首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
3.
4.
Hox genes are key regulators of anterior-posterior axis patterning and have a major role in hindbrain development. The zebrafish Hox4 paralogs have strong overlapping activities in hindbrain rhombomeres 7 and 8, in the spinal cord and in the pharyngeal arches. With the aim to predict enhancers that act on the hoxa4a, hoxb4a, hoxc4a and hoxd4a genes, we used sequence conservation around the Hox4 genes to analyze all fish:human conserved non-coding sequences by reporter assays in stable zebrafish transgenesis. Thirty-four elements were functionally tested in GFP reporter gene constructs and more than 100 F1 lines were analyzed to establish a correlation between sequence conservation and cis-regulatory function, constituting a catalog of Hox4 CNEs. Sixteen tissue-specific enhancers could be identified. Multiple alignments of the CNEs revealed paralogous cis-regulatory sequences, however, the CNE sequence similarities were found not to correlate with tissue specificity. To identify ancestral enhancers that direct Hox4 gene activity, genome sequence alignments of mammals, teleosts, horn shark and the cephalochordate amphioxus, which is the most basal extant chordate possessing a single prototypical Hox cluster, were performed. Three elements were identified and two of them exhibited regulatory activity in transgenic zebrafish, however revealing no specificity. Our data show that the approach to identify cis-regulatory sequences by genome sequence alignments and subsequent testing in zebrafish transgenesis can be used to define enhancers within the Hox clusters and that these have significantly diverged in their function during evolution.  相似文献   

5.
Expression of two zebrafish developmental posterior hoxa genes, hoxa11b and hoxa13b, was studied by in situ hybridization during pectoral and caudal fin development and regeneration. Expression was restricted to cells of the bony rays region. During fin development, molecular cytological analysis revealed that a subpopulation of mesenchymal cells expressed these two hoxa genes during their early differentiation in the subapical region of the developing ray. These cells were identified as differentiating dermal bone making cells (scleroblasts). During fin regeneration, hoxa11b and hoxa13b genes are both induced in undifferentiated cells of the distalmost blastema region (DMB) and the proliferating zone (PZ) and later in differentiating bone-forming cells. In addition, the transient regionalization of the hoxa13b expression pattern in differentiated bone-forming cells along the proximodistal axis of the regenerating ray suggests that hoxa13b could participate in ray patterning. This study is the first to establish a correlation between hoxa gene expression and dermal bone cell differentiation.  相似文献   

6.
Roles for Fgf signaling during zebrafish fin regeneration   总被引:7,自引:0,他引:7  
  相似文献   

7.
8.
9.
10.
11.
It has been established that X-ray irradiation localized to a forelimb or entire irradiation of premetamorphic Pleurodeles larvae prevented limb regeneration. Transplantation of non-irradiated skin, dermis or muscle to limb stumps of locally irradiated newts was sufficient to allow a blastema to develop. Transplantation of the same tissues to limb stumps of entirely irradiated newts yielded different results with the different graft types. Skin graft allowed a normal blastema to be established but dermis or muscle grafts did not. In order to define more precisely the role played by the epidermis in the establishment of a blastema, and in the growth of a regenerate, different combinations of limb tissues, either irradiated or not, were carried out at the level of amputated limb stumps. At four different times (8-10 days; 13-15 days; 20-23 days; 30 days or more) after amputation the stumps were examined in histological longitudinal sections to study the first events of regeneration, that is dedifferentiation and growth. Dedifferentiation occurred in both normal and irradiated tissues of mesodermal origin. The healthy mesenchymal cells began dividing and formed a growing blastema only when associated with a non-irradiated epidermis. Healthy mesenchymal cells covered with an irradiated epidermis exhibited a few mitoses after dedifferentiation, but the mitotic figures became rarer and rarer until the animals died. The lack of dense accumulation of blastemal cells in such limb stumps suggested that the healthy epidermis allows the mesenchymal cells to divide actively to constitute a growing blastema. Hence, X-ray irradiation seems to be responsible for the loss of such an epidermal mitogenic influence on the underlying mesenchymal cells.  相似文献   

12.
13.
Splicing and 3′-end processing (including cleavage and polyadenylation) of vertebrate pre-mRNAs are tightly coupled events that contribute to the extensive molecular network that coordinates gene expression. Sequences within the terminal intron of genes are essential to stimulate pre-mRNA 3′-end processing, although the factors mediating this effect are unknown. Here, we show that the pyrimidine tract of the last splice acceptor site of the human β-globin gene is necessary to stimulate mRNA 3′-end formation in vivo and binds the U2AF 65 splicing factor. Naturally occurring β-thalassaemia-causing mutations within the pyrimidine tract reduces both U2AF 65 binding and 3′-end cleavage efficiency. Significantly, a fusion protein containing U2AF 65, when tethered upstream of a cleavage/polyadenylation site, increases 3′-end cleavage efficiency in vitro and in vivo. Therefore, we propose that U2AF 65 promotes 3′-end processing, which contributes to 3′-terminal exon definition.  相似文献   

14.

We have analyzed the expression of key genes orchestrating tail regeneration in lizard under normal and scarring conditions after cauterization. At 1-day post-cauterization (1 dpc), the injured blastema contains degenerating epithelial and mesenchymal cells, numerous mast cells, and immune cells. At 3 and 7 dpc, a stratified wound epidermis is forming while fibrocytes give rise to a scarring connective tissue. Oncogenes such as wnt2b, egfl6, wnt6, and mycn and the tumor suppressor arhgap28 are much more expressed than other oncogenes (hmga2, rhov, fgf8, fgfr4, tert, shh) and tumor suppressors (apcdd1, p63, rb, fat2, bcl11b) in the normal blastema and at 7 dpc. Blastemas at 3 dpc feature the lowest upregulation of most genes, likely derived from damage after cauterization. Immunomodulator genes nfatc4 and lef1 are more expressed at 7 dpc than in normal blastema and 3 dpc suggesting the induction of immune response favoring scarring. Balanced over-expression of oncogenes, tumor suppressor genes, and immune modulator genes determines regulation of cell proliferation (anti-oncogenic), of movement (anti-metastatic), and immunosuppression in the normal blastema. Significant higher expression of oncogenes wnt2b and egfl6 in normal blastema and higher expression of the tumor suppressor arhgap28 in the 7 dpc blastema indicate that they are among the key/master genes that determine the regulated regeneration of the tail.

  相似文献   

15.
Human skeletal muscle is an essential source of various cellular progenitors with potential therapeutic perspectives. We first used extracellular markers to identify in situ the main cell types located in a satellite position or in the endomysium of the skeletal muscle. Immunohistology revealed labeling of cells by markers of mesenchymal (CD13, CD29, CD44, CD47, CD49, CD62, CD73, CD90, CD105, CD146, and CD15 in this study), myogenic (CD56), angiogenic (CD31, CD34, CD106, CD146), hematopoietic (CD10, CD15, CD34) lineages. We then analysed cell phenotypes and fates in short- and long-term cultures of dissociated muscle biopsies in a proliferation medium favouring the expansion of myogenic cells. While CD56+ cells grew rapidly, a population of CD15+ cells emerged, partly from CD56+ cells, and became individualized. Both populations expressed mesenchymal markers similar to that harboured by human bone marrow-derived mesenchymal stem cells. In differentiation media, both CD56+ and CD15+ cells shared osteogenic and chondrogenic abilities, while CD56+ cells presented a myogenic capacity and CD15+ cells presented an adipogenic capacity. An important proportion of cells expressed the CD34 antigen in situ and immediately after muscle dissociation. However, CD34 antigen did not persist in culture and this initial population gave rise to adipogenic cells. These results underline the diversity of human muscle cells, and the shared or restricted commitment abilities of the main lineages under defined conditions.  相似文献   

16.
The hindbrain and pharyngeal arch-derived structures of vertebrates are determined, at least in part, by Hox paralog group 2 genes. In sarcopterygians, the Hoxa2 gene alone appears to specify structures derived from the second pharyngeal arch (PA2), while in zebrafish (Danio rerio), either of the two Hox PG2 genes, hoxa2b or hoxb2a, can specify PA2-derived structures. We previously reported three Hox PG2 genes in striped bass (Morone saxatilis), including hoxa2a, hoxa2b, and hoxb2a and observed that only HoxA cluster genes are expressed in PA2, indicative that they function alone or together to specify PA2. In this paper, we present the cloning and expression analysis of Nile tilapia (Oreochromis niloticus) Hox PG2 genes and show that all three genes are expressed in the hindbrain and in PA2. The expression of hoxb2a in PA2 was unexpected given the close phylogenetic relationship of Nile tilapia and striped bass, both of which are members of the order Perciformes. A reanalysis of striped bass hoxb2a expression demonstrated that it is expressed in PA2 with nearly the same temporal and spatial expression pattern as its Nile tilapia ortholog. Further, we determined that Nile tilapia and striped bass hoxa2a orthologs are expressed in PA2 well beyond the onset of chondrogenesis whereas neither hoxa2b nor hoxb2a expression persist until this stage, which, according to previous hypotheses, suggests that hoxa2a orthologs in these two species function alone as selector genes of PA2 identity.  相似文献   

17.
18.
Here, we report the cloning and expression analysis of two previously uncharacterized paralogs group 2 Hox genes, striped bass hoxa2a and hoxa2b, and the developmental regulatory gene egr2. We demonstrate that both Hox genes are expressed in the rhombomeres of the developing hindbrain and the pharyngeal arches albeit with different spatio-temporal distributions relative to one another. While both hoxa2a and hoxa2b share the r1/r2 anterior boundary of expression characteristic of the hoxa2 paralog genes of other species, hoxa2a gene expression extends throughout the hindbrain, whereas hoxa2b gene expression is restricted to the r2-r5 region. Egr2, which is used in this study as an early developmental marker of rhombomeres 3 and 5, is expressed in two distinct bands with a location and spacing typical for these two rhombomeres in other species. Within the pharyngeal arches, hoxa2a is expressed at higher levels in the second pharyngeal arch, while hoxa2b is more strongly expressed in the posterior arches. Further, hoxa2b expression within the arches becomes undetectable at 60hpf, while hoxa2a expression is maintained at least up until the beginning of chondrogenesis. Comparison of the striped bass HoxA cluster paralog group 2 (PG2) genes to their orthologs and trans-orthologs shows that the striped bass hoxa2a gene expression pattern is similar to the overall expression pattern described for the hoxa2 genes in the lobe-finned fish lineage and for the hoxa2b gene from zebrafish. It is notable that the pharyngeal arch expression pattern of the striped bass hoxa2a gene is more divergent from its sister paralog, hoxa2b, than from the zebrafish hoxa2b gene. Overall, our results suggest that differences in the Hox PG2 gene complement of striped bass and zebrafish affects both their rhombomeric and pharyngeal arch expression patterns and may account for the similarities in pharyngeal arch expression between striped bass hoxa2a and zebrafish hoxa2b.  相似文献   

19.
MicroRNAs (miRNAs) are small RNAs that fulfill diverse functions by negatively regulating gene expression. Here, we investigated the involvement of miRNAs in the chondrogenic differentiation of chick limb mesenchymal cells and found that the expression of miR-221 increased upon chondrogenic inhibition. Blockade of miR-221 via peanut agglutinin-based antisense oligonucleotides reversed the chondro-inhibitory actions of a JNK inhibitor on the proliferation and migration of chondrogenic progenitors as well as the formation of precartilage condensations. We determined that mdm2 is a relevant target of miR-221 during chondrogenesis. miR-221 was necessary and sufficient to down-regulate Mdm2 expression, and this down-modulation of Mdm2 by miR-221 prevented the degradation of (and consequently up-regulated) the Slug protein, which negatively regulates the proliferation of chondroprogenitors. These results indicate that miR-221 contributes to the regulation of cell proliferation by negatively regulating Mdm2 and thereby inhibiting Slug degradation during the chondrogenesis of chick limb mesenchymal cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号