首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of the holoenzyme form of prostaglandin H synthase with oxygen gas in the presence of excess dithionite has been found to selectively oxidize the enzyme's heme cofactor. Both the cyclooxygenase and peroxidase activities of the PGH synthase were restored upon addition of hematin. A convenient procedure has been developed to prepare milligram amounts of apo-PGH synthase from the holoenzyme. This procedure appears to involve a reactive species generated during cooxidation of dithionite and heme. The reactive species differs from that generated during the cyclooxgenase catalytic reactions which inactivates the enzyme. The heme in hemoglobin and hematin is destroyed by the same treatment. Direct addition of hydrogen peroxide converted holo-PGH synthase to the apoenzyme, but with extensive loss of enzymatic activity.  相似文献   

2.
I Wells  L J Marnett 《Biochemistry》1992,31(40):9520-9525
Treatment of prostaglandin endoperoxide (PGH) synthase apoprotein with a 100- or 1000-fold excess of N-acetylimidazole (NAI) led to time-dependent inactivation of both cyclooxygenase and peroxide activities. Reconstitution of apoprotein with heme prior to incubation with NAI substantially protected the enzyme from inactivation. Pretreatment of the protein with either acetylsalicylic acid (aspirin) or (+/-)-2-fluoro-alpha-methyl-4-biphenylacetic acid (flurbiprofen), which inhibit cyclooxygenase activity, did not alter the time course of peroxidase inactivation by NAI. Treatment of NAI-inactivated apoPGH synthase with hydroxylamine led to substantial regeneration of both cyclooxygenase and peroxidase activities. Quantitation of radioactivity following incubation of PGH synthase with [3H-acetyl]NAI indicated incorporation of 1.7 +/- 0.9 acetyl groups/70-kDa subunit. Cleavage of acetylated protein with trypsin under nondenaturing conditions followed by high-performance liquid chromatography analysis demonstrated that most of the radioactivity was incorporated into the 33-kDa fragment although significant radioactivity was also detectable in the 38-kDa fragment. Chymotryptic peptide mapping of acetylated protein revealed numerous potential sites of acetylation distributed in widely divergent regions of the protein. No apparent differences were observed between the chymotryptic maps of apo- and holoenzyme, suggesting that the adduct responsible for loss of catalytic activity is unstable to the chromatographic conditions. The different biochemical properties of PGH synthase acetylated by NAI or aspirin suggest that a major determinant of the specificity of aspirin for Ser530 is binding of the salicylate moiety to this region of the PGH synthase protein.  相似文献   

3.
Prostaglandin endoperoxide (PGH) synthase has a single iron protoporphyrin IX which is required for both the cyclooxygenase and peroxidase activities of the enzyme. At room temperature, the heme iron is coordinated at the axial position by an imidazole, and about 20% of the heme iron is coordinated at the distal position by an imidazole. We have used site-directed mutagenesis to investigate which histidine residues are involved in PGH synthase catalysis and heme binding. Individual mutant cDNAs for ovine PGH synthases were prepared with amino acid substitutions at each of 13 conserved histidines. cos-1 cells were transfected with each of these cDNAs, and the cyclooxygenase and peroxidase activities of the resulting microsomal PGH synthases were measured. Mutant PGH synthases in which His-207, His-309, or His-388 was replaced with either glutamine or alanine lacked both activities. Gln-386 and Ala-386 PGH synthase mutants exhibited cyclooxygenase but not peroxidase activities. Other mutants exhibited both activities at varying levels. Because binding of heme renders native PGh synthase resistant to cleavage by trypsin, we examined the effects of heme on the relative sensitivities of native, Ala-204, Ala-207, Ala-309, Ala-386, and Ala-388 mutant PGH synthases to trypsin as a measure of the heme-protein interaction. The Ala-309 PGh synthase mutant was notably hypersensitive to tryptic cleavage, even in the presence of exogenous heme; in contrast, the native enzyme and the other alanine mutants exhibited similar, lower sensitivities toward trypsin and, except for the Ala-386 mutant, were partially protected from trypsin cleavage by heme. Preincubation of the native and each of the alanine mutant PGH synthases, including the Ala-309 mutant, with indomethacin protected the proteins from trypsin cleavage. Thus, all the mutant proteins retain sufficient three-dimensional structure to bind cyclooxygenase inhibitors. Our results suggest that His-309 is one of the heme ligands, probably the axial ligand, of PGH synthase. Two other histidines, His-207 and His-388, are essential for both PGH synthase activities suggesting that either His-207 or His-388 can serve as the distal heme ligand; however, the trypsin cleavage measurements imply that neither His-207 nor His-388 is required for heme binding. This is consistent with the fact that only 20% of the distal coordination position of the heme iron of PGH synthase is occupied by an imidazole side chain.  相似文献   

4.
Prostaglandin H synthase catalyzes two reactions: the bis-dioxygenation of arachidonic acid to form prostaglandin G2 (cyclooxygenase activity), and the reduction of hydroperoxides to the corresponding alcohols (peroxidase activity). The cyclooxygenase activity can be selectively inhibited by many nonsteroidal antiinflammatory agents including indomethacin. In the native synthase, there is a single prominent protease-sensitive region, located near Arg253; binding of the heme prosthetic group makes the synthase resistant to proteases. To investigate the spatial relationship between the area of the synthase which interacts with indomethacin and the protease-sensitive region, the effects of indomethacin and similar agents on the protease sensitivity of the two enzymatic activities and of the synthase polypeptide were examined. Incubation of the synthase apoenzyme with trypsin (3.6% w/w) resulted in the time-dependent coordinate loss (75% at 1 h) of both enzymatic activities and the cleavage (85% at 1 h) of the 70-kDa subunit into 38- and 33-kDa fragments, indicating that proteolytic cleavage of the polypeptide at Arg253, destroyed both activities of the synthase simultaneously. Indomethacin, (S)-flurbiprofen, or meclofenamate (each at 20 microM) rendered both activities and the synthase polypeptide (at 5 microM subunit) resistant to attack by trypsin or proteinase K; these agents also inhibited the cyclooxygenase activity of the intact synthase. Two reversible cyclooxygenase inhibitors, ibuprofen and flufenamate, also made both of the activities and the synthase polypeptide more resistant to trypsin. Titration of the apoenzyme with indomethacin (0-3 mol/mol of synthase dimer) resulted in proportional increases in the inhibition of the cyclooxygenase and in the resistance to attack by trypsin. (R)-Flurbiprofen did not increase the resistance to protease or appreciably inhibit the cyclooxygenase. These results suggest that the same stereospecific interaction of these agents with the synthase that produced inhibition of the cyclooxygenase led to a decreased accessibility of the Arg253 region to proteases. Aspirin treatment made the synthase less resistant to trypsin; aspirin-treated synthase became more resistant to trypsin when it was incubated with indomethacin before addition of the protease. The presence of 50 microM arachidonate during digestion of apoenzyme or aspirin-treated apoenzyme with trypsin did not decrease the cleavage of the synthase subunit.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Two chitin synthases in Saccharomyces cerevisiae   总被引:24,自引:0,他引:24  
Disruption of the yeast CHS1 gene, which encodes trypsin-activable chitin synthase I, yielded strains that apparently lacked chitin synthase activity in vitro, yet contained normal levels of chitin (Bulawa, C. E., Slater, M., Cabib, E., Au-Young, J., Sburlati, A., Adair, W. L., and Robbins, P. W. (1986) Cell 46, 213-225). It is shown here that disrupted (chs1 :: URA3) strains have a particulate chitin synthetic activity, chitin synthase II, and that wild type strains, in addition to chitin synthase I, have this second activity. Chitin synthase II is measured in wild type strains without preincubation with trypsin, the condition under which highest chitin synthase II activities are obtained in extracts from the chs1 :: URA3 strain. Chitin synthase II, like chitin synthase I, uses UDP-GlcNAc as substrate and synthesizes alkali-insoluble chitin (with a chain length of about 170 residues). The enzymes are equally sensitive to the competitive inhibitor Polyoxin D. The two chitin synthases are distinct in their pH and temperature optima, and in their responses to trypsin, digitonin, N-acetyl-D-glucosamine, and Co2+. In contrast to the report by Sburlati and Cabib (Sburlati, A., and Cabib, E. (1986) Fed. Proc. 45, 1909), chitin synthase II activity in vitro is usually lowered on treatment with trypsin, indicating that chitin synthase II is not activated by proteolysis. Chitin synthase II shows highest specific activities in extracts from logarithmically growing cultures, whereas chitin synthase I, whether from growing or stationary phase cultures, is only measurable after trypsin treatment, and levels of the zymogen do not change. Chitin synthase I is not required for alpha-mating pheromone-induced chitin synthesis in MATa cells, yet levels of chitin synthase I zymogen double in alpha factor-treated cultures. Specific chitin synthase II activities do not change in pheromone-treated cultures. It is proposed that of yeast's two chitin synthases, chitin synthase II is responsible for chitin synthesis in vivo, whereas nonessential chitin synthase I, detectable in vitro only after trypsin treatment, may not normally be active in vivo.  相似文献   

6.
5-Aminolevulinate synthase is the first enzyme of the heme biosynthetic pathway in nonplant higher eukaryotes. Murine erythroid 5-aminolevulinate synthase has been purified to homogeneity from an Escherichia coli overproducing strain, and the catalytic and spectroscopic properties of this recombinant enzyme were compared with those from nonrecombinant sources (Ferreira, G.C. & Dailey, H.A., 1993, J. Biol. Chem. 268, 584-590). 5-Aminolevulinate synthase is a pyridoxal 5'-phosphate-dependent enzyme and is functional as a homodimer. The recombinant 5-aminolevulinate synthase holoenzyme was reduced with tritiated sodium borohydride and digested with trypsin. A single peptide contained the majority of the label. The tritiated peptide was isolated, and its amino acid sequence was determined; it corresponded to 15 amino acids around lysine 313, to which pyridoxal 5'-phosphate is bound. Significantly, the pyridoxyllysine peptide is conserved in all known cDNA-derived 5-aminolevulinate synthase sequences and is present in the C-terminal (catalytic) domain. Mutagenesis of the 5-aminolevulinate synthase residue, which is involved in the Schiff base linkage with pyridoxal 5'-phosphate, from lysine to alanine or histidine abolished enzyme activity in the expressed protein.  相似文献   

7.
Tryptophan synthase, which catalyzes the final step of tryptophan biosynthesis, is a multifunctional protein that requires pyridoxal phosphate for two of its three distinct enzyme activities. Tryptophan synthase from Neurospora crassa, a homodimer of two 75-kDa subunits, was shown to bind 1 mol of pyridoxal phosphate/mol of subunit with a calculated dissociation constant for pyridoxal phosphate of 1.1 microM. The spectral properties of the holoenzyme, apoenzyme, and reconstituted holoenzyme were characterized and compared to those previously established for the heterotetrameric (alpha 2 beta 2) enzyme from Escherichia coli. The Schiff base formed between pyridoxal phosphate and the enzyme was readily reduced by sodium borohydride, but not sodium cyanoborohydride. The active site residue that binds pyridoxal phosphate, labeled by reduction of the Schiff base with tritium-labeled sodium borohydride, was determined to be lysine by high performance liquid chromatography analysis of the protein hydrolysate. A 5400-dalton peptide containing the reduced pyridoxal phosphate moiety was generated by cyanogen bromide treatment, purified and sequenced. The sequence is 85% homologous with the corresponding sequence obtained for yeast tryptophan synthase (Zalkin, H., and Yanofsky, C. (1982) J. Biol. Chem. 257, 1491-1500); the lysine derivatized by pyridoxal phosphate is located at the same relative position as that in the yeast and E. coli enzymes.  相似文献   

8.
R J Kulmacz 《Prostaglandins》1989,38(3):277-288
Prostaglandin H synthase has two distinct enzymatic activities: a cyclooxygenase that forms PGG2 from arachidonate and a peroxidase that can reduce hydroperoxides, such as PGG2, to the corresponding alcohols. The relative sensitivities of the two synthase activities to proteolytic attack have been examined, using trypsin, chymotrypsin, and proteinase K, all known to attack the native apoprotein in the arg 253 region. The relation between the specific activity of the synthase and the loss of the two activities and the cleavage of the synthase subunit during trypsin digestion was also examined. The cyclooxygenase and peroxidase activities declined in concert throughout room temperature digestions with each of the three proteases. There was no indication of a selective loss of either activity in any of the digestions. In separate digestions with the same preparation of synthase, 3.3% (w/w) proteinase K resulted in more extensive loss of activity (90% decrease after 90 min) than did 3% (w/w) trypsin (70% decrease after 120 min) or 5% (w/w) chymotrypsin (60% decrease after 135 min). In tryptic digestions of synthase preparations with cyclooxygenase specific activity between 16 and 125 k units/mg protein, the fractional loss of cyclooxygenase activity was, within experimental error, the same as that of peroxidase activity. The extent of cleavage of the 70 kDa synthase subunit was greater than the loss of enzymatic activity, with the discrepancy being larger for synthase preparations with lower specific activity. The presence of a variable amount of catalytically-inactive, protease-sensitive, synthase protein could account for the difference between surviving activity and intact subunit in six out of the seven synthase preparations examined. Thus, it is likely that the cyclooxygenase and peroxidase activities are destroyed together during proteolytic attack on the arg 253 region of the native synthase apoprotein.  相似文献   

9.
The 5-aminolevulinate synthase, heme oxygenase, tryptophan-2,3-dioxygenase activities, the content of total heme and cytochrome P-450 content in the rat liver and absorption spectrum of blood serum in Soret region under glycerol model of rhabdomiolisis and hemolytic anemia caused by single phenylhydrazine injection have been investigated. The glycerol injection caused a considerable accumulation of heme-containing products in the serum and the increase of the total heme content, holoenzyme, total activity and heme saturation of tryptophan-2,3-dioxygenase, as well as the increase of the 5-aminolevulinate synthase and heme oxygenase activities in the liver during the first hours of its action and the decrease of cytochrome P-450 content in 24 h. Administration of phenylhydrazine lead to the increasing of hemolysis products content in blood serum too, although it was less expressed. The phenylhydrazine injection caused the increase of activities of 5-aminolevulinate synthase, holoenzyme, total activity and heme saturation of tryptophan-2,3-dioxygenase, as well as decrease of cytochrome P-450 content in the rat liver in 2 h. The increase of the total heme content and heme oxygenase activity has been observed in 24 h. The effect of heme arrival from the blood stream, as well as a direct influence of glycerol and phenylhydrazine on the investigated parameters are discussed.  相似文献   

10.
L C Huang  C Huang 《Biochemistry》1975,14(1):18-24
Protein kinase isolated from rabbit skeletal muscle can be reversibly converted from the cAMP dependent form to the indepent form by chaotropic salts and urea. A similar but irreversible conversion can also be induced by trypsin digestion of the holoenzyme. The dissociation of cAMP dependent protein kinase by low concentrations of thiocyanate raises the possibility of isolating both native regulatory and catalytic subunits. From various changes in enzymatic activity caused by urea and trypsin perturbation, it is proposed that the conversion of protein kinase from the cAMP dependent to the independent form is due primarily to preferential modification of the regulatory subunit of the holoenzyme.  相似文献   

11.
The 5-aminolevulinate synthase, tryptophan-2,3-dioxygenase activities and cytochrome P-450 content in the rat liver was studied in different terms after CdCl2 administration and after administration of metal salt against a background of 2-hours action of alpha-tocopherol. The lowering of activity of 5-aminolevulinate synthase in 2 h with the consequent increase of the enzyme activity in 6 h and 24 h was detected. The holoenzyme activity and heme saturation of tryptophan-2,3-dioxygenase increased 6 h after CdCl2 administration. The holoenzyme activity and the total activity of tryptophan-2,3-dioxygenase rised in 24 h. The level of cytochrome P-450 lowered. Preliminary administration of alpha-tocopherol prevented changes of studied parameters 24 h after CdCl2 administration. The relationship between decrease of cytochrome P-450 level and 5-aminolevulinate synthase activation are discussed.  相似文献   

12.
Glycogen synthase (labelled in sites-3) and glycogen phosphorylase from rabbit skeletal muscle were used as substrates to investigate the nature of the protein phosphatases that act on these proteins in the glycogen and microsomal fractions of rat liver. Under the assay conditions employed, glycogen synthase phosphatase and phosphorylase phosphatase activities in both subcellular fractions could be inhibited 80-90% by inhibitor-1 or inhibitor-2, and the concentrations required for half-maximal inhibition were similar. Glycogen synthase phosphatase and phosphorylase phosphatase activities coeluted from Sephadex G-100 as broad peaks, stretching from the void volume to an apparent molecular mass of about 50 kDa. Incubation with trypsin decreased the apparent molecular mass of both activities to about 35 kDa, and decreased their I50 for inhibitors-1 and -2 in an identical manner. After tryptic digestion, the I50 values for inhibitors-1 and -2 were very similar to those of the catalytic subunit of protein phosphatase-1 from rabbit skeletal muscle. The glycogen and microsomal fractions of rat liver dephosphorylated the beta-subunit of phosphorylase kinase much faster than the alpha-subunit and dephosphorylation of the beta-subunit was prevented by the same concentrations of inhibitor-1 and inhibitor-2 that were required to inhibit the dephosphorylation of phosphorylase. The same experiments performed with the glycogen plus microsomal fraction from rabbit skeletal muscle revealed that the properties of glycogen synthase phosphatase and phosphorylase phosphatase were very similar to the corresponding activities in the hepatic glycogen fraction, except that the two activities coeluted as sharp peaks near the void volume of Sephadex G-100 (before tryptic digestion). Tryptic digestion of the hepatic glycogen and microsomal fractions increased phosphorylase phosphatase about threefold, but decreased glycogen synthase phosphatase activity. Similar results were obtained with the glycogen plus microsomal fraction from rabbit skeletal muscle or the glycogen-bound form of protein phosphatase-1 purified to homogeneity from the same tissue. Therefore the divergent effects of trypsin on glycogen synthase phosphatase and phosphorylase phosphatase activities are an intrinsic property of protein phosphatase-1. It is concluded that the major protein phosphatase in both the glycogen and microsomal fractions of rat liver is a form of protein phosphatase-1, and that this enzyme accounts for virtually all the glycogen synthase phosphatase and phosphorylase phosphatase activity associated with these subcellular fractions.  相似文献   

13.
A form of glycogen synthase kinase designated GSK-M3 was purified 4000-fold from rat skeletal muscle by phosphocellulose, Affi-Gel blue, Sephacryl S-300 and carboxymethyl-Sephadex column chromatography. Separation of GSK-M from the catalytic subunit of the cAMP-dependent protein kinase was facilitated by converting the catalytic subunit to the holoenzyme form by addition of the regulatory subunit prior to the gel filtration step. GSK-M had an apparent Mr 62,000 (based on gel filtration), an apparent Km of 11 microM for ATP, and an apparent Km of 4 microM for rat skeletal muscle glycogen synthase. The kinase had very little activity with 0.2 mM GTP as the phosphate donor. Kinase activity was not affected by the addition of cyclic nucleotides, EGTA, heparin, glucose 6-P, glycogen, or the heat-stable inhibitor of cAMP-dependent protein kinase. Phosphorylation of glycogen synthase from rat skeletal muscle by GSK-M reduced the activity ratio (activity in the absence of Glc-6-P/activity in the presence of Glc-6-P X 100) from 90 to 25% when approximately 1.2 mol of phosphate was incorporated per mole of glycogen synthase subunit. Phosphopeptide maps of glycogen synthase obtained after digestion with CNBr or trypsin showed that this kinase phosphorylated glycogen synthase in serine residues found in the peptides containing the sites known as site 2, which is located in the N-terminal CNBr peptide, and site 3, which is located in the C-terminal CNBr peptide of glycogen synthase. In addition to phosphorylating glycogen synthase, GSK-M phosphorylated inhibitor 2 and activated ATP-Mg-dependent protein phosphatase. Activation of the protein phosphatase by GSK-M was dependent on ATP and was virtually absent when ATP was replaced with GTP. GSK-M had minimal activity toward phosphorylase b, casein, phosvitin, and mixed histones. These data indicate that GSK-M, a major form of glycogen synthase kinase from rat skeletal muscle, differs from the known glycogen synthase kinases isolated from rabbit skeletal muscle.  相似文献   

14.
The sequences of nitric-oxide synthase (NOS) flavin domains closely resemble that of NADPH-cytochrome P450 reductase (CPR), with the exception of a few regions. One such region is the C terminus; all NOS isoforms are 20-40 amino acids longer than CPR, forming a "tail" that is absent in CPR. To investigate its function, we removed the 21-amino acid C-terminal tail from murine macrophage inducible NOS (iNOS) holoenzyme and from a flavin domain construct. Both the truncated holoenzyme and reductase domain exhibited cytochrome c reductase activities that were 7-10-fold higher than the nontruncated forms. The truncated holoenzyme catalyzed NO formation approximately 20% faster than the intact form. Using stopped-flow spectrophotometry, we demonstrated that electron transfer into and between the two flavins and from the flavin to the heme domain is 2-5-fold faster in the absence of the C-terminal tail. The heme-nitrosyl complex, formed in all NOS isoforms during NO catalysis, is 5-fold less stable in truncated iNOS. Although both CPR and intact NOS can exist in a stable, one electron-reduced semiquinone form, neither the truncated holoenzyme nor the truncated flavin domain demonstrate such a form. We propose that this C-terminal tail curls back to interact with the flavin domain in such a way as to modulate the interaction between the two flavin moieties.  相似文献   

15.
The Escherichia coli biotin operon repressor protein (BirA) has been overexpressed at the level of 0.5-1% of the total cellular protein from the plasmid pMBR10. Four lines of evidence demonstrated that authentic BirA protein was produced. First, birA plasmids complemented birA mutants for both the repressor and biotin holoenzyme synthetase activities of BirA. Second, biotin holoenzyme synthase activity was increased in strains containing the overproducing plasmids. Third, deletion of sequences flanking the birA gene did not alter production of the 35-kDa BirA protein, but insertion of oligonucleotide linkers within the birA coding region abolished it. Fourth, the 35-kDa protein copurified with the biotin binding activity normally associated with BirA. The birA protein has been purified to homogeneity in a three-step process involving chromatography on phosphocellulose and hydroxyapatite columns.  相似文献   

16.
Prostaglandin H synthase catalyzes the first step in the conversion of polyunsaturated fatty acids to prostaglandins, thromboxanes, and prostacyclins. The enzyme is normally bound to the endoplasmic reticulum membrane, but can be purified to homogeneity after solubilization with detergent. The topologies of the microsomal and the pure detergent-solubilized forms of the synthase were compared by an examination of their sensitivity to degradation by proteases, of the effect of heme on this protease sensitivity, and of the sizes of proteolytic fragments produced. For the microsomal synthase, the localization of proteolytic fragments was also determined. Analysis of the microsomal proteins after proteolytic digests involved separation by polyacrylamide gel electrophoresis and selective detection of the synthase-derived polypeptides with a polyclonal antibody against the pure synthase. With both the microsomal and the pure synthase, incubation with trypsin led to a progressive loss of cyclooxygenase activity and cleavage of the synthase subunit (70K Da) into two fragments of 38K and 33K Da. Incubation of the detergent-solubilized form of the synthase with proteinase K and chymotrypsin also produced a very similar pair of fragments (38K and 33K Da). After incubation of the microsomes with trypsin both the 38K and 33K Da fragments from the synthase remained bound to the membrane; no cyclooxygenase activity was released in soluble form from the microsomes by trypsin. Further, neither trypsin nor proteinase K released soluble radiolabeled peptides from microsomes whose synthase had been labeled with [acetyl-14C]-aspirin. With the microsomal synthase the sensitivity to protease (66% of the cyclooxygenase activity was lost after 90 min incubation with proteinase K) was enhanced by depletion of heme (84% of activity lost) and was decreased by addition of heme (only 20% of activity lost), just as had been previously demonstrated for the detergent-solubilized synthase. At each of several intervals during an incubation of the pure synthase with trypsin the extent of cleavage of the synthase polypeptide correlated reasonably well with the extent of loss of cyclooxygenase activity; a similar relation between proteolytic cleavage and loss of activity was observed in digests of the pure synthase supplemented with differing amounts of heme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The large subunit of ribulose bisphosphate carboxylase from Anacystis nidulans 6301, and the β subunit of chloroplast ATP synthase from maize, were fused to the transit peptide of the small subunit of ribulose bisphosphate carboxylase from soybean. These proteins were assayed for post-translational import into isolated pea chloroplasts. Both proteins were imported into chloroplasts. Imported large subunits were associated with two distinct macromolecular structures. The smaller of these structures was a hybrid ribulose bisphosphate carboxylase holoenzyme, and the larger was the binding protein oligomer. Time-course experiments following import of the large subunit revealed that the amount of large subunit associated with the binding protein oligomer decreased over time, and that the amount of large subunit present in the assembled holoenzyme increased. We also observed that imported small subunits of ribulose bisphosphate carboxylase, although predominantly present in the holoenzyme, were also found associated with the binding protein oligomer. In contrast, the imported β subunit of chloroplast ATP synthase did not assemble into a thylakoid-bound coupling factor complex.  相似文献   

18.
The catalytic (alpha) subunit of casein kinase II from Drosophila, cloned and expressed in Escherichia coli (Saxena, A., Padmanabha, R., and Glover, C. V. C., (1987) Mol. Cell. Biol. 7, 3409-3417), has been purified and characterized, and the properties have been compared to those of the holoenzyme. The catalytic subunit exhibits protein kinase activity with casein as substrate and is autophosphorylated. The specific activity of the purified subunit is 6% of the activity of the holoenzyme from reticulocytes or from Drosophila. The alpha subunit is a monomer, eluting at Mr = 40,000 upon gel filtration in high salt, but as part of an aggregate in low salt. The alpha subunit has been purified to apparent homogeneity by sequential chromatography on DEAE-cellulose, Mono S, and Mono Q. A single band, Mr = 37,000, is detected by silver staining following polyacrylamide gel electrophoresis. The isolated alpha subunit displays apparent Km values for beta casein, ATP, and GTP similar to those of the holoenzyme. The activity of the alpha subunit is inhibited by heparin with an I50 of 0.1-0.3 micrograms/ml, a value similar to that observed for the holoenzyme; autophosphorylation is also inhibited by heparin. Polylysine has no stimulatory effect on the activity of the catalytic subunit, as measured with casein and by autophosphorylation, but stimulates both activities with the holoenzyme. When physiological substrates for casein kinase II are examined, glycogen synthase and eukaryotic initiation factor 3 (eIF-3) (p120) are phosphorylated by the alpha subunit at a rate equivalent to that of the holoenzyme, while phosphorylation of eIF-3 (p67) is reduced 9-fold and eIF-2 beta is not modified. From these data, it can be concluded that the alpha subunit of casein kinase II is sufficient for catalysis, is autophosphorylated, and can be directly inhibited by heparin, whereas the beta subunit mediates the effects of basic stimulatory compounds and is involved in recognition and/or binding to specific physiological substrates.  相似文献   

19.
20.
Ravasio S  Curti B  Vanoni MA 《Biochemistry》2001,40(18):5533-5541
Glutamate synthase is a complex iron-sulfur flavoprotein that catalyzes the reductive transfer of the L-glutamine amide group to C(2) of 2-oxoglutarate, forming two molecules of L-glutamate. The bacterial enzyme is an alphabeta protomer, which contains one FAD (on the beta subunit, approximately 50 kDa), one FMN (on the alpha subunit, approximately 150 kDa), and three different Fe-S clusters (one 3Fe-4S center on the alpha subunit and two 4Fe-4S clusters at an unknown location). To address the problem of the intramolecular electron pathway, we have measured the midpoint potential values of the flavin cofactors and of the 3Fe-4S cluster of glutamate synthase in the isolated alpha and beta subunits and in the alphabeta holoenzyme. No detectable amounts of flavin semiquinones were observed during reductive titrations of the enzyme, indicating that the midpoint potential value of each flavin(ox)/flavin(sq) couple is, in all cases, significantly more negative than that of the corresponding flavin(sq)/flavin(hq) couple. Association of the two subunits to form the alphabeta protomer does not alter significantly the midpoint potential value of the FMN cofactor and of the 3Fe-4S cluster (approximately -240 and -270 mV, respectively), but it makes that of FAD some 40 mV less negative (approximately -340 mV for the beta subunit and -300 mV for FAD bound to the holoenzyme). Binding of the nonreducible NADP(+) analogue, 3-aminopyridine adenine dinucleotide phosphate, made the measured midpoint potential value of the FAD cofactor approximately 30-40 mV less negative in the isolated beta subunit, but had no effect on the redox properties of the alphabeta holoenzyme. This result correlates with the formation of a stable charge-transfer complex between the reduced flavin and the oxidized pyridine nucleotide in the isolated beta subunit, but not in the alphabeta holoenzyme. Binding of L-methionine sulfone, a glutamine analogue, had no significant effect on the redox properties of the enzyme cofactors. On the contrary, 2-oxoglutarate made the measured midpoint potential value of the 3Fe-4S cluster approximately 20 mV more negative in the isolated alpha subunit, but up to 100 mV less negative in the alphabeta holoenzyme as compared to the values of the corresponding free enzyme forms. These findings are consistent with electron transfer from the entry site (FAD) to the exit site (FMN) through the 3Fe-4S center of the enzyme and the involvement of at least one of the two low-potential 4Fe-4S centers, which are present in the glutamate synthase holoenzyme, but not in the isolated subunits. Furthermore, the data demonstrate a specific role of 2-oxoglutarate in promoting electron transfer from FAD to the 3Fe-4S cluster of the glutamate synthase holoenzyme. The modulatory role of 2-oxoglutarate is indeed consistent with the recently determined three-dimensional structure of the glutamate synthase alpha subunit, in which several polypeptide stretches are suitably positioned to mediate communication between substrate binding sites and the enzyme redox centers (FMN and the 3Fe-4S cluster) to tightly control and coordinate the individual reaction steps [Binda, C., et al. (2000) Structure 8, 1299-1308].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号