stimulated adenylate cyclase (DA-ACase) in homogenates from striata of Long Evans rats (J. Neurochem.28, 663, 1977). Using an adenylate cyclase assay based on preparative HPLC, we were unable to detect any inhibition of DA-ACase by ascorbate at concentrations as high as 1 mM. Moreover, this failure to find inhibitory effects of ascorbate on DA-ACase occurred not only when striatal homogenates from Long-Evans rats were used, but also when tissue from Sprague-Dawley rats of N.C. Board of Health mice was tested. Although ascorbate may play a neuromodulatory role, it does not appear that its effects are mediated through effects on cAMP biosynthesis. Despite our inability to detect effects of ascorbate on DA-ACase, we did confirm that ascorbate significantly altered the binding of [3H]dopamine to striatal membranes. Thus, it is clear that the sites binding [3H]dopamine that are affected by ascorbate are unlikely to be the same ones coupled to aenylate cyclase.  相似文献   

9.
The rate of [3H]dopamine binding to crude synaptic membranes from canine caudate nucleus was considerably increased by 2 mM ATP, 5′-adenylylimidodiphosphate and GTP or by 1 mM 5′-guanylyl-imidodiphosphate, while strongly inhibited by 2 mM ADP and GDP. Half maximal concentrations of [3H]dopamine to bind to the membranes were 1.11 × 10?7M and 8.75 × 10?6M in the absence of 4 mM ATP, indicating a negative cooperativity of the dopamine receptor, and 9.25 × 10?7 M in its presence. Hill coefficient was increased from 0.70 to 1.04 by addition of 4 mM ATP. The optimal concentration of ATP for [3H]dopamine binding was in the range of 0.5 to 5 mM.  相似文献   

10.
Sodium ascorbate caused an increased lipid peroxidation and a large decrement in [3H]spiroperidol binding in a rat neostriatal membrane preparation (preparation C). Both effects were greater at intermediate (0.05 and 0.5 mM) than at higher or lower ascorbate concentrations. In contrast, in another neostriatal membrane preparation (preparation A), there was no loss of [3H]spiroperidol binding and only a small increase in lipid peroxidation caused by ascorbate. However, both the ascorbate-induced increase in lipid peroxidation and loss of [3H]spiroperidol binding were greatly enhanced in preparation A by the addition of iron salts. In experiments designed to explore reasons for these apparent discrepancies, we discovered that the method of tissue preparation was a critical factor. The ascorbate effects were consistently greater in a tissue preparation which was originally homogenized in an isotonic sucrose medium and centrifuged, and the cell debris discarded (as was done in preparation C), than in one in which the tissue was homogenized in a hypotonic medium and in which no low-speed centrifugation was done (as was done in preparation A). In other experiments, of several cations tested, only ferrous and ferric potentiated the above-described effects of ascorbate. Some ascorbic acid derivatives (e.g., isoascorbic acid) had properties similar to those of ascorbic acid, whereas several reducing agents could, in the presence of added iron salts, cause both a lipid peroxidation and a loss of [3H]spiroperidol binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Certain neuroleptic drugs, such as spiperone and (+) butaclamol, can discriminate between two populations of [3H]5-hydroxytryptamine ([3H]5-HT) binding sites in rat brain. The butyrophenone neuroleptic spiperone shows the greatest selectivity for these two binding sites, having at least a 3000-fold difference between its dissociation constants (2-12 nM versus 35,000 nM) for the high- and low-affinity sites, respectively. Inhibition of [3H]5-HT binding by spiperone in rat frontal cortex and corpus striatum yields distinctly biphasic inhibition curves with Hill slopes significantly less than unity. Results from nonlinear regression analysis of these inhibition studies were consistent with a two-site model in each brain region. In the frontal cortex the high-affinity neuroleptic sites comprised about 60% of the total [3/H]5-HT binding sites whereas in the corpus striatum they accounted for only 20% of the sites. Furthermore, saturation studies of [3H]5-HT binding assayed in the absence or presence of 1 μM-spiperone (a concentration that completely blocks the high-affinity site while having minimal activity at the low-affinity site) reveal a parallel shift in the Scatchard plot with no change in the dissociation constant of [3H]5-HT, but a significant decrease (64% in frontal cortex or 28% in corpus striatum) in the number of specific binding sites. These observations are consistent with the existence of at least two populations of [3H]5-HT binding sites having a differential regional distribution in rat brain.  相似文献   

12.
The binding of [3H]flunitrazepam was studied in membranes prepared from the kidney and cerebral cortex of unilaterally nephrectomized rats made hypertensive by simultaneous deoxycorticosterone acetate (DOCA) and NaCl administration. A significant 35–43% increase in the number of [3H]flunitrazepam binding sites (Bmax) was found in the renal membranes prepared from the hypertensive rats; there was no change in the density of binding sites in the membranes obtained from the cerebral cortex. The Kd of [3H]flunitrazepam binding did not change either in the renal or in the cerebral membranes (~ 12 nM in the kidney and ~2.0 nM in the brain). Drug specificity studies with renal membranes showed that the inhibition of [3H]flunitrazepam binding by various benzodiazepines did not jibe with their pharmacologic potency as anxiolytic agents. An intrarenal distribution of specific [3H]flunitrazepam binding was found in the bovine kidney; specific binding was greatest in the outer cortex and virtually absent in the medulla, the minor calyx and the renal artery. The evidence that the renal benzodiazepine binding site is of high affinity, is specific, has a unique distribution, and is regulated during hypertension suggests that it may be associated with an important pathophysiologic structure.  相似文献   

13.
Abstract The binding of [3H]aspartate and [3H]glutamate to membranes prepared from frozen human cerebellar cortex was studied. The binding sites differed in their relative proportions, their inhibition by amino acids and analogues, and by the effects of cations. A proportion (about 30%) of [3H]glutamate binding was to sites similar to those labelled by [3H]aspartate. An additional component of [3H]gluta-mate binding (about 50%) was displaced by quisqualate and aL-amino-3-hydroxy-5-methylisoxazole-4-propionic acid, and may represent a “quisqualate-preferring” receptor. Neither N-methyl-d-aspartic acid-sensitive nor dl-2-amino-4-phosphonobutyric acid-sensitive [3H]glutamate binding was detected.  相似文献   

14.
Abstract: High-affinity [3H]5-hydroxytryptamine ([3H]5-HT) binding in the rat spinal cord is similar to that demonstrated in the frontal cortex. [3H]5-HT binds with nearly the same affinity to sites in both tissues. Furthermore, similar patterns of displacement of [3H]5–HT were seen in both tissues, with either spiperone or LSD as the unlabeled ligand. This high-affinity binding appears to be to multiple sites, since displacement studies using 2 nM [3H]5–HT result in Hill coefficients less than unity for spiperone, LSD, and quipazine [Hill coefficients (nH): 0.44, 0.39, 0.40, respectively]. These sites apparently have an equal affinity for [3H]5-HT, since unlabeled 5-HT did not discriminate between them. Thus, the high-affinity [3H]5-HT binding in the spinal cord may be analogous to that observed in the frontal cortex, where two populations of sites have previously been described (5-HTIA, 5-HTIB). In addition to the multiple high-affinity spinal cord binding sites, a low-affinity [3H]5-HT binding component was also identified. A curvilinear Scatchard plot results from saturation studies using [3H]5-HT (0.5–100 nM) in the spinal cord. The plot can be resolved into sites having apparent dissociation constants of 1.4 nM and 57.8 nM for the high-and low-affinity components, respectively. Additional support for a change in affinity characteristics at higher radioligand concentrations comes from the displacement of 30 nM [3H]5-HT by the unlabeled ligand. A nonparallel shift in the dissociation curve was seen, resulting in a Hill coefficient less than unity (0.32). None of the specifically bound [3H]5-HT in the spinal cord is associated with the 5-HT uptake carrier, since fluoxetine, an inhibitor of 5-HT uptake, does not alter binding characteristics. In addition, a 5-HT binding site analogous to the site designated 5-HT, was not apparent in the spinal cord. Ketanse-rin and cyproheptadine, drugs that are highly selective for 5-HT, sites, did not displace [3H]5-HT from spinal tissue, and [3H]spiperone, a radioligand that binds with high affinity to 5-HT2 sites, did not exhibit saturable binding in the tissue. Thus, the 5-HT2 binding site reported in other regions of the central nervous system, and the serotonin uptake carrier do not appear to contribute to the multiple binding sites demonstrated in the spinal cord.  相似文献   

15.
Abstract: [3H]Aniracetam bound to specific and saturable recognition sites in membranes prepared from discrete regions of rat brain. In crude membrane preparation from rat cerebral cortex, specific binding was Na+ independent, was still largely detectable at low temperature (4°C), and underwent rapid dissociation. Scatchard analysis of [3H]aniracetam binding revealed a single population of sites with an apparent KD value of ~70 nM and a maximal density of 3.5 pmol/mg of protein. Specifically bound [3H]aniracetam was not displaced by various metabolites of aniracetam, nor by other pyrrolidinone-containing nootropic drugs such as piracetam or oxiracetam. Subcellular distribution studies showed that a high percentage of specific [3H]aniracetam binding was present in purified synaptosomes or mitochondria, whereas specific binding was low in the myelin fraction. The possibility that at least some [3H]aniracetam binding sites are associated with glutamate receptors is supported by the evidence that specific binding was abolished when membranes were preincubated at 37°C under fast shaking (a procedure that substantially reduced the amount of glutamate trapped in the membranes) and could be restored after addition of either glutamate or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) but not kainate. The action of AMPA was antagonized by DNQX, which also reduced specific [3H]aniracetam binding in unwashed membranes. High levels of [3H]aniracetam binding were detected in hippocampal, cortical, or cerebellar membranes, which contain a high density of excitatory amino acid receptors. Although synaptosomal aniracetam binding sites may well be associated with AMPA-sensitive glutamate receptors, specifically bound [3H]aniracetam could not be displaced by cyclothiazide or GYKI 52466, which act as a positive and negative modulator of AMPA receptors, respectively.  相似文献   

16.
[3H]Nimodipine binding was studied in isolated myocytes from rat heart and in partially purified sarcolemma, sarcoplasmic reticulum and mitochondrial fractions from dog heart. In isolated myocytes, the density of [3H]nimodipine specific sites (106 per cell) was close to the density of [3H]QNB sites (0.8 × 106 per cell) and higher than that of [3H]DHA sites (0.2 × 106 per cell). During subcellular fractionation, [3H]nimodipine binding did not copurify with plasma membrane markers. The highest densities were found in fractions enriched in sarcolemma or in sarcoplasmic reticulum. No specific binding was found in mitochondria. These results indicate that the localization of [3H]nimodipine sites is not restricted to areas of the plasma membrane rich in β-adrenoceptors, muscarinic receptors and sodium pump sites.  相似文献   

17.
Abstract: Specific binding of tritiated dopamine, spiperone, and N-propylnorapomorphine was examined in subcellular fractions from bovine caudate nucleus. All fractions contained at least two sets of specific binding sites for [3H]spiperone (KD 1aPP= 0.2 nM, KD 2aPP= 2.2 nM), the higher affinity sites accounting for one-third to one-eighth of the total. [3H]Spiperone binding was slightly enriched over the total particulate fraction in P2, P3, SPM, and a crude fraction of synaptic mitochondria. A microsomal subfraction (P3B2) exhibited the highest specific binding capacity obtained, representing a fourfold enrichment over the total particulate fraction. [3H]Dopamine exhibited apparent binding to a single class of high-affinity sites in all fractions examined (KDaPP= 4.0 nM). A greater than twofold enrichment was observed in all fractions except myelin and P3, with a fivefold enrichment in SPM and P3B2. At least two classes of receptors were labeled by [3H]-N-propylnorapomorphine (KD 1aPP= 0.55 nM, KD 2aPP= 20 nM), using 50 nM-spiperone together with 100 nM-dopamine to define nonspecific binding. Although binding to the higher affinity site was displaced by spiperone, and lower affinity binding by dopamine, comparison of receptor densities with values obtained by using [3H]spiperone and [3H]dopamine directly suggested that [3H]-N-propylnorapomorphine labeled additional sites. We have also examined a postsynaptic membrane (PSM) fraction obtained from SPM by successive extraction with salt and EGTA followed by sonication and separation on a density gradient. [3H]Spiperone binding in PSM was enriched two- to threefold over unfractionated SPM with a concomitant decrease in [3H]dopamine binding. The enrichment in spiperone receptors was almost entirely due to an increase in the number of lower affinity binding sites, suggesting that these sites may be associated with the postsynaptic membrane.  相似文献   

18.
The binding of [3H]5-hydroxytryptamine (5-HT, serotonin) to cerebellar membranes was examined after preincubation of [3H]5-HT in the presence or absence of ascorbate. The tissue preparation was identical in all experiments and consisted of rat cerebellar homogenates in Tris-HCl buffer with 0.1% ascorbate. Cerebellar membranes were used because of their low density of 5-HT1 binding sites. In the presence of ascorbate during a 4-h preincubation period, minimal specific binding of 2 nM [3H]5-HT is detected. Similar results are obtained with equimolar concentrations of other antioxidants (butylated hydroxytoluene, sodium dithionite, and sodium metabisulfite). Apparent specific binding increases 14-fold following a 4-h preincubation of [3H]5-HT in the absence of ascorbate. The increase in apparent specific [3H]5-HT binding is time-dependent and plateaus after 4-6 h of preincubation. When ascorbate is present during the 4-h preincubation, Scatchard analysis of [3H]5-HT binding reveals a KD value of 3.0 +/- 0.3 nM and a Bmax value of 1.9 +/- 0.2 pmol/g tissue. When ascorbate is absent during the preincubation, the KD is essentially unchanged at 3.6 +/- 0.1 nM but the Bmax is significantly increased to 36.5 +/- 7 pmol/g tissue. Drug competition studies reveal that the apparent specific "[3H]5-HT binding" in the absence of ascorbate appears to be displaced by nanomolar concentrations of hydroxylated tryptamines (5-HT, bufotenine) but not by nonhydroxylated tryptamines (5-methoxytryptamine, tryptamine). HPLC analysis demonstrates that [3H]5-HT is essentially destroyed by a 4-h incubation at 22 degrees C in the absence of ascorbate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
High affinity binding sites (Kd = 1.7 nM) for [3H] imipramine have been characterized in membranes prepared from human brain. The binding of [3H] imipramine was found to be saturable, reversible, and inhibited by pharmacologically active tricyclic antidepressants. Other psychoactive compounds as well as most neurotransmitter substances were ineffective in inhibiting [3H] imipramine binding at concentrations up to 10 μM. The hypothalamus was found to contain a relatively high density of these binding sites and is enriched approximately 4-fold when compared to cerebral and cerebellar cortex. A very good correlation (r = 0.97) p < 0.001 was found between the abilities of a series of clinically active tricyclic antidepressants in displacing specifically bound [3H] imipramine from human brain and platelet membranes, suggesting that the binding sites from these two tissues are very similar.  相似文献   

20.
[3H]-cocaine, [3H]-norcocaine, [3H]-benzoylecgonine and [3H]-benzoylnorecgonine were administered i.c. in equi-potent pharmacologic doses and the intracellular disposition and metabolism of each drug determined. Norcocaine and cocaine rapidly entered and egressed from the brain so that 4.8–6.1% of the radioactivity present in brain at one minute was observed at 30 minutes. The highest levels of subcellular radioactivity were generally found in the microsomal plus supernatant, followed by the nuclear and shocked mitochondrial fractions. No apparent localization of the radioactivity occured in synaptic membranes. The brain/plasma (B/P) ratio curves for cocaine and norcocaine were similar; however, the norcocaine values were considerably higher at each time interval. Benzoylecgonine and benzoylnorecgonine had higher comparative B/P ratios than cocaine or norcocaine and persisted in brain for a longer period of time so that 0.6–2.1% of the radioactivity present in brain at 1 hour was detected at 24 hours. Cocaine and norcocaine were extensively metabolized to the benzoylmetabolites. Benzoylecgonine was metabolized to benzoylnorecgonine and benzoylnorecgonine was unmetabolized. The brain disposition data and B/P ratios agreed quite well with the overall pharmacologic action of cocaine and its metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号