首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Cytochrome P-450 was purified as a 3-methylcholanthrene complex from liver microsomes of 3-methylcholanthrene-treated rabbits to a specific content of 17 to 18 nmoles per mg of protein with a yield of about 10 %. The purified protein gave only a single protein band on sodium dodecylsulfate-urea-poly-acrylamide gel electrophoresis, and its apparent molecular weight was estimated to be about 54,000, a value which is higher than that for cytochrome P-450 from phenobarbital-treated rabbits by about 4,000. The reconstituted system containing the purified cytochrome and NADPH-cytochrome c reductase was active in NADPH-dependent hydroxylation of benzo[α]pyrene.  相似文献   

4.
Cytochrome P-450-dependent monooxygenases are able to oxidize a large variety of endogenous and exogenous substrates. This paper describes the in vitro interaction between benzopyrene and steroids at the level of two rat liver monooxygenases: steroid-16 alpha-hydroxylase and aryl hydrocarbon hydroxylase (AHH). The results obtained suggest the following conclusions: (1) Steroid-16 alpha-hydroxylase is partially supported by a specific cytochrome P-450 form which is not inhibited in vitro by exogenous substrates. Steroid-16 alpha-hydroxylase is completely independent from cytochrome P1-450 (or P-448), as it is insensitive, in vitro, to alpha-naphthoflavone; (2) AHH is supported by two cytochrome P-450 forms: a specific form which is inducible by methylcholanthrene and inhibited in vitro by alpha-naphthoflavone, but is insensitive to metyrapone and steroids; and another less specific form which is inhibited by metyrapone and steroids in vitro.  相似文献   

5.
In vivo administration to rats of the mixed-function oxidase modifiers 3-methylcholanthrene (MC), pregnenolone-16 alpha-carbonitrile (PCN) or beta-naphthoflavnoe (beta-f) inhibits the hepatic microsome-catalyzed in vitro binding of dimethylnitrosamine (DMN) to DNA. This parallels their effect on DMN-demethylase I, regarded to be the sole activating step in DMN carcinogenesis and fails to account for the previously observed anomaly that MC and PCN inhibit, while beta-NF enhances, the hepatocarcinogenic activity of DMN. The in vitro binding of DMN is clearly dependent on microsomes and NADPH, and is strongly enhanced by soluble cytoplasmic proteins; the presence of the latter has no effect. however, on the relative response to pretreatment by the modifiers. In mice beta-NF enhances and PCN inhibits DMN-demethylase I; beta-NF has no effect on either the cytochrome P-450 level or on the LD50, while PCN strongly increases the cytochrome P-450 level but without influencing the LD50. Neither of the two modifiers has any effect in mice on the host-mediated mutagenicity of DMN in a dose-response study, except for the highest dose of DMN (200 mg/kg) where PCN pretreatment significantly enhanced mutagenicity. To account for the anomalous observations, other potential pathways of DMN metabolism have been explored. Whole rat liver nuclei or isolated nuclear membrane fractions contain no DMN-demethylase or diethylnitrosamine-deethylase activity. In a microsomal mixed-function amine-oxidase assay system neither purified enzyme preparations nor whole microsomes catalyze NADPH oxidation in the presence of DMN as substrate. In addition, the purified enzyme does not catalyze formaldehyde production in the DMN-demethylase assay system. Benzylamine, a typical inhibitor of mitochondrial monoamine oxidase (MAO), is a potent inhibitor of DMN-demethylase activity, but microsomes are devoid of MAO activity. Furthermore, purified MAO has no DMN-demethylase activity. The differential effect of modifiers on the carcinogenicity of DMN probably involves pathways other than DMN metabolism.  相似文献   

6.
The nucleotide sequence of a cloned cDNA insert carried by pHDQ14 was determined and found to code for the 107 C-terminal amino acids of rat liver cytochrome P-450e. Comparison of the pHQ14 cDNA sequence with those of cloned cDNAs for cytochrome P-450b and of 2 P-450e-like genes revealed segmental homologies that may have resulted from gene conversion. These results suggest that gene conversion may generate sequence variants of genes for rat liver cytochrome P-450s.  相似文献   

7.
Cytochrome P-450 catalyzing 25-hydroxylation of cholecalciferol (cytochrome P-450 cc25 ) was purified from rat liver microsomes based on its catalytic activity at each purification step. The specific cytochrome P-450 content of the final preparation was 15.1 nmol/mg of protein. Reconstituted activity of 25-hydroxylation of cholecalciferol with the purified enzyme was 2.3 nmol/min/mg of protein, which was 4,300 times as high as that in microsomes. The minimum molecular weight of the enzyme was 50,000 based on SDS-polyacrylamide gel electrophoretogram. Amino terminal sequence of the P-450 cc25 was H2N-Met-Asp-Pro-Val-Leu-Val-. Immunochemical study showed that the purified P-450 cc25 was homogeneous and the cytochrome was immunochemically different from either cytochrome P-450(PB-1) or cytochrome P-448(MC-1).  相似文献   

8.
Human placental microsomes were incubated with [3H]benzo[a]pyrene (BP) and Salmon sperm DNA and the resulting metabolite-nucleoside complexes resolved by Sephadex LH-20 chromatography. The metabolite pattern was analyzed by high-pressure liquid chromatography (HPLC). The incubates were also co-chromatographed with extracts obtained from incubates with rat liver microsomes and [14C]BP. Phenols, quinones and 7,8-dihydrodiol were detected in the placental incubates. Both 9,10- and 4,5-dihydrodiols were very low as compared with control rat liver samples. Placental microsomes catalyzed the binding of BP metabolites to DNA in vitro, giving rise to two main complexes which co-chromatographed with rat liver-produced peaks attributable to 7,8-diol-9,10-epoxide and 7,8-oxide and/or quinones when metabolized further. The nucleoside metabolite peaks attributable to 4,5-oxide and 9-phenol-4,5-oxide were lacking when compared with the binding pattern catalyzed by rat liver. Both the total binding and specific metabolite-nucleoside adducts in the placenta correlated with fluorometrically measured aryl hydrocarbon hydroxylase (AHH) activity and with the amount of dihydrodiol formed. The results demonstrate that both the metabolite pattern and the nucleoside-metabolite complexes formed by the placental microsomes in vitro differed greatly from those produced by rat liver microsomes. These studies also suggest that it is not possible to predict specific patterns of DNA binding from AHH measurements or even from BP metabolite patterns, especially when comparing different tissues and species.  相似文献   

9.
Some characteristics of the liver monooxygenase system were investigated in near-term, newborn and adult rats. When cytochromes P 450 were separated by chromatography on DEAE cellulose, the fraction eluted by NaCl was not significantly increased by transplacental phenobarbital treatment as it is in adult treated animals, but exhibited reconstituted enzyme activities and immunological characteristics qualitatively similar to those of phenobarbital-treated adults. This inductive effect was more acute in 5-d-old newborns and finally in adults. Thus, the mechanism responsible for the induction of cytochrome P 450 by phenobarbital is present but not very active in rat fetuses, and exhibits a rapid development after birth.  相似文献   

10.
We present and evaluate a dual assay, the CYPIA (Cytochrome P-450 induction assay) for the detection and the simultaneous identification of chemicals belonging either to the 3-methylcholanthrene or phenobarbital classes of cytochrome P-450 monooxygenase inducers. These inducers play an important role in the mutagenic activation of chemical compounds as well as in many pharmacological and toxicological events and therefore should be screened by drug and chemical designers. After treatment of male rats or mice by chemicals, the liver preparations (S9) have been used in the Salmonella typhimurium test, to activate either ethidium bromide or cyclophosphamide into mutagenic metabolites. These transformations are specifically catalyzed by cytochrome P-450-dependent monooxygenases induced by 3-methylcholanthrene-like and phenobarbital-like chemical inducers, respectively, The mutagenicity data were strikingly correlated with other methods (production of [3H]benzo[a]pyrene bay-region metabolites, benzphetamine demethylase activity, immunological double-diffusion analysis). Compared to the latter methods, the CYPIA, based on a single and widespread technology, introduces an interesting simplification, and improves the specificity and the sensitivity of the responses.  相似文献   

11.
SKF 525-A induces several subpopulations of cytochrome P-450 which differ in their chromatographic properties and in their abilities to sequester themselves as metabolic-intermediate complexes. The two major subpopulations induced by SKF 525-A have both similar chromatographic elution profiles on DEAE cellulose and the same molecular weight as the two major forms induced by phenobarbital (PB). They differ from those induced by phenobarbital, however, in the extent to which they sequester themselves as SKF 525-A metabolic-intermediate complexes in vivo. They also differ markedly from the major cytochrome induced by beta-naphthoflavone (BNF) which is incapable of forming metabolic-intermediate complexes with SKF 525-A in vivo.  相似文献   

12.
Treatment of female Wistar rats with cyproterone acetate (CPA) was shown to cause pronounced increases of hepatic microsomal monooxygenase activity towards the following substrates: ethylmorphine (EM), aminopyrine (AP), benzphetamin (BPA) and benzo[a]pyrene (BP). Minor increases were seen using p-nitroanisole (pNA) and aniline (AN). Monooxygenase activity reached maximal levels within 24 h. The effects were dose-dependent, the threshold dose being about 4 mg/kg, and were reversible within 6 days. The results of comparative studies with several ‘classical’ microsomal enzyme inducers, i.e. pregnenolone-(16α)-carbonitrile (PCN), phenobarbital (PB), α-hexachlorocyclohexane (α-HCH) and 3-methylcholanthrene (3-MC) suggest that CPA belongs to the PCN-type and α-HCH to the phenobarbital type of inducers. In male rats CPA induced only moderate increases of monooxygenase activities which can be explained by decreased testosterone secretion due to anti-gonadotropic effect of CPA.  相似文献   

13.
Liver cytochrome P-450 from rats treated intraperitoneally with troleandomycin (TAO) were solubilized and partially purified using DE 52 anion exchange chromatography. The major TAO-induced cytochrome P-450 form appears in fraction A which is not bound on the DE 52 column. It is different from the major form induced in rats by phenobarbital or 3-methylcholanthrene in terms of absolute visible spectroscopy, gel electrophoresis (M 45000) and reactions with antibodies. This TAO-induced form mainly exists in vivo as an iron-TAO metabolite complex and exhibits a characteristic Soret peak at 456 nm. Reconstitution experiments using this partially purified form, after dissociation of its iron-metabolite bond by ferricyanide treatment, underline its particular ability to demethylate TAO itself. TAO also leads to an important induction of other cytochromes P-450 that are present in fraction B (retained on DE 52 column) like the major phenobarbital-induced form, but are immunologically distinct from it.  相似文献   

14.
The effect of various pretreatments on the activities of several drug metabolizing enzymes was investigated in microsomes and postmicrosomal supernatant fractions isolated from whole body homogenates of Drosophila melanogaster larvae of different strains. Pretreatments of larvae with either phenobarbital (PB), β-naphthoflavone (BNF) or a mixture of polychlorinated biphenyls (Aroclor 1254, PCB) for 24 h increased microsomal benzo[a]pyrene (BP) monooxygenase activity 2- to 6-fold in all strains as compared to untreated larvae. A simultaneous increase in the contents of cytochrome P-450 occurred after pretreatment with PB and PCB. Comparison of the turnover rates of BP per molecule of cytochrome P-450 indicated that BP was a poor substrate for control cytochrome P-450 whereas BNF induced a most active hemoprotein for this metabolism. Marked differences in the qualitative pattern of BP metabolites were obtained between microsomes isolated from BNF-treated larvae or rat liver microsomes. 3-Hydroxy-BP (3-OH-BP) was the dominating metabolite with both preparations, while the BP dihydrodiols were formed in minor quantities in Drosophila as compared to rat liver. Metyrapone and SKF 525-A inhibited BP metabolism in microsomes isolated from untreated and BNF treated larvae of all strains. In contrast, α-naphthoflavone (ANF) stimulated the BP monooxygenase activity of microsomes isolated from untreated larvae approx. 3-fold but only slightly influenced the activity of microsomes from BNF treated larvae indicating that the latter species of cytochrome P-450 was less sensitive to ANF.In all strains, PCB and PB treatments approximately doubled microsomal epoxide hydrolase activity and increased cytosolic glutathione-S-transferase activity 25–60%, significant only in strain Berlin K after PB treatment. The activities of epoxide hydrolase and glutathione-S-transferase in control larvae were comparable in the different strains, whereas the content of cytochrome P-450 and BP monooxygenase activity was higher in the Hikone R strain. Variability in the induction response to the various pretreatment was observed among the three strains.  相似文献   

15.
The characteristic nature of the drug-metabolizing system in fetal liver microsomes of rats was investigated. The aminopyrine(AM)- and the hexobarbital (HB)-metabolizing activities in fetal liver microsomes of the 21st day of pregnancy were induced by the maternal administration of 3-methylcholanthrene (3-MC) once daily on the 18th and the 19th day of pregnancy, while they were inhibited in maternal liver microsomes. The inductions of the AM- and the HB-metabolizing enzymes in fetal liver microsomes of rat by the maternal administration of 3-MC occurred exclusively in fetal period and simultaneously hemoprotein like phenobarbital-induced type P-450 different from that in maternal liver microsomes was newly induced in fetal liver microsomes of rats.  相似文献   

16.
17.
The effects of 3-methylcholanthrene (3MC) and phenobarbital (PB) administration on the levels of glutathione-S-epoxide transferase activity in supernatant preparations of liver and lung were studied in a number of different strains of mice, C57Bl/6, C3H, C3Hf?, Balb/c?, A+ and DBA/2+. Three epoxide substrates, 3MC-11,12-oxide, styrene oxide (SO) and 3,3,3-trichloro-1,2-epoxypropane (TCPO), were employed in this investigation. PB administration (75 mg/kg body weight for 3 days) resulted in 13–57% increases in enzyme activity in the liver supernatant but was ineffective in inducing activity in lung. 3MC administration (40 mg/kg body weight for 2 days) on the other hand was without any effect on glutathione-S-epoxide transferase activity in both liver and lung.  相似文献   

18.
The intraperitoneal injection of the well known monooxygenase inducers (phenobarbital, β-naphtoflavone, pregnenolone-16α-carbonitrile, benzo(a)-pyrene, methylcholanthrene) elicits a net decrease in the specific binding of estradiol to its cytosol receptor in female rat livers. Amongst the five chemicals tested, only phenobarbital did not exhibit such a phenomenon, but caused a slight increase. This observation was neither due to a competitive inhibition by these compounds, nor to an enhanced metabolism of [3H]-estradiol. Moreover, when this effect was produced by polycyclic hydrocarbons, it was inversely correlated to the activity of aryl hydrocarbon hydroxylase, induced by these same chemicals.  相似文献   

19.
Mouse spot tests using dimethylbenz[a]anthracene (DMBA) were carried out on PW strain male mice and female C57BL/6 mice. DMBA induced somatic gene mutations in developing mouse embryonic cells. Pretreatment of pregnant females with phenobarbital (PB) reduced the incidence of somatic mutation by DMBA. The testes of males treated with DMBA in utero, whether treated with PB or not, showed severe retardation of development. The amount of cytochrome p-450 in the liver of C57BL/6 females increased about 2-fold by the pretreatment schedule, carried out on days 10-12 of pregnancy.  相似文献   

20.
Addition of nicotine to phenobarbital-inducible cytochrome P-450 caused a shift of maximum of Soret peak toward the red approximately 3 nm. The difference spectrum produced by nicotine showed a type 2 spectral change with a peak at 427 nm and a trough at 393 nm. A spectral dissociation constant of phenobarbital-inducible cytochrome P-450 was found to be 0.16 mM for nicotine. Nicotine oxidation in the reconstituted system depended on cytochrome P-450, NADPH-cytochrome P-450 reductase and NADPH. These results indicate that phenobarbital-inducible cytochrome P-450 participates in nicotine oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号