共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Major surface glycoprotein (Msg), the most abundant cell surface protein of Pneumocystis, plays an important role in the interaction of this opportunistic pathogen with host cells, and its potential for antigenic variation may facilitate evasion of host immune responses. In the present study, we have identified and characterized the promoter region of msg in 3 species of Pneumocystis: P. carinii, P. jirovecii, and P. murina. Because Pneumocystis cannot be cultured, promoter activity was measured in Saccharomyces cerevisiae, a related fungus, using a yeast vector modified to utilize the gene coding for Renilla luciferase as a reporter gene. The 5′-flanking sequences of msg from all three Pneumocystis species showed considerable promoter activity, with increases in luciferase activity up to 15- to 44-fold above baseline. Progressive deletions helped define an ∼13-bp sequence in each Pneumocystis species that appears to be critical for promoter activity. Electrophoretic mobility shift analysis using P. carinii-specific msg promoter sequences demonstrated binding of nuclear proteins of S. cerevisiae. The 144-bp 5′-flanking region of P. murinamsg showed 72% identity to that of P. carinii. The 5′-flanking region of P. jiroveciimsg showed 58 and 61% identity to those of P. murina and P. carinii, respectively. The msg promoter is a good candidate for inclusion in a construct designed for genetic manipulation of Pneumocystis species. 相似文献
3.
Richard C. Hresko Thomas E. Kraft Andrew Quigley Elisabeth P. Carpenter Paul W. Hruz 《The Journal of biological chemistry》2016,291(33):17271-17282
The regulated movement of glucose across mammalian cell membranes is mediated by facilitative glucose transporters (GLUTs) embedded in lipid bilayers. Despite the known importance of phospholipids in regulating protein structure and activity, the lipid-induced effects on the GLUTs remain poorly understood. We systematically examined the effects of physiologically relevant phospholipids on glucose transport in liposomes containing purified GLUT4 and GLUT3. The anionic phospholipids, phosphatidic acid, phosphatidylserine, phosphatidylglycerol, and phosphatidylinositol, were found to be essential for transporter function by activating it and stabilizing its structure. Conical lipids, phosphatidylethanolamine and diacylglycerol, enhanced transporter activity up to 3-fold in the presence of anionic phospholipids but did not stabilize protein structure. Kinetic analyses revealed that both lipids increase the kcat of transport without changing the Km values. These results allowed us to elucidate the activation of GLUT by plasma membrane phospholipids and to extend the field of membrane protein-lipid interactions to the family of structurally and functionally related human solute carriers. 相似文献
4.
Donatella Lattuada Katia Crotta Noemi Tonna Claudia Casnici Roberta Benfante Diego Fornasari Fabio Bianco Renato Longhi Ornella Marelli 《PloS one》2013,8(6)
Ghrelin is a hormone with a crucial role in the regulation of appetite, regulation of inflammation, glucose metabolism and cell proliferation. In the brain ghrelin neurons are located in the cortex (sensorimotor area, cingular gyrus), and the fibres of ghrelin neurons in hypothalamus project directly to the dorsal vagal complex (DVC). Ghrelin binds the growth hormone secretagogue receptor (GHS-R) a G-protein-coupled receptor with a widespread tissue distribution, indeed these receptors are localized both in nonnervous, organs/tissues (i.e. adipose tissue, myocardium, adrenals, gonads, lung, liver, arteries, stomach, pancreas, thyroid, and kidney) as well as in central nervous system (CNS) and higher levels of expression in the pituitary gland and the hypothalamus and lower levels of expression in other organs, including brain. A GHS-R specific monoclonal antibody has been developed and characterized and through it we demonstrate that GHS-R is expressed in primary neurons and that its expression is dependent upon their developmental stage and shows differences according to the brain region involved, with a more pronounced expression in hippocampal rather than cortical neurons. A characterization of GHS-R within the central nervous system is of extreme importance in order to gain insights on its role in the modulation of neurodegenerative events such as Alzheimer’s disease. 相似文献
5.
6.
Hakim Bouamar Daifeng Jiang Long Wang An-Ping Lin Manoela Ortega Ricardo C. T. Aguiar 《Molecular and cellular biology》2015,35(8):1329-1340
In biological processes, the balance between positive and negative inputs is critical for an effective physiological response and to prevent disease. A case in point is the germinal center (GC) reaction, wherein high mutational and proliferation rates are accompanied by an obligatory suppression of the DNA repair machinery. Understandably, when the GC reaction goes awry, loss of immune cells or lymphoid cancer ensues. Here, we detail the functional interactions that make microRNA 155 (miR-155) a key part of this process. Upon antigen exposure, miR-155−/− mature B cells displayed significantly higher double-strand DNA break (DSB) accumulation and p53 activation than their miR-155+/+ counterparts. Using B cell-specific knockdown strategies, we confirmed the role of the miR-155 target Aicda (activation-induced cytidine deaminase) in this process and, in combination with a gain-of-function model, unveiled a previously unappreciated role for Socs1 in directly modulating p53 activity and the DNA damage response in B lymphocytes. Thus, miR-155 controls the outcome of the GC reaction by modulating its initiation (Aicda) and termination (Socs1/p53 response), suggesting a mechanism to explain the quantitative defect in germinal center B cells found in mice lacking or overexpressing this miRNA. 相似文献
7.
Raheleh Masoudi Maria S. Ioannou Michael D. Coughlin Promila Pagadala Kenneth E. Neet Oliver Clewes Shelley J. Allen David Dawbarn Margaret Fahnestock 《The Journal of biological chemistry》2009,284(27):18424-18433
Nerve growth factor (NGF) is produced as a precursor called pro-nerve growth factor (proNGF), which is secreted by many tissues and is the predominant form of NGF in the central nervous system. In Alzheimer disease brain, cholinergic neurons degenerate and can no longer transport NGF as efficiently, leading to an increase in untransported NGF in the target tissue. The protein that accumulates in the target tissue is proNGF, not the mature form. The role of this precursor is controversial, and both neurotrophic and apoptotic activities have been reported for recombinant proNGFs. Differences in the protein structures, protein expression systems, methods used for protein purification, and methods used for bioassay may affect the activity of these proteins. Here, we show that proNGF is neurotrophic regardless of mutations or tags, and no matter how it is purified or in which system it is expressed. However, although proNGF is neurotrophic under our assay conditions for primary sympathetic neurons and for pheochromocytoma (PC12) cells, it is apoptotic for unprimed PC12 cells when they are deprived of serum. The ratio of tropomyosin-related kinase A to p75 neurotrophin receptor is low in unprimed PC12 cells compared with primed PC12 cells and sympathetic neurons, altering the balance of proNGF-induced signaling to favor apoptosis. We conclude that the relative level of proNGF receptors determines whether this precursor exhibits neurotrophic or apoptotic activity.Nerve growth factor (NGF)3 regulates neuronal survival, neurite outgrowth, and differentiation in the peripheral and central nervous systems (1). The mature form of NGF forms a non-covalent homodimer and binds with high affinity (kd ≈ 10−11 m) to tropomyosin-related kinase A (TrkA) and with low affinity (kd ≈ 10−9 m) to the common neurotrophin receptor p75NTR (p75 neurotrophin receptor) (2). NGF promotes cell survival and growth in cells expressing TrkA through activation of the phosphatidylinositol 3-kinase/AKT pathway and the Ras/mitogen-activated protein kinase (MAPK) pathway (3, 4). p75NTR plays diverse roles, ranging from cell survival to cell death depending on the cellular context in which it is expressed. Through activation of the NF-κB pathway, p75NTR can contribute to cell survival in sensory neurons (5), it is involved in axonal growth via regulation of Rho activity (6), and it can interact with Trks to enhance neurotrophin affinity (at low concentration of ligand) and specificity of binding to Trks (7–9). High levels of p75NTR expression can induce apoptosis when there are low levels of Trk or when Trk is absent (10, 11). Apoptosis occurs through increased ceramide production (12), activation of c-Jun N-terminal kinase (JNK1), and p53 (10, 13). p75NTR requires a co-receptor called sortilin to induce cell death (14).NGF is produced as a precursor called pro-nerve growth factor (proNGF) (15). ProNGF is secreted by many tissues such as prostate cells, spermatids, hair follicles, oral mucosal keratinocytes, sympathetic neurons, cortical astrocytes, heart, and spleen (16–20). ProNGF is the predominant form of NGF in the central and peripheral nervous systems, whereas little or no mature NGF can be detected (21–24). In Alzheimer disease brain, retrograde transport from the cortex and hippocampus to basal forebrain cholinergic neurons is reduced as these neurons degenerate, with concomitant proNGF accumulation in the cortex and hippocampus (21, 23). This suggested that proNGF mediates biological activity besides its prodomain function of promoting protein folding and regulation of neurotrophin secretion (25–28). To study the role of proNGF protein in vitro, point mutations were inserted at the cleavage site used by furin, a proprotein convertase known to cleave proNGF (29), to minimize the conversion of proNGF to mature NGF. The resulting recombinant, cleavage-resistant proNGFs reportedly exhibit either apoptotic activity (30, 31) or neurotrophic activity (32, 33). These recombinant proteins differ in several ways (ProNGF(R−1G) ProNGFhis ProNGFE ProNGF123 WT-NGFhis Mutations −1 (R to G) −2 and −1 (RR to AA), 118 and 119 (RR to AA) −1 and +1 (RS to AA) −73 and −72 (RR to AA), −43 and −42 (KKRR to KAAR), −2 and −1 (KR to AA) None: cleavable proNGF Tag No tag Histidine tag No tag No tag Histidine tag Expression system Insect cells Insect cells, mammalian cells Bacteria Insect cells Insect cells, mammalian cells Purification No purification Nickel column Refolded from inclusion bodies, FPLC Cation exchange chromatography, immunoaffinity chromatography Nickel column