首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Afro‐Palearctic migrant species are exposed to parasites at both breeding and over‐wintering grounds. The house martin Delichon urbicum is one such migratory species facing high instances of blood parasite infection. In an attempt to determine whether breeding European house martins harbour similar blood parasite communities to populations breeding in North Africa, birds were sampled at their breeding grounds in Switzerland and Algeria. Moreover, haemosporidian prevalence and parasite communities were compared to published data sets on Spanish and Dutch breeding populations. This study furthermore wanted to establish whether co‐infection with multiple genera or lineages of parasites had negative e?ects on host body condition. Breeding house martins caught in Algeria showed a higher prevalence of avian haemosporidian parasites than did European populations. Swiss house martins showed a prevalence comparable to that of Spanish and Dutch populations. There were slight differences in the haemosporidian community between European and North‐African populations in terms of composition and abundance of each lineage. Similar to the Dutch house martins, but in contrast to the Spanish population, infection status and number of genera of parasites infecting single hosts did not in?uence Swiss house martin body condition.  相似文献   

2.
The central‐eastern European populations of sand martin and house martin have declined in the last decades. The drivers for this decline cannot be identified as long as the whereabouts of these long distance migrants remain unknown outside the breeding season. Ringing recoveries of sand martins from central‐eastern Europe are widely scattered in the Mediterranean basin and in Africa, suggesting various migration routes and a broad non‐breeding range. The European populations of house martins are assumed to be longitudinally separated across their non‐breeding range and thus narrow population‐specific non‐breeding areas are expected. By using geolocators, we identified for the first time, the migration routes and non‐breeding areas of sand martins (n = 4) and house martins (n = 5) breeding in central‐eastern Europe. In autumn, the Carpathian Bend and northern parts of the Balkan Peninsula serve as important pre‐migration areas for both species. All individuals crossed the Mediterranean Sea from Greece to Libya. Sand martins spent the non‐breeding season in northern Cameroon and the Lake Chad Basin, within less than a 700 km radius, while house martins were widely scattered in three distinct regions in central, eastern, and southern Africa. Thus, for both species, the expected strength of migratory connectivity could not be confirmed. House martins, but not sand martins, migrated about twice as fast in spring compared to autumn. The spring migration started with a net average speed of > 400 km d–1 for sand martins, and > 800 km d–1 for house martins. However, both species used several stopover sites for 0.5–4 d and were stationary for nearly half of their spring migration. Arrival at breeding grounds was mainly related to departure from the last sub‐Saharan non‐breeding site rather than distance, route, or stopovers. We assume a strong carry‐over effect on timing in spring.  相似文献   

3.
Carry-over effects take place when events occurring in one season influence individual performance in a subsequent season. Blood parasites (e.g. Plasmodium and Haemoproteus) have strong negative effects on the body condition of their hosts and could slow the rate of feather growth on the wintering grounds. In turn, these winter moult costs could reduce reproductive success in the following breeding season. In house martins Delichon urbica captured and studied at a breeding site in Europe, we used ptilochronology to measure growth rate of tail feathers moulted on the winter range in Africa, and assessed infection status of blood parasites transmitted on the wintering grounds. We found a negative association between haemosporidian parasite infection status and inferred growth rate of tail feathers. A low feather growth rate and blood parasite infections were related to a delay in laying date in their European breeding quarters. In addition, clutch size and the number of fledglings were negatively related to a delayed laying date and blood parasite infection. These results stress the importance of blood parasites and feather growth rate as potentially mechanisms driving carry-over effects to explain fitness differences in wild populations of migratory birds.  相似文献   

4.
Understanding connections between breeding, stopover and wintering grounds for long‐distance migratory birds can provide important insight into factors influencing demography and the strength of carry‐over effects among various periods of the annual cycle. Using previously described, multi‐isotope (δ13C, δ15N, δ2H) feather isoscapes for Africa, we identified the most probable wintering areas for house martins Delichon urbica breeding at Badajoz in southwestern Spain. We identified two most‐probable wintering areas differing in isotopic signature in west Africa. We found that the probability to winter in the isotopic cluster two was related to age and sex of individuals. Specifically, experienced males (i.e. two years or older) winter in the isotopic cluster two with a greater probability than experienced females, whereas first‐year females winter in the isotopic cluster two with a greater probability than first‐year males. In addition, wintering area was correlated with breeding phenology, with individuals wintering in the isotopic cluster two initiating their clutches earlier than those wintering in the isotopic cluster one. For birds wintering in the isotopic cluster two, there was no relationship between age and clutch initiation date. In contrast, young birds wintering in the isotopic cluster one initiated their clutches earlier than experienced birds wintering in this area. There was no significant correlation between wintering area and clutch size or the number of fledglings produced. We hypothesize that the relationship among social status, population density and winter habitat quality should be the most important driver of the carry‐over effect we found for this population.  相似文献   

5.
Winter habitat use and the magnitude of migratory connectivity are important parameters when assessing drivers of the marked declines in avian migrants. Such information is unavailable for most species. We use a stable isotope approach to assess these factors for three declining African-Eurasian migrants whose winter ecology is poorly known: wood warbler Phylloscopus sibilatrix, house martin Delichon urbicum and common swift Apus apus. Spatially segregated breeding wood warbler populations (sampled across a 800 km transect), house martins and common swifts (sampled across a 3,500 km transect) exhibited statistically identical intra-specific carbon and nitrogen isotope ratios in winter grown feathers. Such patterns are compatible with a high degree of migratory connectivity, but could arise if species use isotopically similar resources at different locations. Wood warbler carbon isotope ratios are more depleted than typical for African-Eurasian migrants and are compatible with use of moist lowland forest. The very limited variance in these ratios indicates specialisation on isotopically restricted resources, which may drive the similarity in wood warbler populations' stable isotope ratios and increase susceptibility to environmental change within its wintering grounds. House martins were previously considered to primarily use moist montane forest during the winter, but this seems unlikely given the enriched nature of their carbon isotope ratios. House martins use a narrower isotopic range of resources than the common swift, indicative of increased specialisation or a relatively limited wintering range; both factors could increase house martins' vulnerability to environmental change. The marked variance in isotope ratios within each common swift population contributes to the lack of population specific signatures and indicates that the species is less vulnerable to environmental change in sub-Saharan Africa than our other focal species. Our findings demonstrate how stable isotope research can contribute to understanding avian migrants' winter ecology and conservation status.  相似文献   

6.
Understanding what drives or prevents long‐distance migrants to respond to environmental change requires basic knowledge about the wintering and breeding grounds, and the timing of movements between them. Both strong and weak migratory connectivity have been reported for Palearctic passerines wintering in Africa, but this remains unknown for most species. We investigated whether pied flycatchers Ficedula hypoleuca from different breeding populations also differ in wintering locations in west‐Africa. Light‐level geolocator data revealed that flycatchers from different breeding populations travelled to different wintering sites, despite similarity in routes during most of the autumn migration. We found support for strong migratory connectivity showing an unexpected pattern: individuals breeding in Fennoscandia (S‐Finland and S‐Norway) wintered further west compared to individuals breeding at more southern latitudes in the Netherlands and SW‐United Kingdom. The same pattern was found in ring recovery data from sub‐Saharan Africa of individuals with confirmed breeding origin. Furthermore, population‐specific migratory connectivity was associated with geographical variation in breeding and migration phenology: birds from populations which breed and migrate earlier wintered further east than birds from ‘late’ populations. There was no indication that wintering locations were affected by geolocation deployment, as we found high repeatability and consistency in δ13C and δ15N stable isotope ratios of winter grown feathers of individuals with and without a geolocator. We discuss the potential ecological factors causing such an unexpected pattern of migratory connectivity. We hypothesise that population differences in wintering longitudes of pied flycatchers result from geographical variation in breeding phenology and the timing of fuelling for spring migration at the wintering grounds. Future research should aim at describing how temporal dynamics in food availability across the wintering range affects migration, wintering distribution and populations’ capacity to respond to environmental changes.  相似文献   

7.
There is an overdue and urgent need to establish patterns of migratory connectivity linking breeding grounds, stopover sites, and wintering grounds of migratory birds. Such information allows more effective application of conservation efforts by applying focused actions along movement trajectories at the population level. Stable isotope methods, especially those using stable hydrogen isotope abundance in feathers (δ2Hf) combined with Bayesian assignment techniques incorporating prior information such as relative abundance of breeding birds, now provide a fast and reliable means of establishing migratory connectivity, especially for Neotropical migrants that breed in North America and molt prior to fall migration. Here we demonstrate how opportunistic sampling of feathers of 30 species of wintering birds in Cuba, Venezuela, Guatemala, Puerto Rico, and Mexico, regions that have typically been poorly sampled for estimating migratory connectivity, can be assigned to breeding areas in North America through both advanced spatial assignment to probability surfaces and through simpler map lookup approaches. Incorporating relative abundance information from the North American Breeding Bird Survey in our Bayesian assignment models generally resulted in a reduction in potential assignment areas on breeding grounds. However, additional tools to constrain longitude such as DNA markers or other isotopes would be desirable for establishing breeding or molt origins of species with broad longitudinal distributions. The isotope approach could act as a rapid means of establishing basic patterns of migratory connectivity across numerous species and populations. We propose a large‐scale coordinated sampling effort on the wintering grounds to establish an isotopic atlas of migratory connectivity for North American Neotropical migrants and suggest that isotopic variance be considered as a valuable metric to quantify migratory connectivity. This initiative could then act as a strategic template to guide further efforts involving stable isotopes, light‐sensitive geolocators, and other technologies.  相似文献   

8.
Species with similar ecological characters often compete with each other; however, a species may also facilitate the survival or reproduction of another ecologically similar species, although such interaction is rarely documented in birds. Here, we reported a facilitative species interaction between Asian house martins (Delichon dasypus) and russet sparrows (Passer cinnamomeus), both passerines using closed nests, in a montane farming area of Taiwan. We found that Asian house martins constructed dome‐shaped nests in human houses that provided additional nest sites for russet sparrows, secondary cavity nesters with greatly declining populations in Taiwan. Russet sparrows that used house martin nests had reproductive success comparable to those that used artificial nest boxes. However, Asian house martins avoided reclaiming sparrow‐used nests, which reduced their available nest sites. Interestingly, our results imply that man‐made structures may be used as a conservation tool to improve the breeding of the endangered russet sparrows via this facilitative interaction.  相似文献   

9.
In migratory species breeding in temperate zones and wintering in tropical areas, the prevalence of blood parasites may be affected by migratory strategies and winter habitat choice. We explored whether African winter habitat was linked to the probability of haemosporidian infection in the House Martin Delichon urbicum breeding in Spain, and tested for potential differences between age‐classes. As a proxy for winter habitat features, we analysed stable isotope (δ2H, δ13C and δ15N) values of winter‐grown feathers moulted in tropical Africa. Rainfall at the African winter grounds was related to the probability of being infected with haemosporidians and this effect differed among age‐classes. We found that haemosporidian prevalence was similar for young and experienced birds wintering in habitats of higher rainfall (2H‐depleted), whereas there were great differences in winter habitats of lower rainfall (2H‐enriched), with young having a much higher prevalence compared with experienced birds. Likewise, experienced birds wintering in habitats of higher rainfall had a higher probability of haemosporidian infection compared with experienced birds wintering in habitats of lower rainfall. By contrast, young birds wintering in habitats of lower rainfall had a higher probability of haemosporidian infection compared with young birds wintering in habitats of higher rainfall. These outcomes highlight the interaction of age with haemosporidian infection in the migratory ecology of the House Martin, which may drive carry‐over effects in this long‐distance aerial insectivore.  相似文献   

10.
Dunlin Calidris alpina is one of the most abundant shorebirds using coastal habitats in the East Atlantic migratory flyway, that links arctic breeding locations (Greenland to Siberia) with wintering grounds (West Europe to West Africa). Differential migration and winter segregation between populations have been indicated by morphometrics and ringing recoveries. Here, we analyse the potential of genetic markers (mitochondrial DNA – mtDNA) to validate and enhance such findings. We compared mtDNA haplotypes frequencies at different wintering sites (from north-west Europe to West Africa). All birds from West Africa had western (European) haplotypes, while the eastern (Siberian) haplotypes were only present in European winter samples, reaching higher frequencies further north in Europe. Compilation of published results from migrating birds also confirmed these differences, with the sole presence of European haplotypes in Iberia and West Africa and increasingly higher frequencies of Siberian haplotypes from south-west to north-west Europe. Comparison with published haplotype frequencies of breeding populations shows that birds from Greenland, Iceland, and North Europe were predominant in wintering grounds in West Africa, while populations wintering in West Europe originated from more eastern breeding grounds (e.g. North Russia). These results show that genetic markers can be used to enhance the integrative monitoring of wintering and breeding populations, by providing biogeographical evidence that validate the winter segregation of breeding populations.  相似文献   

11.
Migratory routes and wintering grounds can have important fitness consequences, which can lead to divergent selection on populations or taxa differing in their migratory itinerary. Collared (Ficedula albicollis) and pied (F. hypoleuca) flycatchers breeding in Europe and wintering in different sub-Saharan regions have distinct migratory routes on the eastern and western sides of the Sahara desert, respectively. In an earlier paper, we showed that hybrids of the two species did not incur reduced winter survival, which would be expected if their migration strategy had been a mix of the parent species'' strategies potentially resulting in an intermediate route crossing the Sahara desert to different wintering grounds. Previously, we compared isotope ratios and found no significant difference in stable-nitrogen isotope ratios (δ 15N) in winter-grown feathers between the parental species and hybrids, but stable-carbon isotope ratios (δ 13C) in hybrids significantly clustered only with those of pied flycatchers. We followed up on these findings and additionally analyzed the same feathers for stable-hydrogen isotope ratios (δ 2H) and conducted spatially explicit multi-isotope assignment analyses. The assignment results overlapped with presumed wintering ranges of the two species, highlighting the efficacy of the method. In contrast to earlier findings, hybrids clustered with both parental species, though most strongly with pied flycatcher.  相似文献   

12.

Aim

Recent, rapid population declines in many Afro‐Palaearctic migratory bird species have focussed attention on changing conditions within Africa. However, processes influencing population change can operate throughout the annual cycle and throughout migratory ranges. Here, we explore the evidence for impacts of breeding and non‐breeding conditions on population trends of British breeding birds of varying migratory status and wintering ecology.

Location

Great Britain (England & Scotland).

Methods

Within‐ and between‐species variation in population trends is quantified for 46 bird species with differing migration strategies.

Results

Between 1994 and 2007, rates of population change in Scotland and England differed significantly for 19 resident and 15 long‐distance migrant species, but were similar for 12 short‐distance migrant species. Of the six long‐distance migrant species that winter in the arid zone of Africa, five are increasing in abundance throughout Britain. In contrast, the seven species wintering in the humid zone of Africa are all declining in England, but five of these are increasing in Scotland. Consequently, populations of both arid and humid zone species are increasing significantly faster in Scotland than England, and only the English breeding populations of species wintering in the humid zone are declining.

Main conclusions

Population declines in long‐distance migrants, especially those wintering in the humid zone, but not residents or short‐distance migrants suggest an influence of non‐breeding season conditions on population trends. However, the consistently less favourable population trends in England than Scotland of long‐distance migrant and resident species strongly suggest that variation in the quality of breeding grounds is influencing recent population changes. The declines in humid zone species in England, but not Scotland, may result from poorer breeding conditions in England exacerbating the impacts of non‐breeding conditions or the costs associated with a longer migration, while better conditions in Scotland may be buffering these impacts.
  相似文献   

13.
Stable isotope analysis of feathers can be useful in the study of seasonal interactions and migratory connectivity in birds. For the Palaearctic–African migration system, however, the lack of isotope data from feathers of known origin in Africa renders the geographic assignment of birds captured on European breeding grounds to potential wintering areas problematic. Rectrices of the threatened aquatic warbler Acrocephalus paludicola grown in Africa were sampled across six European countries to assess whether birds in different breeding populations shared similar isotopic signatures and so were likely to have wintered in the same region in Africa. Freshly grown feathers of aquatic warblers collected at the only known wintering site in Senegal showed high variation in carbon, nitrogen, and hydrogen isotope ratios. Due to similarly high variation in isotope ratios of African‐grown feathers within all breeding populations, it was not possible to determine whether different populations wintered in different regions. However, isotope signatures of 20% of birds captured on European breeding grounds fell outside the range of those captured in Senegal, suggesting a wider wintering distribution than is currently known. We therefore assessed whether the origin of these feathers could be estimated by trying to establish isotopic gradients across sub‐Saharan West Africa. Feathers of three ecologically similar surrogate species were sampled from wetlands across a 3000 km east‐west and a 2000 km north–south transect. Within‐site variation in feather isotope ratios was frequently larger than the difference predicted by gradients across West Africa. Thus, predicting the origin of individual feathers using single‐isotope gradients was not reliable. The large within‐site variability of feather isotope ratios of a habitat specialist species like the aquatic warbler indicates that using feather isotope ratios will require large sample sizes from many locations, and may thus not be an efficient tool in identifying wintering areas of Palaearctic–African migrants.  相似文献   

14.
R. Prinzinger  K. Siedle 《Oecologia》1988,76(2):307-312
Summary Special energetic adaptations are of great evolutionary significance for birds that encounter transient problems in finding food during the breeding season. House martins, as aerial insectivores, encounter such problems during spells of bad weather, when they must survive on body reserves. This species employs the following behavioural and physiological adaptations to save energy: Low basal metabolic rate (only 43% of the values predicted by allometric equations); low thermal conductance 51% (day) and 67% (night) of the predicted values; clustering behaviour; high tolerance of the young to periods of low food supply; and the ability to become torpid, found in adults and young from the age of 11 days on. House martins are the first passerine birds in which torpor has been found. These adaptations might have played a role in the great success of the house martin, one of the 10–15 most abundant bird species in Europe.Abbreviations BMR Basal metabolic rate, J/g·h - C Thermal conductance, J/g·h°C - M Energy metabolism, J/g·h - Ta Ambient temperature, °C - Tb Body temperature, °C - W Body mass, g A great part of these investigations were done in the laboratory of Prof. Dr. E. Kulzer, Physiologische Ökologie, Auf der Morgenstelle 28, D-7400 Tübingen, FRG  相似文献   

15.
Knowing the natural dynamics of pathogens in migratory birds is important, for example, to understand the factors that influence the transport of pathogens to and their transmission in new geographical areas, whereas the transmission of other pathogens might be restricted to a specific area. We studied haemosporidian blood parasites of the genera Plasmodium, Haemoproteus and Leucocytozoon in a migratory bird, the garden warbler Sylvia borin. Birds were sampled in spring, summer and early autumn at breeding grounds in Sweden, on migration at Capri, Italy and on arrival and departure from wintering staging areas in West Africa: mapping recoveries of garden warblers ringed in Fennoscandia and Capri showed that these sites are most probably on the migratory flyway of garden warblers breeding at Kvismaren. Overall, haemosporidian prevalence was 39%, involving 24 different parasite lineages. Prevalence varied significantly over the migratory cycle, with relatively high prevalence of blood parasites in the population on breeding grounds and at the onset of autumn migration, followed by marked declines in prevalence during migration both on spring and autumn passage. Importantly, we found that when examining circannual variation in the different lineages, significantly different prevalence profiles emerged both between and within genera. Our results suggest that differences in prevalence profiles are the result of either different parasite transmission strategies or coevolution between the host and the various parasite lineages. When separating parasites into common vs. rare lineages, we found that two peaks in the prevalence of rare parasites occur; on arrival at Swedish breeding grounds, and after the wintering period in Africa. Our results stress the importance of appropriate taxonomic resolution when examining host‐parasite interactions, as variation in prevalence both between and within parasite genera can show markedly different patterns.  相似文献   

16.
North American birds that feed on flying insects are experiencing steep population declines, particularly long-distance migratory populations in the northern breeding range. We determine, for the first time, the level of migratory connectivity across the range of a songbird using direct tracking of individuals, and test whether declining northern populations have higher exposure to agricultural landscapes at their non-breeding grounds in South America. We used light-level geolocators to track purple martins, Progne subis, originating from North American breeding populations, coast-to-coast (n = 95 individuals). We show that breeding populations of the eastern subspecies, P. s. subis, that are separated by ca. 2000 km, nevertheless have almost completely overlapping non-breeding ranges in Brazil. Most (76%) P. s. subis overwintered in northern Brazil near the Amazon River, not in the agricultural landscape of southern Brazil. Individual non-breeding sites had an average of 91 per cent forest and only 4 per cent agricultural ground cover within a 50 km radius, and birds originating from declining northern breeding populations were not more exposed to agricultural landscapes than stable southern breeding populations. Our results show that differences in wintering location and habitat do not explain recent trends in breeding population declines in this species, and instead northern populations may be constrained in their ability to respond to climate change.  相似文献   

17.
Migratory shorebirds use, among many, the East Atlantic Flyway that links breeding areas as north as Tundra habitats to aquatic wintering grounds in West Africa. As a consequence, they are potentially important in the spread of global zoonotic diseases transmitted by ticks, such as Lyme borreliosis and tularemia—two diseases previously detected in Portugal. In this study, we looked at the infection status of seven populations of shorebirds during their migration, breeding, or wintering in the Portuguese wetlands to access if they carry these pathogens and to discuss their potential risk in the Portuguese wetlands. A total of 212 migratory shorebirds captured in the Tagus and Sado estuaries; key staging and wintering sites in this flyway and important breeding areas for some species were analyzed for the presence of Borrelia burgdorferi sensu lato and Francisella tularensis. In the present study, B. garinii was identified in seven (3%) specimens (five black-tailed godwits Limosa limosa, one common redshank Tringa totanus, and one little stint Calidris minuta), whereas F. tularensis subsp. holarctica was identified in one (0.4%) little stint. To our knowledge, this is the first evidence that shorebirds that migrate through or winter in Portugal transport these pathogens, potentially contributing for their introduction along the flyway, including the Mediterranean region.  相似文献   

18.

Background

Migrant populations must cope not only with environmental changes in different biomes, but also with the continuous constraints imposed by human-induced changes through landscape transformation and resource patchiness. Theoretical studies suggest that changes in food distribution can promote changes in the social arrangement of individuals without apparent adaptive value. Empirical research on this subject has only been performed at reduced geographical scales and/or for single species. However, the relative contribution of food patchiness and predictability, both in space and time, to abundance and sociality can vary among species, depending on their degree of flexibility.

Methodology/Principal Findings

By means of constrained zero-inflated Generalized Additive Models we analysed the spatial distribution of two trans-Saharan avian scavengers that breed (Europe) and winter (Africa) sympatrically, in relation to food availability. In the summering grounds, the probability of finding large numbers of both species increases close to predictable feeding sources, whereas in the wintering grounds, where food resources are widespread, we did not find such aggregation patterns, except for the black kite, which aggregated at desert locust outbreaks. The comparison of diets in both species through stable isotopes revealed that their diets overlapped during summering, but not during wintering.

Conclusions/Significance

Our results suggest that bird sociality at feeding grounds is closely linked to the pattern of spatial distribution and predictability of trophic resources, which are ultimately induced by human activities. Migrant species can show adaptive foraging strategies to face changing distribution of food availability in both wintering and summering quarters. Understanding these effects is a key aspect for predicting the fitness costs and population consequences of habitat transformations on the viability of endangered migratory species.  相似文献   

19.
To investigate migratory connectivity in the Reed Warbler Acrocephalus scirpaceus, we analysed (1) all available sub-Saharan ringing recoveries and (2) stable isotopes in feathers grown in Africa sampled at 17 European breeding sites across a migratory divide. A cluster analysis of ringing recoveries showed remarkable connectivity between breeding and non-breeding grounds. Two main clusters represented populations taking the two main migratory routes [southwesterly (SW) and southeasterly (SE)]. Stable isotope analysis confirmed the separation of wintering areas of SW- and SE-migrating populations. Higher δ15N values in feathers of SE-migrating birds indicated that they occupied more xeric biome types. Values of δ13C that did not differ significantly among populations were higher than those from feathers of known European origin and indicated a C4 biome. Three populations with an unknown migratory direction were assigned to the SE-migrating populations on the basis of δ15N values.  相似文献   

20.

Background

Qinghai Lake in central China has been at the center of debate on whether wild birds play a role in circulation of highly pathogenic avian influenza virus H5N1. In 2005, an unprecedented epizootic at Qinghai Lake killed more than 6000 migratory birds including over 3000 bar-headed geese (Anser indicus). H5N1 subsequently spread to Europe and Africa, and in following years has re-emerged in wild birds along the Central Asia flyway several times.

Methodology/Principal Findings

To better understand the potential involvement of wild birds in the spread of H5N1, we studied the movements of bar-headed geese marked with GPS satellite transmitters at Qinghai Lake in relation to virus outbreaks and disease risk factors. We discovered a previously undocumented migratory pathway between Qinghai Lake and the Lhasa Valley of Tibet where 93% of the 29 marked geese overwintered. From 2003–2009, sixteen outbreaks in poultry or wild birds were confirmed on the Qinghai-Tibet Plateau, and the majority were located within the migratory pathway of the geese. Spatial and temporal concordance between goose movements and three potential H5N1 virus sources (poultry farms, a captive bar-headed goose facility, and H5N1 outbreak locations) indicated ample opportunities existed for virus spillover and infection of migratory geese on the wintering grounds. Their potential as a vector of H5N1 was supported by rapid migration movements of some geese and genetic relatedness of H5N1 virus isolated from geese in Tibet and Qinghai Lake.

Conclusions/Significance

This is the first study to compare phylogenetics of the virus with spatial ecology of its host, and the combined results suggest that wild birds play a role in the spread of H5N1 in this region. However, the strength of the evidence would be improved with additional sequences from both poultry and wild birds on the Qinghai-Tibet Plateau where H5N1 has a clear stronghold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号