首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ligand-binding component of high and low affinity IL 2 receptors is a 55,000 m.w. glycoprotein termed Tac. Correlating the structure and function of this molecule should provide insight into the mechanism of IL 2-initiated signal transduction and the structural basis for high and low affinity receptor forms. As a first step in this process, various approaches were used to localize the IL 2 binding region of the Tac molecule. Antibodies prepared to synthetic fragments of Tac were tested for their ability to interfere with IL 2 binding and bioactivity. The results delineated segments in the C-terminal portion of the molecule which appeared to be distal to the ligand binding site. In a more direct approach, radioiodinated IL 2 was cross-linked to high and low affinity receptors, and the resulting complexes were subjected to mild tryptic digestion. Consistent with the antibody data, the IL 2 remained covalently associated with an N-terminal tryptic fragment which apparently consisted of residues 1-83 of the Tac protein. These results suggest that the N-terminal region of the Tac molecule contains important contact sites for ligand-receptor interaction.  相似文献   

2.
The Tac protein is one of at least two glycoproteins known to bind the growth and differentiation factor interleukin 2 (IL 2). In addition to its location on the cell surface, where it plays a part in high and low affinity IL 2 receptors, Tac is released from activated lymphocytes in a soluble form. We observed this release both for Tac protein labeled biosynthetically and for Tac protein labeled by surface iodination of intact cells. Competitive binding studies indicated that the soluble Tac protein retained an ability to bind IL 2 with a low affinity (Kd of 11.1 nM). In addition, structural analysis revealed that the polypeptide chain began at position 1 and ended at or just before Cys-192 of the full-length molecule. Thus, the protein was missing its normal transmembrane and intracytoplasmic segments, accounting for its solubility and cellular release. The apparent lack of modification in the amino acid sequence and the termination at Cys-192 are inconsistent with a mechanism of cellular release dependent only on alternate mRNA splicing. Instead, the results suggest that proteolysis may accompany the release of soluble Tac protein from cells expressing IL 2 receptors.  相似文献   

3.
The receptor binding site of IFN-alpha is not precisely known. To further characterize this site, mAb against IFN-alpha 2b were selected that block the binding of radiolabeled IFN-alpha 2b to its cell surface receptor. These antibodies also neutralized the anti-viral and anti-proliferative properties of IFN-alpha 2b. A subset of these antibodies (group 1) do not recognize IFN-alpha 2a, either in solid-phase immunoassays or functional assays, whereas a second subset (group 2), with no cross-reactivity with group 1, recognizes both IFN-alpha subtypes. Because IFN-alpha 2b and IFN-alpha 2a differ by only alpha Arg23-Lys23 substitution, group 1 antibodies must recognize an epitope within the receptor binding region of IFN-alpha 2b that includes Arg23. Group 2 antibodies recognize a separate and distinct epitope within the binding site that does not include Arg23.  相似文献   

4.
A continuous cell line (YT cells) with inducible receptor for T cell growth factor (TCGF)/interleukin 2 (IL 2) was established from a 15-yr-old boy with acute lymphoblastic lymphoma and thymoma. YT cells were tetraploid, having 4q+ chromosomal markers, and proliferated continuously in vitro without conditioned medium (CM) or IL 2. They were weakly positive for OKT9, OKT11, and Tac antigen (Ag), a determinant closely associated with the receptor for IL 2 (IL 2-R), and were negative for OKT1, OKT3, OKT4, and OKT8 Ag. YT cells also expressed HNK-1 Ag and Fc receptors for IgG, which are expressed on natural killer (NK) cells. They retained a killing activity against human cell lines, including K562 (myeloid), T, and B cell lines. Unlike Tac Ag/IL 2-R(+) cell lines derived from adult T cell leukemia (ATL), YT cells were negative for HTLV, as proved by Southern blotting with cDNA for viral DNA. The expression of Tac Ag was markedly enhanced in 18 hr, when YT cells were incubated with CM from PHA-stimulated peripheral blood leukocytes (PBL) or spleen cells, as determined by immunofluorescence by using flow cytometry and binding assay with 125I-anti-Tac antibody (Ab). The binding study with 125I-labeled recombinant IL 2 showed 3.2 X 10(4) IL 2 receptor sites on YT cells precultured with CM. PHA-P and Con A neither agglutinate nor enhance the expression of IL 2-R/Tac antigen on these non-T cell line cells. Furthermore, neither recombinant IL 2 nor gamma-interferon could induce IL 2-R on YT cells, suggesting the presence of a unique IL 2-R inducing factor in PBL or spleen CM. Unlike Tac Ag on HTLV(+), ATL-derived cell lines (Hut-102, MT-1, ATL-2), the expression of Tac Ag on YT cells was down-regulated by anti-Tac Ab. The induction of Tac Ag/IL 2-R on YT cells seemed specific, because the enhancement of Tac Ag expression was not associated with that of Ia Ag and T9/transferrin receptor.  相似文献   

5.
6.
7.
A novel method for the estimation of receptor site densities in purified canine cardiac sarcolemmal vesicles is described. Canine sarcolemmal vesicles, purified by the method of Jones et al. (Jones, L.R., Maddock, S.W. and Besch, H.R. (1980) J. Biol. Chem. 255, 9971-9980) had high (Na+ + K+)-ATPase specific activity (127 +/- 1.9 mumol Pi/mg per h). Total phospholipid content, estimated by measurements of total phosphorus and total fatty acid contents, was 3.09 mumol/mg. Saturation isotherms for several receptor ligands gave the following values for Kd and Bmax: ouabain 32.6 +/- 2.7 nM, 365 +/- 59 pmol/mg; quinuclidinyl benzilate 0.055 +/- 0.010 nM, 5.8 +/- 0.7 pmol/mg; dihydroalprenolol 4.6 +/- 1.0 nM, 2.2 +/- 0.2 pmol/mg; and nitrendipine 0.21 +/- 0.04 nM, 0.93 +/- 1.04 pmol/mg. Membrane phospholipid surface area per ligand-binding sites was estimated from the Bmax values for each receptor ligand utilizing 3.09 mumol phospholipid/mg and 60 A2 as the average surface area occupied by each phospholipid molecule. The following receptor site densities per micrometer 2 phospholipid surface were obtained: ouabain, 400; quinuclidinyl benzilate, 6; dihydroalprenolol, 2; and nitrendipine, 1. As the surface area contributed by protein was estimated to be less than 20% of the lipid surface area, these values must be reduced by approx. 20% to estimate site densities per micrometer 2 membrane surface. These data demonstrate much lower beta-adrenergic and muscarinic receptor density compared to that of Na+ pump sites.  相似文献   

8.
Z Vali  H A Scheraga 《Biochemistry》1988,27(6):1956-1963
Affinity chromatography of active site inhibited thrombin on immobilized fragments derived from the central (desAB-NDSK) and terminal (D1) globular domains of fibrinogen revealed that the site responsible for the binding of thrombin at its secondary fibrin binding site is located in the central domain. Chromatography of various domains of the central nodule (desAB-NDSK, fibrinogen E, and fibrin E) having nonidentical amino acid sequences showed that all of these fragments are capable of binding to PMSF-thrombin-Sepharose, suggesting that the thrombin binding site resides within the peptide regions common to all of these fragments: alpha(Gly17-Met51), beta(Val55-Met118), and gamma(Tyr1-Lys53). Competitive affinity chromatography of the same binding domains revealed that there is no detectable difference in their binding constants to PMSF-thrombin-Sepharose, indicating that the alpha(Lys52-Lys78), beta(Gly15-Lys54)/(Tyr119-Lys122), and gamma(Thr54-Met78) peptide segments do not contribute significantly to the binding of thrombin. Chromatography of the isolated chains of fibrinogen E showed that the alpha(Gly17-Lys78) peptide region itself contains a strong binding site for PMSF-thrombin-Sepharose. The location of the binding site suggests that the secondary site interaction may play an important role in determining the cleavage specificity of thrombin on fibrinogen and can affect the rate of release of the fibrinopeptides. Affinity chromatography of fragments prepared from polymerized fibrin showed that cross-linked DD (D x D) itself does not bind to thrombin, whereas the D x DE complex remained attached to the column, suggesting that the binding site on fragment E for thrombin is distinct from its binding site for D x D.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Fibronectin and tenascin are large extracellular matrix proteins that interact with each other and with integrin receptors to regulate cell growth and movement. They are both modular proteins composed of independently folded domains (modules) that are arranged in linear fashion. Fibronectin is a covalent dimer and tenascin is a hexamer. The site on tenascin to which fibronectin binds has been localized to type III modules 3-5. In this study we use surface plasmon resonance to examine the interaction between various fragments of fibronectin and tenascin to further characterize and localize the binding sites. We found that tenascin fragments that contain type III modules 3-5 bind primarily to the N-terminal 29-kDa hep-1/fib-1 domain, which contains the first five type I modules of fibronectin. The dissociation constant, K(d), is approximately 1 microm. The binding site on fibronectin appears to be cryptic in the whole molecule in solution but is exposed on the proteolytic fragments and probably when fibronectin is in the extended conformation.  相似文献   

10.
Activins, like other members of the transforming growth factor-beta (TGF-beta) superfamily, initiate signaling by assembling a complex of two types of transmembrane serine/threonine receptor kinases classified as type II (ActRII or ActRIIB) and type I (ALK4). A kinase-deleted version of ALK4 can form an inactive complex with activin and ActRII/IIB and thereby acts in a dominant negative manner to block activin signaling. Using the complex structure of bone morphogenetic protein-2 bound to its type I receptor (ALK3) as a guide, we introduced extracellular domain mutations in the context of the truncated ALK4 (ALK4-trunc) construct and assessed the ability of the mutants to inhibit activin function. We have identified five hydrophobic amino acid residues on the ALK4 extracellular domain (Leu40, Ile70, Val73, Leu75, and Pro77) that, when mutated to alanine, have substantial effects on ALK4-trunc dominant negative activity. In addition, eleven mutants partially affected activin binding to ALK4. Together, these residues likely constitute the binding surface for activin on ALK4. Cross-linking studies measuring binding of 125I-activin-A to the ALK4-trunc mutants in the presence of ActRII implicated the same residues. Our results indicate that there is only a partial overlap of the binding sites on ALK4 and ALK3 for activin-A and bone morphogenetic protein-2, respectively. In addition three of the residues required for activin binding to ALK4 are conserved on the type I TGF-beta receptor ALK5, suggesting the corresponding region on ALK5 may be important for TGF-beta binding.  相似文献   

11.
Previous studies have demonstrated that the vitamin pyridoxal phosphate can alter the physicochemical properties of glucocorticoid receptors. We now report the localization of a pyridoxal phosphate binding site within the mero-receptor domain of this glucocorticoid receptor. Mero-glucocorticoid receptors that are generated by trypsin (10 μg/ml) or chymotrypsin (100 μg/ml) digestion of intact receptors sediment as 2.6 S species on 5–20% sucrose gradients in the presence or absence of pyridoxal phosphate. Mero-glucocoritcoid receptors prepared by exogenous proteinases are hydrophobic and show no affinity for DEAE Bio-Gel A. Treating either trypsin-generated or chymotrypsin-generated mero-receptors with pyridoxal phosphate rapidly converts the proteins (60 and 35%, respectively) into forms that bind to DEAE Bio-Gel A. Induction of DEAE binding is specific to pyridoxal phosphate, for treating mero-receptors with pyridoxal, pyridoxamine or pyridoxine phosphate is ineffective. Furthermore, DEAE binding cannot be induced by adding other pyridoxal phosphate-treated cytosols to untreated mero-receptors. High-resolution polyacrylamide gel isoelectric focussing studies indicated that treating mero-receptor generated by either proteinase with pyridoxal phosphate shifted the isoelectric points of lower pH values. The conversion of the mero-receptor to a more acidic form also occurred when the intact glucocorticoid receptor was treated with the vitamin prior to proteolysis. These studies localize at least one pyridoxal phosphate binding site on the mero-receptor domain of the rat thymocyte glucocorticoid receptor.  相似文献   

12.
The historical model for the agonistic binding site on the histamine H2-receptor is based on a postulated activation mechanism: it has been suggested that the histamine monocation binds to the histamine H2-receptor via the formation of three hydrogen bonds. The cationic ammonium group in the side chain and the —NH— group in the π-position of the imidazole act as proton donors, whereas the N— atom in the π-position of the imidazole acts as a proton acceptor. Participation of the ammonium group in H-bonding with a presumed negative charge on the receptor leads to a decrease in positive charge, which is thought to induce a tautomeric change in the imidazole ring system from Nτ-H to Nπ-H. A consequence of this tautomeric shift is the donation of a proton from the receptor to the agonist on one side, while on the other side a proton is donated from the agonist to the receptor. The proposed tautomeric shift has been suggested to trigger the H2-stimulating effect.However, this model for the constitution of the agonistic binding site and the accessory activation mechanism cannot explain the weak histamine H2-activity of β-histine and the activity of several other recently synthesized H2-agonists. Based on a thorough literature study and with the aid of molecular electrostatic potentials (MEPs) we demonstrate that the sulphur atom present in histamine H2-agonists as dimaprit and 2-amino-5-(2-aminoethyl)thiazole does not function as a proton acceptor, which implicitly means that a tautomeric shift is not a prerequisite for H2-stimulation. As a consequence, the model for the agonistic binding site is adjusted, resulting in a strong resemblance to the nature and orientation of the amino acids constituting the catalytic triad in serine proteases. Within this concept, the Nπ-H tautomer of histamine is the biologically active form, in contrast with the existing model in which the Nτ-H tautomer is the active form.  相似文献   

13.
Localization of a trifluoperazine binding site on troponin C   总被引:4,自引:0,他引:4  
J Gariépy  R S Hodges 《Biochemistry》1983,22(7):1586-1594
Trifluoperazine (TFP) was shown to interact with the cyanogen bromide fragment 9 (CB9) (residues 84-135) of rabbit skeletal troponin C and with a synthetic peptide representing the N-terminal region of CB9. The phenothiazine did not affect the calcium binding property of CB9 as observed by proton magnetic resonance and circular dichroism spectroscopies. The calculated calcium binding constants for CB9 in the presence and absence of trifluoperazine were identical (KCa2+ = 1.3 X 10(5) M-1). Localization of the trifluoperazine binding site was achieved by analyzing the 1H NMR spectrum of CB9 and of a synthetic fragment corresponding to residues 90-104 of CB9. Drug-induced shifting and broadening of the ring protons of phenylalanine residues and the methyl resonances of alanine, leucine, and isoleucine residues suggest that the segment 95-102 is in close proximity to the phenothiazine aromatic region. The neighboring negative side chains in the peptide sequence also suggest that the single positive charge present on the piperazine nitrogens of trifluoperazine may interact with them and sterically block a region of interaction of calmodulin (CaM) and troponin C (TnC) with modulated proteins such as phosphodiesterase. Primary sequence analysis of CaM and troponin C reveals that a homologous hydrophobic region to site 3 is also found in the N-terminal region of site 1 of both calcium binding proteins. Binding of TFP to CB9 occurs both in the presence and absence of calcium since the hydrophobic region in these small fragments is completely accessible to TFP whether calcium is present or not. The dissociation constant of the drug to apoCB9 (8 microM) was obtained by ellipticity measurements at 222 nm and was comparable to the 5 microM value obtained by Levin and Weiss [Levin, R. M., & Weiss, B. (1978) Biochim. Biophys. Acta 540, 197-204] for calcium-saturated rabbit skeletal troponin C.  相似文献   

14.
IL-2R on activated lymphocytes contain the Tac protein. As part of an effort to characterize this molecule, we examined the structure-activity relationship for each of its 12 Cys residues. A preliminary map of intramolecular disulfide bonding was derived by analysis of cystine-linked enzymatic fragments of the Tac protein. The results indicated that disulfide bonds linked Cys-3 with Cys-147, Cys-131 with Cys-163, and Cys-28,30 with Cys-59,61. The contribution of the Cys residues to an active protein conformation was tested by site-specific mutagenesis, followed by expression of the modified molecules in murine L cells. The results indicated that Cys-192 and -225 could be replaced without affecting ligand binding. In contrast, modification of any of the other 10 Cys residues, either singly or in combinations corresponding to the predicted disulfide bonds, greatly reduced the ability of the corresponding protein to bind IL-2 or either of two mAb (anti-Tac and 7G7/B6) which recognize the Tac protein. Each of the latter mutations also interfered with the molecule's post-translational modification and cell-surface expression. Consistent with these findings, transfection of the L cells with vectors containing truncated Tac cDNA inserts resulted in secretion of Tac fragments capable of ligand binding when the polypeptide chains terminated after Cys-163 (the 10th Cys residue in the full length molecule), but resulted in inactive fragments of Tac which were poorly secreted when they terminated before Cys-163. These findings emphasize the remarkable sensitivity of the active conformation of the Tac molecule to each of the postulated intramolecular disulfide bonds.  相似文献   

15.
Amino acid residues that participate in antagonist binding to the strychnine-sensitive glycine receptor (GlyR) have been identified by selectively modifying functional groups with chemical reagents. Moreover, a region directly involved with strychnine binding has been localized in the 48-kDa subunit of this receptor by covalent labeling and proteolytic mapping. Modification of tyrosyl or arginyl residues promotes a marked decrease of specific [3H]strychnine binding either to rat spinal cord plasma membranes or to the purified GlyR incorporated into phospholipid vesicles. Occupancy of the receptor by strychnine, but not by glycine, completely protects from the inhibition caused by chemical reagents. Furthermore, these tyrosine- or arginine-specific reagents decrease the number of binding sites (Bmax) for [3H]strychnine binding without affecting the affinity for the ligand (Kd). These observations strongly suggest that such residues are present at, or very close to, the antagonist binding site. In order to localize the strychnine binding domain within the GlyR, purified and reconstituted receptor preparations were photoaffinity labeled with [3H]strychnine. The radiolabeled 48-kDa subunit was then digested with specific chemical proteolytic reagents, and the peptides containing the covalently bound radioligand were identified by fluorography after gel electrophoresis. N-Chlorosuccinimide treatment of [3H]strychnine-labeled 48K polypeptide yielded a single labeled peptide of Mr approximately 7300, and cyanogen bromide gave a labeled peptide of Mr 6200.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Localization of the ATP binding site on alpha-tubulin   总被引:2,自引:0,他引:2  
The binding site for ATP to tubulin was established by use of the photoaffinity label [gamma-32P]N3ATP. Photolysis of the analog in the presence of tubulin resulted in covalent modification of the protein as revealed by autoradiography of electropherograms. Scanning the autoradiograms showed that the ATP analog was bound mainly to the alpha subunit of the tubulin dimer; the alpha subunit was two to three times more radioactive than was the beta subunit. The location of a particular site on the alpha subunit was further defined by peptide maps. The alpha and beta subunits from affinity-labeled tubulin were separated and digested with Staphylococcus protease. Radioactivity was found predominantly in one peptide band from the alpha subunit. The location of the [gamma-32P]N3ATP binding site on the alpha subunit distinguishes it from the previously known exchangeable GTP binding site which is on the beta subunit. Moreover, excess GTP did not compete with [gamma-32P]N3ATP binding. The ATP binding site is distinct from the nonexchangeable GTP binding site. The GTP content of tubulin was the same after dialysis in 0.5 mM ATP as it was following dialysis against ATP-free buffer. Proof that the binding site for [gamma-32P]N3ATP is the same as that for ATP was obtained by competition experiments. In the presence of ATP, photolysis of the affinity analog did not label the alpha subunit preferentially.  相似文献   

17.
As the enzyme that initiates the maturation phase of the oligosaccharidemoiety of N-linked glycoproteins, glucosidase I controls theflux of carbohydrate during the biosynthesis of these proteins.In a previous study to elucidate the structure-function relationships,we reported the presence of a cysteine residue at or near theactive site of the enzyme from the bovine mammary gland (Pukazhenthi,BS.,Muniappa,N. and Vijay,I.K., 1993, J. Biol. Chem, 268, 6445–6452).We have now extended this approach to identify the participationof an arginine and a tryptophan residue in the enzyme that mayplay an important role in binding the substrate. The data havebeen combined with the results of the previous study and thecDNA-derived sequence to propose a ERHLDLRCW motif in the activesite of the enzyme in the rat mammary gland that is involvedin binding the incipient glycoprotein substrate for processing. glucosidase I glycoprotein processing active site  相似文献   

18.
W C Chu  J C Liu    J Horowitz 《Nucleic acids research》1997,25(19):3944-3949
Binding of ethidium bromide to Escherichia coli tRNAVal and an RNA minihelix based on the acceptor stem and T-arm of tRNAVal was investigated by 19F and 1H NMR spectroscopy of RNAs labeled with fluorine by incorporation of 5-fluorouracil. Ethidium bromide selectively intercalates into the acceptor stem of the tRNAVal. More than one ethidium bromide binding site is found in the acceptor stem, the strongest between base pairs A6:U67 and U7:A66. 19F and 1H spectra of the 5-fluorouracil-substituted minihelix RNA indicate that the molecule exists in solution as a 12 base-paired stem and a single-stranded loop. Ethidium bromide no longer intercalates between base pairs corresponding to the tRNAVal acceptor stem in this molecule. Instead, it intercalates between base pairs at the bottom of the long stem-loop structure. These observations suggest that ethidium bromide has a preferred intercalation site close to the base of an RNA helical stem.  相似文献   

19.
The accessory cell requirements for the induction of the IL 2 receptor by the lectin Con A on murine T cell subsets were directly assayed with anti-IL 2 receptor monoclonal antibodies. Substantial levels of IL 2 receptor expression were induced on T lymphocytes of the MHC class I-restricted, suppressor/cytotoxic phenotype (L3T4-, Ly-2+) in the presence and absence of accessory cells. In contrast, high levels of IL 2 receptor expression could only be induced on T cells of the MHC class II-restricted, helper/inducer phenotype (L3T4+, LY-2-) in the presence, but not in the absence, of accessory cells. Ia- cells such as the P388D1 macrophage line or cultured fibroblasts (DAP X 3) were as efficient as the Ia+ B cell hybridoma LB in providing accessory cell function for the L3T4+, Ly-2- subset. PMA, but not purified human IL 1, could substitute for accessory cells for both IL 2 receptor expression and IL 2 secretion by the L3T4+, Ly-2- subset. These data suggest that IL 2 receptor induction on the L3T4+, Ly-2- subset is complex, possibly requiring a T cell-accessory cell interaction, whereas the lectin may directly trigger IL 2 receptor expression on L3T4-, Ly-2+ T cells.  相似文献   

20.
Antiphospholipid syndrome (APS) is an autoimmune disease with clinical manifestations of thrombosis and pregnancy complications. Beta2-glycoprotein I (β2GPI) is the major antigen for the APS-related antibodies. Heparin, low-molecular weight heparin and the synthetic pentasaccharide fondaparinux are commonly used for prophylaxis and treatment of thrombosis in patients with antiphospholipid syndrome. These antithrombotic drugs bind and activate antithrombin III to inactivate blood clotting proteases. Heparin and heparin derivatives might have a direct beneficial effect in APS via binding to β2GPI and interfering with prothrombotic properties of β2GPI/antibody complexes. We compared fondaparinux to heparin regarding its ability to bind β2GPI and inhibit the binding of β2GPI/antibody complexes to negatively charged phospholipids and endothelial cells. Although heparin and fondaparinux bind β2GPI at therapeutically relevant doses, neither fondaparinux nor heparin was efficient in inhibition of the binding of β2GPI/antibody complexes to negatively charged phospholipids and endothelial cells. Our studies suggest that these drugs do not act on pathological properties of β2GPI/antibody complexes, emphasizing the need for a new treatment specific for β2GPI-related thrombosis in APS. We observed that the binding interface of fondaparinux on β2GPI does not include the lysine residues known to be critical for binding of heparin. The docking model of the β2GPI complex with fondaparinux is in agreement with multiple experimental observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号