首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phase modulation fluorescence spectroscopy was used to investigate the influence of cholesterol (0 to 50 mol%) on acyl chain dynamics in multilamellar vesicles of phosphatidylcholine. Four different phosphatidylcholines (DPPC, DOPC, POPC, and egg PC) and six different fluorescent probes (diphenylhexatriene and five anthroyloxy fatty acids) were employed. We found that: (1) Increased cholesterol content had only slight effects on fluorescence lifetimes of the six probes. (2) Increased cholesterol content increased the steady-state fluorescence anisotropy (r) of all the probes except 16-anthroyloxy palmitate (16-AP) in each of the four phosphatidylcholines. (3) Added cholesterol tended to limit the extent of probe rotation (as reflected by r, the infinite-time anisotropy) to a much greater extent than it altered the rate of probe rotation. (4) The tendency for cholesterol to order the structure of the bilayer was greatest in the proximal half of the acyl chains and diminished toward the center of the bilayer. (5) In some phosphatidylcholines the rotation rates of probes located near the bilayer center (diphenylhexatriene and 16-AP) were apparently increased by increasing levels of cholesterol. (6) In several respects dipalmitoylphosphatidylcholine (DPPC) vesicles responded differently to increased cholesterol than vesicles of the other three phosphatidylcholines. (7) A single second-order equation described the relationship between rand r for the five anthroyloxy fatty acid probes in the four different phosphatidylcholines over a wide range of cholesterol content. The data for diphenylhexatriene in the different phosphatidylcholines could not be fit by a single equation.  相似文献   

2.
The effect of cholesterol (5–40 mol%) on the magnetic induced orientation of sphingomyelin/cholesterol multilamellar vesicles (MLVs) was examined using static solid state 31P NMR spectroscopy. The orientation was modeled assuming an ellipsoidal deformation of the vesicles and was monitored as a function of cholesterol concentration and temperature. In addition, the static 31P chemical shift anisotropy (CSA) was used to assess the motional and dynamical changes occurring in the bilayer are reported. An exploration of the factors determining the magnetic orientation in sphingomyelin/cholesterol bilayers from the gel (so) to liquid crystalline (or liquid-ordered, lo) phases is presented and discussed.  相似文献   

3.
Correlation between hydrogen isotope fractionation in fatty acids and carbon metabolism in pure cultures of bacteria indicates the potential of biomarker D/H analysis as a tool for diagnosing carbon substrate usage in environmental samples. However, most environments, in particular anaerobic habitats, are built from metabolic networks of micro‐organisms rather than a single organism. The effect of these networks on D/H of lipids has not been explored and may complicate the interpretation of these analyses. Syntrophy represents an extreme example of metabolic interdependence. Here, we analyzed the effect of metabolic interactions on the D/H biosignatures of sulfate‐reducing bacteria (SRB) using both laboratory maintained cocultures of the methanogen Methanosarcina acetivorans and the SRB Desulfococcus multivorans in addition to environmental samples harboring uncultured syntrophic consortia of anaerobic methane‐oxidizing archaea (ANME) and sulfate‐reducing Deltaproteobacteria (SRB) recovered from deep‐sea methane seeps. Consistent with previously reported trends, we observed a ~80‰ range in hydrogen isotope fractionation (εlipid–water) for D. multivorans grown under different carbon assimilation conditions, with more D‐enriched values associated with heterotrophic growth. In contrast, for cocultures of D. multivorans with M. acetivorans, we observed a reduced range of εlipidwater values (~36‰) across substrates with shifts of up to 61‰ compared to monocultures. Sediment cores from methane seep settings in Hydrate Ridge (offshore Oregon, USA) showed similar D‐enrichment in diagnostic SRB fatty acids coinciding with peaks in ANME/SRB consortia concentration suggesting that metabolic associations are connected to the observed shifts in εlipid–water values.  相似文献   

4.
Differential polarized phase fluorometry was used to quantify the rotational rate (R) and limiting anisotropy (r) of the membrane probe diphenylhexatriene (DPH) in solvents and lipid vesicles exposed to hydrostatic pressures ranging from 1 bar to 2 kbar. These measurements reveal the effect of pressure on the phase-transition temperatures of the phosphatidylcholine vesicles, and the effects of pressure on order parameter of the acyl side-chain region of the membranes, the latter as indicated by r. In addition to the well-known elevation of the transition temperature (Tc) with pressure, our results demonstrate that increased pressure restores the order of the bilayers to that representative of temperatures below the transition temperature. We also found that solvents which allowed free isotropic rotation of DPH at 1 bar no longer allowed free rotation when sufficiently compressed; moreover, the apparent DPH rotational rate increased with r. Pressure studies using both DPH and the charged DPH analogue, trimethylammonium DPH (TMA-DPH) indicated that the Tc of dipalmitoylphosphatidylcholine vesicles increased 23 K/kbar and an apparent volume change of 0.036 ml/mol lipid at the phase transition. Assuming, as has been proposed, that TMA-DPH is localized near the glycerol backbone region of the bilayers, these results indicate a similar temperature- and pressure-dependent phase transition in this region and the acyl side-chain region of the membrane.  相似文献   

5.
Spin-lattice relaxation times (T1) were measured above the phase transition temperature on sonicated vesicles of egg- or dipalmitoyl-phosphatidylcholine containing cholesterol and/or the polyenic antibiotic, lucensomycin. T1 values of only the terminal methyl groups of the fatty acyl chains were significantly reduced by cholesterol. Lucensomycin caused, more markedly in cholesterol-containing vesicles, a selective reduction of the T1 values of the N-methyl groups. An even more conspicuous decrease, occurring only in cholesterol-containing vesicles, was observed for the transverse relaxation times (T2) of the N-methyl signals upon addition of lucensomycin. The polyene failed to remove the well-known broadening effect of cholesterol on phosphatidylcholine methylene signals. These results indicate that as lucensomycin binds to cholesterol-containing membranes, there is a detectable perturbation of the dynamic structure of the N-methyl groups with an increase in the degree of motional anisotropy. But the non-polar region of the bilayer seems not significantly perturbed by the polyene.  相似文献   

6.
X-band EPR spectroscopy has been employed to study the dynamic properties of magnetically aligned phospholipid bilayers (bicelles) utilizing a variety of phosphocholine spin labels (n-PCSL) as a function of cholesterol content. The utilization of both perpendicular and parallel aligned bicelles in EPR spectroscopy provides a more detailed structural and orientational picture of the phospholipid bilayers. The magnetically aligned EPR spectra of the bicelles and the hyperfine splitting values reveal that the addition of cholesterol increases the phase transition temperature and alignment temperature of the DMPC/DHPC bicelles. The corresponding molecular order parameter, Smol, of the DMPC/DHPC bicelles increased upon addition of cholesterol. Cholesterol also decreased the rotational motion and increased the degree of anisotropy in the interior region of the bicelles. This report reveals that the dynamic properties of DMPC/DHPC bicelles agree well with other model membrane systems and that the magnetically aligned bicelles are an excellent model membrane system.  相似文献   

7.
Transient electric dichroism has been measured for the ferriheme–poly(L -lysine)[(Lys)n], ferroheme–(Lys)n, and ferroheme–(Lys)n–carbon monoxide (CO) solutions at pH 9–12. The Soret absorption maximum in electronic spectrum (λ), the reduced linear dichroism (ρ) at complete orientation and the calculated angle (?) between the porphyrin plane of a bound heme and the oriented polymer axis are determined for the following complexes: a ferriheme–(Lys)n complex at pH 9.5–10.5 (λ = 420 nm, ρ = 0.50, and ? = 19°), a ferroheme–(Lys)n complex at pH 9.5–10.2 (λ = 432 nm, ρ = 0.77, and ? = 0°), and a ferroheme–(Lys)n–CO complex at pH 9.25 (λ = 430 nm, ρ = 0.38, and ? = 24°). Based on the above data, the validity of the structures of heme–(Lys)n complexes proposed by other investigators is discussed.  相似文献   

8.
This paper presents an interpretation of fluorescence polarization measurements in lipid membranes which are labelled with the apolar probe 1,6-diphenyl-1,3,5-hexatriene. The steady-state fluorescence anisotropy, rS, is resolved into a fast decaying or kinetic component, rf, and an infinitely slow decaying or static component, r. The latter contribution, which predominates in biological membranes, is exclusively determined by the degree of molecular packing (order) in the apolar regions of the membrane; r is proportional to the square of the lipid order parameter. An empirical relation between rS and r is presented, which is in agreement with a prediction based on a theory of rotational dynamics in liquid crystals. This relation enabled us to estimate a lipid structural order parameter directly from simple steady-state fluorescence polarization measurements in a variety of isolated biological membranes. It is shown that major factors determining the order parameter in biomembranes are the temperature, the cholesterol and sphingomyelin content and (in a few systems) the membrane intrinsic proteins.  相似文献   

9.
《农业工程》2014,34(5):277-283
Lipid biomarkers of microorganism and vegetation preserved in penguin droppings record historical changes in the West Antarctic climate and environment. n-Alkanes, fatty acids and coprostanols have been determined in sediment core AD6 from penguin droppings in Ardley Island, West Antarctica, using GC or GC/MS/SIM. For n-alkanes, the main carbon number was nC23 with single-peak pattern, ΣC21/ΣC22+ value was from 0.27 to 0.61, the carbon preference index (CPI) was from 2.97 to 6.12 with significant odd–even predominance (OEP), and these indicate that the vegetation was dominated by mosses and lichens. For fatty acids, the main carbon numbers were nC16:0 and nC24:0 with double-peak pattern, ΣC21/ΣC22+ value was from 0.35 to 0.77, and the relative abundance ratio of even:odd carbon (CPIA) was from 2.88 to 6.40 with significant OEP. Bacteria invasion index ((iC15:0 + aC15:0)/nC15:0 for fatty acids) showed high contribution of bacteria during 1977–1982, 1948–1953 and 1920–1925, indicating enhanced microbial activities. Meanwhile, CPIA values decreased and extreme microbes contributed fatty acids with low carbon number to penguin dropping strata. Furthermore, the concentration of cholestanol and ratio of cholestanol/cholesterol in penguin dropping strata changed correspondingly, indicating that the microbial degradation played a major role in the increasing ratio of cholestanol/cholesterol during the sedimentation process. The down-core profiles of n-alkanes, fatty acids and coprostanols in penguin dropping strata indicate that extreme microorganism and bacteria play important roles in the relatively simple Antarctic ecological system associated with climate conditions.  相似文献   

10.
The lipid composition and fluidity of jejunal brush-border membrane vesicles (BBMV) have been studied in spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) rats. The activities of both Na+-dependent D-glucose cotransport and Na+-H+ antiport have also been determined. A significant increase in the level of free cholesterol was observed in jejunal BBMV from SHR compared to WKY rats. Since phospholipid values did not change in either group of animals, a significant enhancement in the free cholesterol/phospholipid ratio was observed in SHR. A decrease in the levels of phosphatidylethanolamine together with an increase in the values of phosphatidylserine was observed in hypertensive rats. Although the content of phosphatidylcholine (PC) and sphingomyelin (SM) was not singificantly altered in SHR, the ratio PC/SM significantly increased in these animals when compared to WKY rats. The major fatty acids present in bursh-border membranes prepared from SHR and WKY rats were palmitic (160), stearic (180), oleic (181, n-9) and linoleic (182, n-6), and the fatty acid composition was not modified by the hypertension. A decreased fluorescence polarization, i.e., increased membrane fluidity, was observed in SHR, which was not correlated to the increased ratio of cholesterol/phospholipid found in the brush-border membrane isolated from these animals. These structural changes found in SHR were associated to an enhancement in both Na+-dependent D-glucose transport and Na+-H+ antiport activity in the jejunal BBMV of SHR.Abbreviations BBMV brush-border membrane vesicles - DPH 1,6-diphenyl-1,3,5-hexatriene - FC free cholesterol - PC phosphatidylcholine - PE phosphatidylethanolamine - PI phosphatidylinositol - PS phosphatidylserine - SM sphingomyelin - SHR spontaneously hypertensive rat - p steady-state fluoroscence polarization - rs steady-state fluorescence anisotropy - WKY Wistar Kyoto  相似文献   

11.
To understand the role of ω-cyclohexyl fatty acid residue of lipids in acido-thermophilic bacterial membranes, three unusual phosphatidylcholines, 1,2-di-11-cyclohexylundecanoyl-l-α-phosphatidylcholine (11CYPC), 1,2-di-13-cyclohexyltridecanoyl-l-α-phosphatidylcholine (13CYPC), and 1–13-cyclohexyltridecanoyl-2–11-cyclohexylundecanoyl-l-α-phosphatidylcholine (1–13CY-2–11CYPC) were prepared and the steady-state fluorescence anisotropy of 1,6-diphenylhexatriene (DPH) in the hydrophobic domain of these liposomal bilayers was determined. Compared with the case of dipalmitoyl (DPPC) or dimyristoyl phosphatidylcholine (DMPC), introducing the ω-cyclohexyl moiety onto lecithins makes the bilayers fluid below the phase transition temperature, while immobilizes them above the phase transition temperatures. The properties of the unusual phosphatidylcholine liposomes suggested by the steady-state fluorescence anisotropy investigation were in good agreement with those obtained from the thermotropic and permeability investigations. Results obtained are discussed from the view point of the role and function of lipid membranes of acido-thermophilic bacteria which contain unusual fatty acids.  相似文献   

12.
Differential polarized phase fluorometry has been used to investigate the depolarizing motions of 1,6-diphenyl-1,3,5-hexatriene (DPH) in the isotropic solvent propylene glycol and in lipid bilayers of dimyristoyl-L-α-phosphatidylcholine (DMPC), dipalmitoyl-L-α-phosphatidylcholine (DPPC), and other phosphatidylcholines. Differential phase fluorometry is the measurement of differences in the phase angles between the parallel and perpendicular components of the fluorescence emission of a sample excited with sinusoidally modulated light. The maximum value of the tangent of the phase angle (tan Δmax) is known to be a function of the isotropy of the depolarizing motions. For DPH in propylene glycol the maximum tangent is observed at 18°C, and this tangent value corresponds precisely with the value expected for an isotropic rotator. Additionally, the rotational rates determined by steady-state polarization measurements are in precise agreement with the differential phase measurements. These results indicate that differential phase fluorometry provides a reliable measure of the probe's rotational rate under conditions where these rotations are isotropic and unhindered.

Rotational rates of DPH obtained from steady-state polarization and differential phase measurements do not agree when this probe is placed in lipid bilayers. The temperature profile of the tan Δ measurements of DPH in DMPC and DPPC bilayers is characterized by a rapid increase of tan Δ at the transition temperature (Tc), followed by a gradual decline in tan Δ at temperatures above Tc. The observed tanΔmax values are only 62 and 43% of the theoretical maximum. This defect in tanΔmax is too large to be explained by any degree of rotational anisotropy. However, these defects are explicable by a new theory that describes the tan Δ values under conditions where the probe's rotational motions are restricted to a limiting anisotropy value, r. Theoretical calculations using this new theory indicate that the temperature dependence of the depolarizing motions of DPH in these saturated bilayers could be explained by a rapid increase in its rotational rate (R) at the transition temperature, coupled with a simultaneous decrease in r at this same temperature. The sensitivity of the tan Δ values to both R and r indicates that differential phase fluorometry will provide a method to describe more completely the depolarizing motion of probes in lipid bilayers.

  相似文献   

13.
The circular dichroism (CD) spectra of DNA–acridine orange (DNA–AO) complex in the visible region were measured at DNA phosphate-to-dye ratios (P/D) from 1 to 550. The CD spectrum of DNA–AO complex in the P/D ratio between 1 and approximately 40 consists of four components, i.e., positive CD bands centered at 510 and 480 mμ, and negative CD bands at 497 and 468 mμ. The CD bands at 510 and 468 mμ are optimum at P/D = 4, and the change of ε1 ? εr with P/D suggests that both of them are induced from the interaction between dye molecules bound to adjacent DNA binding sites, each of which is composed of four nucleotides. This is supported by the fact that the values of ε1 ? εr for both decrease with increasing temperature or increasing methylene blue concentration added to the complex. The negative Cotton effect at, 497 mμ is most favored at larger P/D ratio (~8), and the suggested assignment is to the interaction between two dye molecules bound with an empty site between them. A positive Cotton effect at 480 mμ is observed at P/D ratio of less than 4 and is optimum at 1. Above P/D ratio of 40, the CD spectrum of the complex can not be resolved into its components and even at sufficiently high P/D ratio (550) the complex shows a small Cotton effect.  相似文献   

14.
Abstract: Amyloid β-peptide (Aβ) aggregates are one of the key neuropathological characteristics of Alzheimer's disease. Aβ belongs to a group of proteins that aggregate and form β-sheets, and some of these proteins bind cholesterol and other lipids. The purpose of the experiments reported here was to determine if cholesterol, fatty acids, and phosphatidylcholine (PC) would bind to Aβ1–40 and if such binding would be dependent on aggregation of Aβ1–40. Lipid binding was determined using fluorescent-labeled lipids. Incubation of Aβ1–40 for 0, 1, 3, 6, 21, and 24 h resulted in aggregation of the peptide with formation of dimers, trimers (1–24 h), and polymers (6–24 h) as determined by sodium dodecyl sulfate-gel electrophoresis. No change in the fluorescence of the lipids was observed when lipids were added to Aβ1–40 that had been incubated for 0, 1, or 3 h. However, the fluorescence intensities of cholesterol, saturated fatty acids, and PC were significantly increased (p < 0.0001) when added to Aβ1–40 that had been incubated for 6, 21, and 24 h in which Aβ1–40 polymers were detected. The binding affinity of cholesterol to Aβ1–40 polymers (KD of 3.24 ± 0.315 × 10?9M) was markedly higher as compared with the other lipids (stearic acid, 9.42 ± 0.41 × 10?8M; PC, 7.07 ± 0.12 × 10?7M). The results of this study indicate that Aβ1–40 polymers bind lipids and have a higher affinity for cholesterol than PC or saturated fatty acids. Aggregated Aβ1–40 may affect lipid transport between cells or remove specific lipids from membranes, and such effects could contribute to neuronal dysfunction.  相似文献   

15.
The hemolysate of Mastigodryas bifossatus shows two major hemoglobins with very close isoelectric points, and four different globin chains. The stripped hemolysate exhibits a low alkaline Bohr effect (Δlog P50/ΔpH = −0.30 between pH7 and 8) and a decrease of the co-operativity from 2.3 to unity when the pH increases from 6.15 to 8.5. In the presence of ATP, large changes in the oxygen affinity and co-operativity are observed. The Bohr effect rises to −0.46 and the n50 values stay at around 3 in the pH range 6–9. An increase in temperature induces a large decrease in the oxygen affinity for the stripped hemolysate. In the pH range between 7.5 and 8.5, the values of AH in kcal/M are around 10 fold larger for the stripped protein than for the protein in the presence of ATP. Measurements of rapid kinetics of oxygen dissociation and carbon monoxide binding reflect the ATP sensitivity observed in equilibrium experiments.  相似文献   

16.
《Inorganica chimica acta》1988,152(3):145-149
Coordination of copper(II) ions by daunomycin and 5-iminodaunomycin has been studied by electron spin resonance spectroscopy, at various values of pH and r, the anthracycline-to-Cu(II) molar ratio. At r = 1–5, polymeric complexes are formed in the case of daunomycin. At r = 5, a mononuclear complex is predominant and at r = 10, this is the only one formed with the 63Cu and 65Cu hyperfine interaction being clearly defined in the g region (g = 2.26, 63A = 175; 65A = 190 G). For 5-iminodaunomycin both chelation sites are involved in the coordination and a polymeric structure (in which exchange interactions between Cu(II) centers operate) is stable in the range r = 1–3. At r = 3, the triplet state of a dinuclear Cu(II) complex is observed and 5-iminodaunomycin behaves as both a bridging and a terminal ligand. For r = 5–10, the dinuclear complex coexists with the mononuclear one. In the presence of mononucleotides dGMP, dAMP, dCMP and thymidine, no ternary complex such as mononucleotide/Cu(II)/anthracycline was observed.  相似文献   

17.
The relative effect of diffusional resistance due to water films (rwf) and leaf anatomy (rp) on rates of net photosynthesis and on-line measures of carbon isotope discrimination (Δ=Δδ13C) was investigated in Sphagnum. Sphagnum species differ in the exposure of photosynthetic cells at the leaf surface. In S. affine, photosynthetic cells are widely exposed at the surface, whereas in S. magellanicum, photo-synthetic cells are enclosed within water-filled hyaline cells. This difference is expected to lead to variation in diffusive resistance within leaves (rp). Net photosynthesis and on-line Δ were measured at two water contents: greenhouse water content (wet) and blotted dry (dry). Without correcting for respiration, on-line Δ values differed significantly between wet (23.7%o) and dry (30.9%o) plants. However, there was no significant difference between species means and no species × water content interaction. Corrections for respiration lowered Δ values by approximately 8.1%o and reduced the mean difference to 3.1%o, but did not alter the rank order of treatments. Net photosynthesis also decreased by 16% in wet plants, but there was no significant difference between the two species. In addition, five populations of S. affine and S. magellanicum grown in a common garden were analysed for their organic matter carbon isotope composition (δ13C). These values varied more within each species (0.9–1.2%o) than between the two species (0.6%o). Therefore, we conclude that variation in surface water films leads to a greater difference in resistance to CO2 uptake and carbon isotope discrimination than that due to variation in leaf anatomical properties in Sphagnum.  相似文献   

18.
The response of doxyl fatty acid spin probes in egg lecithin bilayers to added cholesterol is compared with results from 2H-NMR. Large differences are found between the profiles of order parameter vs. label position and cholesterol concentration.At constant cholesterol content, the ESR spin probe order parameter decreases continuously as the label position is moved toward the terminal methyl region of the bilayer whereas an order parameter ‘plateau’ is observed for the upper region of the bilayer by 2H-NMR. In addition, the spin probe order parameters are smaller than those observed by 2H-NMR.Differences are also observed in the profiles of order parameter vs. cholesterol content for each label position. The spin probes detect a maximal response to added cholesterol for the central portion of the chains with much weaker responses near both ends of the chains. In contrast, the 2H-NMR results indicate a large, approximately constant response for the first ten positions in the chains with a decreasing response toward the terminal methyl group. For all the positions examined, the spin probes show a weaker response than that observed by 2H-NMR.A direct measure of the perturbing effect of a spin label is made by comparing the deuterium quadrupole splittings in egg lecithin-cholesterol bilayers for stearic acid with and without an attached doxyl moiety. The spin-labelled fatty acid has a much reduced quadrupole splitting and an opposite response to cholesterol addition.  相似文献   

19.
A protective effect of the n-3 polyunsaturated fatty acids (PUFAs) in preventing ventricular fibrillation in experimental animals and cultured cardiomyocytes has been demonstrated in a number of studies. In this study, a possible role for the n-3 PUFAs in the treatment of atrial fibrillation (AF) was investigated at the cellular level using atrial myocytes isolated from young adult rats as the experimental model. Electrically-stimulated, synchronously-contracting myocytes were induced to contract asynchronously by the addition of 10 M isoproterenol. Asynchronous contractile activity was reduced following acute addition of the n-3 PUFAs docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) at 10 M, compared with no fatty acid addition (from 99.0 ±: 1.0% to 30.7 ± 5.2% (p < 0.05) for DHA and 23.8 ± 2.8% (p < 0.01) for EPA), while the saturated fatty acid, docosanoic acid (DA) and the methyl ester of DHA (DHA m.e.) did not exert a significant effect on asynchronous contractile activity. Asynchronous contractile activity was also reduced to 1.7 ± 1.7% in the presence of the membrane fluidising agent, benzyl alcohol (p < 0.001 vs no fatty acid addition). Cell membrane fluidity was determined by steady state fluorescence anisotropy using the fluorescent probe, TMAP-DPH. Addition of DHA, EPA or benzyl alcohol significantly increased sarcolemmal membrane fluidity (decreased anisotropy, rss) of atrial myocytes compared with no addition of fatty acid (control) (from rss = 0.203 ±0.004 to 0.159 ± 0.004 (p < 0.01) for DHA, 0.166 ± 0.001 (p < 0.01) for EPA and 0.186 ±0.003 (p < 0.05) for benzyl alcohol, while DA and DHA m.e. were without effect. It is concluded that the n-3 PUFAs exert anti-asynchronous effects in rat atrial myocytes by a mechanism which may involve changes in membrane fluidity.  相似文献   

20.
A novel series of extended DAPI analogues were prepared by insertion of either a carbon–carbon triple bond (16ad) or a phenyl group (21a,b and 24) at position-2. The new amidines were evaluated in vitro against both Trypanosoma brucei rhodesiense (T. b. r.) and Plasmodium falciparum (P. f.). Five compounds (16a, 16b, 16d, 21a, 21b) exhibited IC50 values against T. b. r. of 9 nM or less which is two to nine folds more effective than DAPI. The same five compounds exhibited IC50 values against P. f. of 5.9 nM or less which is comparable to that of DAPI. The fluorescence properties of these new molecules were recorded, however; they do not offer any advantage over those of DAPI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号