首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Candida albicans LYS1-encoded saccharopine dehydrogenase (CaLys1p, SDH) catalyzes the final biosynthetic step (saccharopine to lysine + α-ketoglutarate) of the novel α-aminoadipate pathway for lysine synthesis in fungi. The reverse reaction catalyzed by lysine-α-ketoglutarate reductase (LKR) is used exclusively in animals and plants for the catabolism of excess lysine. The 1,146 bp C. albicans LYS1 ORF encodes a 382 amino acid SDH. In the present investigation, we have used E. coli-expressed recombinant C. albicans Lys1p for the determination of both forward and reverse SDH activities in vitro, compared the sequence identity of C. albicans Lys1p with other known SDHs and LKRs, performed extensive site-directed mutational analyses of conserved amino acid residues and analyzed the phylogenetic relationship of C. albicans Lys1p to other known SDHs and LKRs. We have identified 14 of the 68 amino acid substitutions as essential for C. albicans Lys1p SDH activity, including two highly conserved functional motifs, H93XXF96XH98 and G138XXXG142XXG145. These results provided new insight into the functional and phylogenetic characteristics of the distinct biosynthetic SDH in fungi and catabolic LKR in higher eukaryotes.  相似文献   

5.
6.
The LYS2 and LYS5 genes of the pathogenic yeast Candida albicans are required for the alpha-aminoadipate reductase (AAR) reaction in the lysine biosynthetic pathway. The LYS2 encodes an apo-AAR (Lys2p) and the LYS5 encodes a phosphopantetheinyl transferase (PPTase) for the post-translational activation of AAR. Our cloned C. albicans LYS5 gene encodes a 38.4 kDa PPTase which is 27% identical and 43% similar to the Saccharomyces cerevisiae Lys5p. Sequence alignment of Lys5p with other PPTases reveals highly conserved putative PPTase domains including the Core 3, WXXKESXXK (residues 194-202). Recombinant Lys5p expressed in Escherichia coli activates C. albicans Lys2p for the AAR activity and also activates AARs from S. cerevisiae and to a lesser extent Schizosaccharomyces pombe. Site-directed mutational analyses reveal glutamic acid 198 in the Lys5p Core 3 as essential for the activation of recombinant Lys2p AAR activity. Other conserved amino acids were also analyzed for their influence on Lys5p PPTase activity. Our results demonstrate cloning of the LYS5 gene, expression of Lys5p, in vitro Lys2p activation model and characterization of the functional motifs of the C. albicans PPTase.  相似文献   

7.
Abstract: Accumulation of L-α-aminoadipate by rat cerebral cortical slices is a stereospecific and Na+-dependent process. The uptake of this compound is also temperature-dependent, with a Km , of 1.6 × 10−4M for the high-affinity system. D-α-Aminoadipate has characteristics similar to those displayed by the L-isomer but to a lesser degree. L-Glutamate and L-aspartate inhibit the uptake of L-α-aminoadipate. D- and L-α-Aminoadipate are, respectively, weak uncompetitive and weak competitive inhibitors for the uptake of L-glutamate and L-aspartate. Both enantiomers inhibit GABA uptake but in quite different ways. The release of L-α-aminoadipate from the cerebral cortical slices is stimulated by a high concentration of K+ ions in the presence of Ca2+ in the perfusion buffer; the D-isomer displays this property to a lesser degree. The omission of Ca2+ markedly reduces the release of these two compounds. Less than 10% of the preloaded D- and L-α-aminoadipate are metabolized by the cerebral cortex during 40 min of superfusion. The possibility of L-α-aminoadipate as a neurotransmitter candidate is discussed.  相似文献   

8.
9.
The alpha-aminoadipate pathway for lysine biosynthesis is present only in fungi. The alpha-aminoadipate reductase (AAR) of this pathway catalyzes the conversion of alpha-aminoadipic acid to alpha-aminoadipic-delta-semialdehyde by a complex mechanism involving two gene products, Lys2p and Lys5p. The LYS2 and LYS5 genes encode, respectively, a 155-kDa inactive AAR and a 30-kDa phosphopantetheinyl transferase (PPTase) which transfers a phosphopantetheinyl group from coenzyme A (CoA) to Lys2p for the activation of Lys2p and AAR activity. In the present investigation, we have confirmed the posttranslational activation of the 150-kDa Lys2p of Candida albicans, a pathogenic yeast, in the presence of CoA and C. albicans lys2 mutant (CLD2) extract as a source of PPTase (Lys5p). The recombinant Lys2p or CLD2 mutant extract exhibited no AAR activity with or without CoA. However, the recombinant 150-kDa Lys2p, when incubated with CLD2 extract and CoA, exhibited significant AAR activity compared to that of wild-type C. albicans CAI4 extract. The PPTase in the CLD2 extract was required only for the activation of Lys2p and not for AAR reaction. Site-directed mutational analysis of G882 and S884 of the Lys2p activation domain (LGGHSI) revealed no AAR activity, indicating that these two amino acids are essential for the activation. Replacement of other amino acid residues in the domain resulted in partial or full AAR activity. These results demonstrate the posttranslational activation and the requirement of specific amino acid residues in the activation domain of the AAR of C. albicans.  相似文献   

10.
11.
《Gene》1996,172(1):167-168
The LYS2 and LYS5 genes of Saccharomyces cerevisiae together encode the 180-kDa α-aminoadipate reductase (AAR) in the biosynthetic pathway of lysine. The 4.8-kb LYS2 gene encodes the 155-kDa subunit of AAR. The complete nucleotide (nt) sequence of the 1.1-kb LYS5 gene is presented in this report. It contains a single continuous open reading frame of 816 nt encoding a 272-amino-acid, 30.6-kDa polypeptide.  相似文献   

12.
13.
14.
15.
The alpha-aminoadipate reductase, a novel enzyme in the alpha-aminoadipic acid pathway for the biosynthesis of lysine in fungi, catalyzes the conversion of alpha-aminoadipic acid to alpha-aminoadipic-delta-semialdehyde in the presence of ATP, NADPH and MgCl(2). This reaction requires two distinct gene products, Lys2p and Lys5p. In the presence of CoA, Lys5p posttranslationally activates Lys2p for the alpha-aminoadipate reductase activity. Sequence alignments indicate the presence of all functional domains required for the activation, adenylation, dehydrogenation and alpha-aminoadipic acid binding in the Lys2p. In this report we present the results of site-directed mutational analysis of the conserved amino acid residues in the catalytic domains of Lys2p from the pathogenic yeast Candida albicans. Mutants were generated in the LYS2 sequence of pCaLYS2SEI by PCR mutagenesis and expressed in E. coli BL21 cells. Recombinant mutants and the wild-type Lys2p were analyzed for their alpha-aminoadipate reductase activity. Substitution of threonine 416, glycine 418, serine 419, and lysine 424 of the adenylation domain (TXGSXXXXK, residues 416-424) resulted in a significant reduction in alpha-aminoadipate reductase activity compared to the unmutagenized Lys2p control. Similarly replacement of glycine 978, threonine 980, glycine 981, phenylalanine 982, leucine 983 and glycine 984 of the NADPH binding domain (GXTGFLG, residues 978-984) caused a drastic decrease in alpha-aminoadipate reductase activity. Finally, substitution of histidine 460, aspartic acid 461, proline 462, isoleucine 463, glutamine 464, arginine 465, and aspartic acid 466 of the putative alpha-aminoadipic acid binding domain (HDPIQRD, residues 460-466) resulted in a highly reduced alpha-aminoadipate reductase activity. These results confirm the hypothesis that specific amino acid residues in highly conserved catalytic domains of Lys2p are essential for the alpha-aminoadipate reductase activity.  相似文献   

16.
17.
18.
Recent finding that a prokaryote synthesizes lysine through the α-aminoadipate pathway demonstrates that the lysine synthesis through the α-aminoadipate pathway is not typical of fungi. However, the fungal lysine biosynthesis is not completely the same as the prokaryotic one. We point out that α-aminoadipate reductase is a key enzyme to the evolution of fungal lysine synthesis. In addition, fungi have two different saccharopine dehydrogenases, which is also characteristic of fungi. Received: 18 February 2000 / Accepted: 19 June 2000  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号