首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pretreatment of Chang liver cells with N-ethylmaleimide (0.5 or 1 mM) stimulated Na+-independent uptake of leucine at low concentrations (?1 mM). The stimulatory effect of N-ethylmaleimide on the uptake of leucine measured in Na+-replete medium was completely blocked by the addition of b-2-aminobicyclo[2,2,1]heptane-2-carboxylate (5 mM), which shows that the L system participates in the stimulation. The Na+-dependent uptake of glycine was depressed by N-ethylmaleimide pretreatment. The stimulation of the Na+-independent component of leucine uptake continued for at least 30 min after N-ethylmaleimide treatment, while the inhibition of glycine uptake was progressive with time and the Na+-dependent uptake of leucine became depressed later, after the treatment. It has been demonstrated that treatment of cells with N-ethylmaleimide is capable of increasing the Na+-independent influx of leucine and at the same time slightly decreasing the efflux of it. These results suggest that N-ethylmaleimide attacks the Na+-independent system of amino acid transport at the reactive SH groups(s) of relevant protein(s) in favor of specific activation of that system in this cell.  相似文献   

2.
Human erythrocytes are able to incorporate cyclic AMP (cAMP) in amounts larger than those required to saturate cAMP-dependent protein kinase. In contrast to previous observations in avian red blood cells in which cAMP stimulates the Na+/K+ cotransport system, we demonstrate that cAMP inhibits this system in human erythrocytes. The cotransport inhibition is enhanced by addition of phosphodiesterase inhibitor 1-methyl-3-isobutylxanthine to the incubation medium. The cAMP concentration giving half-maximal cotransport inhibition showed a wide variation among different individuals (from 0.1 to 5 mM external cAMP concentration). In contrast to cAMP, cyclic GMP showed little effect on the cotransport system. Ca2+ introduced into the cell interior was an inhibitor of the Na+/K+ cotransport system. These results suggest that in human cells in which endogeneous levels of cAMP and Ca2+ are modulated by hormones, the Na+/K+ cotransport system may be under hormonal regulation.  相似文献   

3.
4.
The Na+-independent leucine transport system is resolved into two components by their different affinity (Km about 44 μM and 8.0 mM) for leucine in the Chang liver cell. Treatment of the cells with N-ethylmaleimide (1 mM) specifically stimulates the high-affinity component of the Na+-independent system by greatly increasing its Vmax value, whereas the Vmax value of the low-affinity component is markedly lowered. The stimulatory effect of N-ethylmaleimide on leucine transport is reduced by prior treatment of the cells with 2,4-dinitrophenol, but this phenomenon seems to be irrelevant to the ATP-depleting action of the uncoupler. The treatment with 2,4-dinitrophenol has been found not to be inhibitory on the subsequent Na+-independent leucine uptake itself. Treatment with dibucaine, a phospholipid-interacting drug, also reduces to varying degrees (depending on its concentration) the stimulatory effect of N-ethylmaleimide on the subsequent leucine uptake, although pretreatment with dibucaine can stimulate the Na+-independent leucine uptake itself. We conclude that the stimulatory effect of N-ethylmaleimide on leucine transport is not correlated with the energy level of cell, but involves the perturbation of the membrane bilayer structures.  相似文献   

5.
Cells depleted of amino acids show lower rates of glycine or aminoisobutyric acid uptake than do freshly isolated cells. In the amino acid-depleted cells, addition of valinomycin stimulates amino acid influx at least to the level observed in freshly isolated cells. In cells containing high levels of cellular amino acids, valinomycin has little effect on influx of amino acids. It is concluded that the transport of amino acids in freshly isolated cells is elevated compared to depleted cells because the cells are hyperpolarized by the continuous loss of cellular amino acids during the transport assay. During this hyperpolarization by amino acid loss, transport of amino acids is not further stimulated by valinomycin at low external [K+] (10 mM ± 5 mM).With the exception of preloading with glycine, cells preloaded with a single amino acid to a concentration greater than 20 mM show reduced rates of glycine and aminoisobutyric acid influx at early times (less than 15 min) compared to amino acid-depleted cells. The reduction of infiux is transient and by 30 min, influx is greater in preloaded than in amino acid-depleted cells.Knowing that increases and decreases in the membrane potential are achieved by using varying external [K+] in the presence of valinomycin and propranolol, and using amino acid-depleted cells, it can be shown that an increased membrane potential increases the V for glycine and aminoisobutyric acid influx. A decrease in the potential difference results in a decreased V. Changes in Km also occur when the membrane potential is varied.  相似文献   

6.
Two systems mediating the transport of amino acids were studied in vesicles derived from protein-depleted membranes of pigeon erythrocytes. One system (ASC system) catalysed the Na+-dependent exchange of small neutral amino acids, such as alanine, serine and cysteine. The other system, also Na+-dependent, mediated the active transport of glycine. The ASC and glycine systems were distinguished by the sensitivity of the latter to the anion present, by the former's requirement for an exchangeable amino acid and by the inability of alanine to inhibit the transport of glycine. Preliminary results indicated that the influx of glycine was electrically silent. The only major integral protein retained in the vesicles was the band 3 protein, but that could not be unequivocally identified as the transporter.  相似文献   

7.
Rat liver mitochondria maintain the extramitochondrial free Ca2+ concentration at pCa2+ of about 6.15. Glucagon pre-treatment of the rats does not alter this value. Rat heart mitochondria maintain free Ca2+ at a pCa2+ value of about 6.7, addition of 5mM Na+ changes this to a value of about 5.85.  相似文献   

8.
9.
1.
1. The net uptake of α-aminoisobutyric acid (AIB) in Ehrlich ascites tumor cells has been studied under a variety of transmembrane concentration gradients of Na+, K+ and AIB itself.  相似文献   

10.
Isolated muscle cells from adult rat heart have been used to study the relationship between myocardial glucose transport and the activity of the Na+/K+ pump. 86Rb+-uptake by cardiac cells was found to be linear up to 2 min with a steady-state reached by 40–60 min, and was used to monitor the activity of the Na+/K+ pump. Ouabain (10?3 mol/I) inhibited the steady-state uptake of 86Rb+ by more than 90%. Both, the ouabain-sensitive and ouabain-insensitive 86Rb+-uptake by cardiac cells were found to be unaffected by insulin treatment under conditions where a significant stimulation of 3-O-methylglucose transport occurred. 86Rb+-uptake was markedly reduced by the presence of calcium and/or magnesium, but remained unresponsive towards insulin treatment. Inhibition of the Na+/K+ pump activity by ouabain and a concomitant shift in the intracellular Na+:K+ ratio did not affect basal or insulin stimulated rates of 3-O-methylglucose transport in cardiac myocytes. The data argue against a functional relationship between the myocardial Na+/K+ pump and the glucose transport system.  相似文献   

11.
The membrane potential of the Ehrlich ascites tumor cell was shown to be influenced by its amino acid content and the activity of the Na+: K+ pump. The membrane potential (monitored by the fluorescent dye, 3,3′-dipropylthiodicarbocyanine iodide) varied with the size of the endogenous amino acid pool and with the concentration of accumulated 2-aminoisobutyrate. When cellular amino acid content was high, the cells were hyperpolarized; as the pool declined in size, the cells were depolarized. The hyperpolarization seen with cellular amino acid required cellular Na+ but not cellular ATP. Na+ efflux was more rapid from cells containing 2-aminoisobutyrate than from cells low in internal amino acids. These observations indicate that the hyperpolarization recorded in cells with high cellular amino acid content resulted from the electrogenic co-efflux of Na+ and amino acids.Cellular ATP levels were found to decline rapidly in the presence of the dye and hence the influence of the pump was seen only if glucose was added to the cells. When the cells contained normal Na+ (approx. 30 mM), the Na+: K+ pump was shown to have little effect on the membrane potential (the addition of ouabain had little effect on the potential). When cellular Na+ was raised to 60 mM, the activity of the pump changed the membrane potential from the range ?25 to ?30 mV to ?44 to ?63 mV. This hyperpolarization required external K+ and was inhibited by ouabain.  相似文献   

12.
The Na+/l-glutamate (l-aspartate) cotransport system present at the level of rat intestinal brush-border membrane vesicles is specifically activated by the ions K+ and Cl?. The presence of 100 mM K+ inside the vesicles drastically enhances the uptake rate and the transient intravesicular accumulation (overshoot) of the two acidic amino acids. It has been demonstrated that the activation of the transport system depended only in the intravesicular K+ concentration and that in the absence of any sodium gradient, an outward K+ gradient was unable to influence the Na+/acidic amino acid transport system. It was also found that Cl? could specifically activate the Na+-dependent l-glutamate (l-aspartate) uptake either in the presence or in the absence of K+. Also the effect of Cl? was observed only in the presence of an inward Na+ gradient and it was noted to be higher when chloride ion was present on both sides of the membrane vesicles. No influence (activation or accumulation) was observed in the absence of the Na+ gradient and in the presence of chloride gradient. l-Glutamate uptake measured in the presence of an imposed diffusion potential and in the presence of K+ or Cl? did not show any translocation of net charge.  相似文献   

13.
14.
Rat liver parenchymal cells (hepatocytes) were isolated by a collagenase perfusion technique and maintained as monolayers in serum-free medium in collagen-coated culture dishes. Glucagon, in combination with dexamethasone, induced α-aminoisobutyric acid transport in these cells. Addition of purified Clostridiumperfringens enterotoxin to hepatocytes preinduced by glucagon and dexamethasone rapidly depressed (but did not abolish) α-aminoisobutyric acid transport. The toxin effect was dose dependent: 1000 or 300 ng/ml produced maximal depression whereas 100 or 40 ng/ml were without effect in 120 minutes. The effect was eliminated by pretreating the toxin with heat or specific antisera. The effect of enterotoxin on α-aminoisobutyric acid transport in two cultured rat hepatoma cell lines (H4-II-E-C3 and McA-RH 7777) was also investigated. Only the McA-RH 7777 cells were sensitive to the toxin suggesting that the enterotoxin may interact with specific membrane components of normal rat liver cells which are also present on some (but not all) cancerous rat liver cells.  相似文献   

15.
In the presence of an Na+- or a K+-gradient (outside > inside), l-phenylalanine uptake exhibited an overshoot phenomenon indicating active transport. The amplitudes of the overshoots were increased by increasing either Na+ or K+ concentrations in the incubation media, indicating that binding alone cannot account for the K+ effect. The K+-induced overshoot is not due to the presence of a membrane potential alone, as a gradient of choline chloride failed to produce it. Li+ could also substitute for Na+ though less potent than Na+ in inducing an overshoot. Uptake of l-leucine also showed Na+- and K+-effects and l-leucine and l-alanine could inhibit the Na+- and K+-overshoots obtained with phenylalanine. These results lead us to postulate the presence of a carrier for neutral amino acids dependent on monovalent cation with higher affinity for Na+ in mouse intestine. The Na+- and K+-driven active transport of l-phenylalanine were shown to be dependent on the presence of a membrane potential, as short-circuiting the membrane with FCCP reduced the amplitude of the overshoots seen with both ions. However, substitution of Cl? by more lipophilic anions (NO3?, SCN?) produced an inhibition of uptake. A preliminary analysis of the interrelations between Na+ and K+ for l-phenylalanine uptake showed complex interactions which can be best explained by mutual competition for a common carrier at both sides of the membrane. These results suggest the presence of a new transport system or a variant of an ASC-type system for l-phenylalanine (and neutral amino acids) in the mouse intestine. However, our studies do not rule out the possible involvement of more than one system for neutral amino acid uptake.  相似文献   

16.
A ouabain-insensitive Mg2+-ATPase present in a microsomal fraction prepared from the dog submandibular gland was studied. This Mg2+-ATPase was inhibited by increasing concentrations of NaCl, KCl, RbCl and CsCl. The addition of an osmotically equal amount of sucrose was without effect. This inhibition was obtained over a pH range of from 6.3 to 8.8. The Mg2+-ATPase present in microsomes treated with NaI showed a similar inhibition. These results indicate that it is advisable to keep the ionic strength constant in solutions used to obtain (Na++K+)-ATPase activities.  相似文献   

17.
Ascorbic acid increases the short circuit current (Isc) across the amphibian cornea when it is present at either surface of this epithelium. These effects were additive. The effect was greater when it was on the tear side. The response returned to baseline levels when the ascorbic acid was washed from the bathing media. The effect of ascorbic acid on Isc when it was on the aqueous humor side of the cornea could be blocked by bumetanide but that due to the vitamin's presence on the tear side was unchanged. The ascorbic acid could enter the tissue and crossed the cornea at similar rates in either direction. When the cornea was bathed by a Cl?-free solution or exposed to bumetanide, the rise in Isc observed with ascorbic acid on the tear side was equivalent to an increased Na+ flux from the tear to the aqueous humor side. In normal (Cl? present) Conway solution the rise in the Isc seen with ascorbic acid on the aqueous humor side was equal to an increased flux of Cl? from the aqueous to the tear surface. However, when ascorbic acid was present on the opposite, tear, side the increased Isc reflected a rise in both Cl? and Na+ transport, aqueous-to-tear side, and tear-to-aqueous side, respectively. Thiol reagents (tear side), including reduced glutathione (10?5 M), blocked the effect of ascorbic acid (10?3 M) providing they were added to the bathing solution prior to the vitamin. However, they had no effect once the response had been established. The effect of the reduced glutathione appeared to be of a non-competitive nature. Oxidized glutatione (10?4 M) (and cystamine) blocked the effect of ascorbic acid (10?3 M) when present on the tear side prior to the vitamin. However, they also increased the rate of decline of the response when added subsequently to the ascorbic acid. Amiloride (as low as 5·10?9 M), on the tear side but not the aqueous humor side, prevented the response to ascorbic acid but could not reverse it, once it was established. The possible nature of the effect of ascorbic acid is discussed in relation to its pharmacological interactions with thiol and disulfide reagents and amiloride.  相似文献   

18.
An axolemma-rich membrane vesicle fraction was prepared from the leg nerve of the lobster, Homerus americanus. In this preparation Ca2+ transport across the membrane was shown to require a Na+ gradient (Na+-Ca2+ exchange), and external K+ was found to facilitate this Na+-Ca2+ exchange activity. In addition, at high Ca2+ concentrations (20 mM) a Ca2+-Ca2+ exchange system was shown to operate, which is stimulated by Li+. The Na+-Ca2+ exchange system is capable of operating in the reverse direction, with Ca2+ uptake coupled with Na+ efflux. Such a vesicular preparation has the potential for providing useful experimental approaches to study the mechanism of this important Ca2+ extrusion system in the nervous system.  相似文献   

19.
We examined the effect of Ca2+ on skeletal muscle glucose transport and fatty acid oxidation using L6 cell cultures. Ca2+ stimulation of glucose transport is controversial. We found that caffeine (a Ca2+ secretagogue) stimulation of glucose transport was only evident in a two-part incubation protocol (“post-incubation”). Caffeine was present in the first incubation, the media removed, and labeled glucose added for the second. Caffeine elicited a rise in Ca2+ in the first incubation that was dissipated by the second. This post-incubation procedure was insensitive to glucose concentrations in the first incubation. With a single, direct incubation system (all components present together) caffeine caused a slight inhibition of glucose transport. This was likely due to caffeine induced inhibition of phosphatidylinositol 3-kinase (PI3K), since nanomolar concentrations of wortmannin, a selective PI3K inhibitor, also inhibited glucose transport, and previous investigators have also found this action.We did find a Ca2+ stimulation (using either caffeine or ionomycin) of fatty acid oxidation. This was observed in the absence (but not the presence) of added glucose. We conclude that Ca2+ stimulates fatty acid oxidation at a mitochondrial site, secondary to malonyl CoA inhibition (represented by the presence of glucose in our experiments). In summary, the experiments resolve a controversy on Ca2+ stimulation of glucose transport by skeletal muscle, introduce an important experimental consideration for the measurement of glucose transport, and uncover a new site of action for Ca2+ stimulation of fatty acid oxidation.  相似文献   

20.
Transport of α-aminoisobutyric acid in cultured hepatocytes is temperature- and energy-dependent, whereas transport of 2-deoxy-D-glucose is not energy-dependent. In early cultures of hepatocytes (day 2) on a collagen gel/nylon mesh, the cells contain few microfilaments and the transport of amino acids and glucose is 5–7 times more than in late cultures of hepatocytes (day 6) which contain an apical, extensive accumulation of microfilaments. Cytochalasin D has little effect on the transport of amino acids and glucose in day 2 cultures of hepatocytes, but enhances transport of both compounds in day 6 cultures. These findings suggest that the microfilament accumulation in cultured hepatocytes inhibits transport of amino acids and glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号