首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biodegradability of microbial polythioesters (PTEs), a novel class of biopolymers which were discovered recently and can be produced by polyhydroxyalkanoate (PHA)-accumulating bacteria, was studied. Using poly(3-hydroxybutyrate-co-3-mercaptopropionate) [poly(3HB-co-3MP)] as sole carbon source for screening, 22 new bacterial strains were isolated and characterized. Interestingly, none of the PHA-degrading bacteria was able to utilize the homopolymer poly(3MP) as a carbon source for growth or to form clear zones on poly(3MP)-containing agar plates. The extracellular PHA depolymerases from two strains ( Schlegelella thermodepolymerans, Pseudomonas indica K2) were purified to electrophoretic homogeneity and biochemically characterized. The PHA depolymerase of S. thermodepolymerans exhibited a temperate optimum of about 75°C to 80°C and was stable at 70°C for more than 24 h. Regarding the substrate specificities of the PHA depolymerase of S. thermodepolymerans, enzyme activities decreased significantly with increasing 3MP content of the copolymer substrates. Interestingly, no activity could be detected with homoPTEs consisting only of 3MP or of 3-mercaptobutyrate. Similar results were obtained with the PHA depolymerases PhaZ2, PhaZ5 and PhaZ7 of Paucimonas lemoignei which were also investigated. The PHA depolymerase of Ps. indica K2 did not cleave any of the investigated polymers containing 3MP. Gas chromatography, infrared and 1H-NMR spectrometry and matrix-assisted laser desorption/ionization time-of-flight analysis revealed that 3MPs containing oligomers were enriched in the water-insoluble fraction remaining after partial digestion of poly(3HB-co-3MP) by purified poly(3HB) depolymerase of S. thermodepolymerans. In contrast, 3HB was enriched in the water-soluble fraction, which also contained 3HB-co-3MP dimer obtained by partial digestion of this copolymer by the enzyme. This study clearly indicates that PHA depolymerases are specific for oxoester linkages of PHAs and that the thioester bonds of PTEs cannot be cleaved by this type of enzyme.This publication is dedicated to Prof. Dr. Hans G. Schlegel in honor of his 80th birthday  相似文献   

2.
Pseudomonas lemoignei has five different polyhydroxyalkanoate (PHA) depolymerase genes (phaZ1 to phaZ5), which encode the extracellularly localized poly(3-hydroxybutyrate) (PHB) depolymerases C, B, and D, poly(3-hydroxyvalerate) (PHV) depolymerase, and PHB depolymerase A, respectively. Four of the five genes (phaZ1 to phaZ4) have been cloned, and one of them (phaZ1) was studied in detail earlier (D. Jendrossek, B. Müller, and H. G. Schlegel, Eur. J. Biochem. 218:701-710, 1993). The fifth PHA depolymerase gene (phaZ5) was identified by colony hybridization of recombinant Escherichia coli clones with a phaZ5-specific oligonucleotide. The nucleotide sequence of a 3,704-bp EcoRI fragment was determined and found to contain two large open reading frames (ORFs) which coded for a polypeptide with significant similarities to glycerol-3-phosphate dehydrogenases of various sources (313 amino acids; M(r), 32,193) and for the precursor of PHB depolymerase A (PhaZ5; 433 amino acids; M(r), 44,906). The PHV depolymerase gene (phaZ4) was subcloned, and the nucleotide sequence of a 3,109-bp BamHI fragment was determined. Two large ORFs (ORF3 and ORF4) that represent putative coding regions were identified. The deduced amino acid sequence of ORF3 (134 amino acids; M(r), 14,686) revealed significant similarities to the branched-chain amino acid aminotransferase (IlfE) of enterobacteria. ORF4 (1,712 bp) was identified as the precursor of a PHV depolymerase (567 amino acids; M(r), 59,947). Analysis of primary structures of the five PHA depolymerases of P. lemoignei and of the PHB depolymerases of Alcaligenes faecalis and Pseudomonas pickettii revealed homologies of 25 to 83% to each other and a domain structure: at their N termini, they have typical signal peptides of exoenzymes. The adjacent catalytic domains are characterized by several conserved amino acids that constitute putative catalytic triads which consist of the consensus sequence of serine-dependent hydrolases including the pentapeptide G-X-S-X-G, a conserved histidine and aspartate, and a conserved region resembling the oxyanion hole of lipases. C terminal of the catalytic domain an approximately 40-amino-acid-long threonine-rich region (22 to 27 threonine residues) is present in PhaZ1, PhaZ2, PhaZ3, and PhaZ5. Instead of the threonine-rich region PhaZ4 and the PHB depolymerases of A. faecalis and P. pickettii contain an approximately 90-amino-acid-long sequence resembling the fibronectin type III module of eucaryotic extracellular matrix proteins. The function of the fibronectin type III module in PHA depolymerases remains obscure. Two types of C-terminal sequences apparently represent substrate-binding sites; the PHB type is present in the PHB depolymerases of A. faecalis and P. pickettii and in PhaZ2, PhaZ3, and PhaZ5 and the PHV type is present in the PHV-hydrolyzing depolymerases (PhaZ4 and PhaZ1). phaZ1 was transferred to A. eutrophus H16 and JMP222. All transconjugants of both strains were able to grow with extracellular PHB as a carbon source and produced translucent halos on PHB-containing solid media. PhaZ1, PhaZ2, PhaZ4, and PhaZ5 were purified from P. lemoignei and from recombinant E. coli; the processing sites of the precursors in E. coli were the same as in P. lemoignei, and similar substrate specificities were determined for the wild-type and the recombinant proteins. All PHA depolymerases hydrolyzed PHB at high specific activities. PhaZ1 and PhaZ4 additionally cleaved PHV, and PhaZ4 hydrolyzed poly(4-hydroxybutyrate). None of the depolymerases was able to hydrolyze polyactide or PHA consisting of monomers with more than five carbon atoms. While the wild-type depolymerase proteins were glycosylated and found to contain glucose and N-acetylglucosamine, none of the recombinant proteins was glycosylated. PHB hydrolysis was dependent on divalent cations such as Ca2+ and was inhibited by the presence of EDTA.  相似文献   

3.
Biodegradation of polyhydroxyalkanoic acids   总被引:19,自引:0,他引:19  
Stimulated by the commercial availability of bacteriologically produced polyesters such as poly[(R)-3-hydroxybutyric acid], and encouraged by the discovery of new constituents of polyhydroxyalkanoic acids (PHA), a considerable body of knowledge on the metabolism of PHA in microorganisms has accumulated. The objective of this essay is to give an overview on the biodegradation of PHA. The following topics are discussed: (i) general considerations of PHA degradation, (ii) methods for identification and isolation of PHA-degrading microorganisms, (iii) characterization of PHA-degrading microorganisms, (iv) biochemical properties of PHA depolymerases, (v) mechanisms of PHA hydrolysis, (vi) regulation of PHA depolymerase synthesis, (vii) molecular biology of PHA depolymerases, (viii) influence of the physicochemical properties of PHA on its biodegradability, (ix) degradation of polyesters related to PHA, (x) biotechnological aspects of PHA and PHA depolymerases. Received: 28 May 1996 / Received revision: 5 August 1996 / Accepted: 12 August 1996  相似文献   

4.
The kinetics and mechanism of enzymatic degradation on the surface of poly[(R)-3-hydroxybutyrate] (P[(R)-3HB]) film have been studied using three types of extracellular poly(hydroxyalkanoate) (PHA) depolymerases from Alcaligenes faecalis, Pseudomonas pickettii and Comamonas testosteroni. The monomer and dimer of 3-hydroxybutyric acid were produced during the course of the enzymatic degradation of P[(R)-3HB] film, and the rate of production was determined by monitoring the increase in absorbance at 210 nm on a spectrophotometer. The rate of enzymatic degradation increased to a maximum value with the concentration of PHA depolymerase, followed by a gradual decrease. The kinetic data were accounted for in terms of a heterogeneous enzymatic reaction, involving enzymatic degradation on the surface of P[(R)-3HB] film via two steps of adsorption and hydrolysis by a PHA depolymerase with binding and catalytic domains. The kinetic results suggest that the properties of the catalytic domains are very similar among the three PHA depolymerases, but that those of the binding domains are strongly dependent on the type of depolymerase.  相似文献   

5.
Pseudomonas lemoignei is equipped with at least five polyhydroxyalkanoate (PHA) depolymerase structural genes (phaZ1 to phaZ5) which enable the bacterium to utilize extracellular poly(3-hydroxybutyrate) (PHB), poly(3-hydroxyvalerate) (PHV), and related polyesters consisting of short-chain-length hxdroxyalkanoates (PHASCL) as the sole sources of carbon and energy. Four genes (phaZ1, phaZ2, phaZ3, and phaZ5) encode PHB depolymerases C, B, D, and A, respectively. It was speculated that the remaining gene, phaZ4, encodes the PHV depolymerase (D. Jendrossek, A. Frisse, A. Behrends, M. Andermann, H. D. Kratzin, T. Stanislawski, and H. G. Schlegel, J. Bacteriol. 177:596–607, 1995). However, in this study, we show that phaZ4 codes for another PHB depolymeraes (i) by disagreement of 5 out of 41 amino acids that had been determined by Edman degradation of the PHV depolymerase and of four endoproteinase GluC-generated internal peptides with the DNA-deduced sequence of phaZ4, (ii) by the lack of immunological reaction of purified recombinant PhaZ4 with PHV depolymerase-specific antibodies, and (iii) by the low activity of the PhaZ4 depolymerase with PHV as a substrate. The true PHV depolymerase-encoding structural gene, phaZ6, was identified by screening a genomic library of P. lemoignei in Escherichia coli for clearing zone formation on PHV agar. The DNA sequence of phaZ6 contained all 41 amino acids of the GluC-generated peptide fragments of the PHV depolymerase. PhaZ6 was expressed and purified from recombinant E. coli and showed immunological identity to the wild-type PHV depolymerase and had high specific activities with PHB and PHV as substrates. To our knowledge, this is the first report on a PHASCL depolymerase gene that is expressed during growth on PHV or odd-numbered carbon sources and that encodes a protein with high PHV depolymerase activity. Amino acid analysis revealed that PhaZ6 (relative molecular mass [Mr], 43,610 Da) resembles precursors of other extracellular PHASCL depolymerases (28 to 50% identical amino acids). The mature protein (Mr, 41,048) is composed of (i) a large catalytic domain including a catalytic triad of S136, D211, and H269 similar to serine hydrolases; (ii) a linker region highly enriched in threonine residues and other amino acids with hydroxylated or small side chains (Thr-rich region); and (iii) a C-terminal domain similar in sequence to the substrate-binding domain of PHASCL depolymerases. Differences in the codon usage of phaZ6 for some codons from the average codon usage of P. lemoignei indicated that phaZ6 might be derived from other organisms by gene transfer. Multialignment of separate domains of bacterial PHASCL depolymerases suggested that not only complete depolymerase genes but also individual domains might have been exchanged between bacteria during evolution of PHASCL depolymerases.  相似文献   

6.
Several microorganisms were isolated as bacteria degrading polycaprolactone (PCL), and one of them, a strain B273 identified as Alcaligenes faecalis, was selected. Because this strain produced only slight PCL depolymerase activity, the hyper-producing mutant, TS22, was isolated after UV irradiation. Synthesis of PCL depolymerase was derepressed, probably based on the altered regulation of metabolic pathways in strain TS22. The partially purified enzyme hydrolyzed p-nitrophenyl fatty acids and triglycerides other than PCL, but not poly(3-hydroxybutyrate), indicating that PCL depolymerase may be a kind of lipase.  相似文献   

7.
The aim of this study was to increase the density of wild type Cupriavidus necator H16 biomass grown on fructose in order to produce sufficient copolymer of short-chain-length (scl) and medium-chain-length (mcl) polyhydroxyalkanoate (PHA) from canola oil for mechanical testing of the PHA. Initial batch cultivation on fructose was followed by exponential feeding of fructose at a predetermined μ to achieve 44.4 g biomass/l containing only 20 % w/w of polyhydroxybutyrate (PHB) with a Yx/fructose of 0.44 g/g. In a third stage, canola oil was added under N-limited conditions to produce 92 g/l of biomass with 48 % w/w scl–mcl PHA. Using known standards, the PHA composition was confirmed by GC–MS analysis as 99.81 % 3-hydroxybutyrate, 0.06 % 3-hydroxyvalerate, 0.09 % 3-hydroxyhexanoate and 0.04 % 3-hydroxyoctanoate. The melting temperature (179 °C), crystallinity (54 %), tensile stress (25.1 Mpa) and Young’s modulus (698 Mpa) for a PHB standard decreased to 176 °C, 52 %, 19.1 and 443 Mpa respectively for C. necator PHA produced in the 3-stage process.  相似文献   

8.
A approximately 35 kDa protein that has been described to be secreted by Paucimonas lemoignei during growth on succinate and to inhibit hydrolysis of denatured (crystalline) poly(3-hydroxybutyrate) (dPHB) by extracellular PHB depolymerases of P. lemoignei (PHB depolymerase inhibitor (PDI)) was purified and characterized. Purified PDI (M(r), 36 199 +/- 45 Da) inhibited hydrolysis of dPHB by two selected purified PHB depolymerases (PhaZ2 and PhaZ5) but did not inhibit the hydrolysis of water-soluble substrates such as p-nitrophenylbutyrate by PhaZ5 and PhaZ2. PDI revealed a high binding affinity to dPHB although it was not able to hydrolyze the crystalline polymer. However, purified PDI had a high hydrolytic activity if native (amorphous) PHB (nPHB) was used as a substrate. N-terminal sequencing of PDI revealed that it was identical to recently described extracellular PHB depolymerase PhaZ7 which is specific for nPHB and which cannot hydrolyze dPHB. To confirm that the inhibition of hydrolysis of dPHB by PhaZ7 is an indirect surface competition effect at high depolymerase concentration, the activity of PHB depolymerases PhaZ2 and PhaZ5 in the presence of different amounts of protein mixtures was determined. The components of NB or LB medium inhibited hydrolysis of the polymer in a concentration-dependent manner but had no effect on the hydrolysis of p-nitrophenylbutyrate by PHB depolymerases. In combination with PHB depolymerases PhaZ2 and PhaZ5 the protein PhaZ7 ("PDI") enables the bacteria to hydrolyze dPHB and nPHB simultaneously.  相似文献   

9.
A Rhodospirillum rubrum gene that is predicted to code for an extracellular poly(3-hydroxybutyrate) (PHB) depolymerase by the recently published polyhydroxyalkanoates (PHA) depolymerase engineering database was cloned. The gene product (PhaZ3 Rru ) was expressed in recombinant E. coli, purified and biochemically characterized. PhaZ3 Rru turned out, however, to share characteristics of intracellular PHB depolymerases and revealed a combination of properties that have not yet been described for other PHB depolymerases. A fusion of PhaZ3 Rru with the enhanced cyan fluorescent protein was able to bind to PHB granules in vivo and supported the function as an intracellular PHB depolymerase. Purified PhaZ3 Rru was specific for short-chain-length polyhydroxyalkanoates (PHASCL) and hydrolysed both untreated native PHB granules as well as trypsin-activated native PHB granules to a mixture of mono- and dimeric 3-hydroxybutyrate. Crystalline (denatured) PHB granules were not hydrolysed by PhayZ3 Rru . Low concentrations of calcium or magnesium ions (1–5 mM) reversibly (EDTA) inhibited the enzyme. Our data suggest that PhaZ3 Rru is the representative of a new type of the growing number of intracellular PHB depolymerases.  相似文献   

10.
An extensive amount of knowledge on biochemistry of poly(3-hydroxyalkanoic acid) (PHA) synthesis and on its biodegradation has accumulated during the last two decades. Numerous genes encoding enzymes involved in the formation of PHA and in PHA degradation (PHA depolymerases) were cloned and characterized from many microorganisms. A large variety of methods exists for determination of PHA depolymerase activity and for preparation of the polymeric substrate (PHA). Unfortunately, results obtained with these different methods cannot be compared directly because they highly depend on the assay method applied and on the history of PHA granules preparation. In this contribution, the peculiarities, advantages, disadvantages and limitations of existing PHA depolymerase assay methods are described.  相似文献   

11.
Polycaprolactone (PCL), a synthetic polyester with applications in biodegradable plastics, is degraded by a variety of microorganisms, including fungal phytopathogens. These pathogens secrete cutinase, which hydrolyzes cutin, the polyester structural component of plant cuticle, releasing ω-hydroxy fatty acids that induce cutinase synthesis. Our laboratory previously reported that growth of Fusarium solani on PCL requires cutinase, which is active as a PCL depolymerase and induced by the products of its action on PCL. A mutant strain of F. solani in which the cutinase gene is deleted was unable to grow on PCL and did not secrete PCL depolymerase activity in the media tested. It is now shown that this mutant produces a PCL depolymerase in media containing lipase inducers. Wild-type strains also produce this second PCL depolymerase, which is induced by Tween 80 and tributyrin, but not by PCL or cutin. The second depolymerase shows interfacial activation, indicating that it is a lipase. PCL may thus be a substrate but not an inducer of depolymerases that degrade it, and screening microorganisms on medium with PCL as the sole source of carbon and energy may fail to reveal strains with active PCL depolymerases, because of the absence of an inducer. Surprisingly, Tween 80 induces both cutinase and lipase activities in wild-type F. solani. Received: 31 March 1998 / Received revision: 27 July 1998 / Accepted: 8 August 1998  相似文献   

12.
Pseudomonas lemoignei is equipped with at least five polyhydroxyalkanoate (PHA) depolymerase structural genes (phaZ1 to phaZ5) which enable the bacterium to utilize extracellular poly(3-hydroxybutyrate) (PHB), poly(3-hydroxyvalerate) (PHV), and related polyesters consisting of short-chain-length hxdroxyalkanoates (PHA(SCL)) as the sole sources of carbon and energy. Four genes (phaZ1, phaZ2, phaZ3, and phaZ5) encode PHB depolymerases C, B, D, and A, respectively. It was speculated that the remaining gene, phaZ4, encodes the PHV depolymerase (D. Jendrossek, A. Frisse, A. Behrends, M. Andermann, H. D. Kratzin, T. Stanislawski, and H. G. Schlegel, J. Bacteriol. 177:596-607, 1995). However, in this study, we show that phaZ4 codes for another PHB depolymeraes (i) by disagreement of 5 out of 41 amino acids that had been determined by Edman degradation of the PHV depolymerase and of four endoproteinase GluC-generated internal peptides with the DNA-deduced sequence of phaZ4, (ii) by the lack of immunological reaction of purified recombinant PhaZ4 with PHV depolymerase-specific antibodies, and (iii) by the low activity of the PhaZ4 depolymerase with PHV as a substrate. The true PHV depolymerase-encoding structural gene, phaZ6, was identified by screening a genomic library of P. lemoignei in Escherichia coli for clearing zone formation on PHV agar. The DNA sequence of phaZ6 contained all 41 amino acids of the GluC-generated peptide fragments of the PHV depolymerase. PhaZ6 was expressed and purified from recombinant E. coli and showed immunological identity to the wild-type PHV depolymerase and had high specific activities with PHB and PHV as substrates. To our knowledge, this is the first report on a PHA(SCL) depolymerase gene that is expressed during growth on PHV or odd-numbered carbon sources and that encodes a protein with high PHV depolymerase activity. Amino acid analysis revealed that PhaZ6 (relative molecular mass [M(r)], 43,610 Da) resembles precursors of other extracellular PHA(SCL) depolymerases (28 to 50% identical amino acids). The mature protein (M(r), 41,048) is composed of (i) a large catalytic domain including a catalytic triad of S(136), D(211), and H(269) similar to serine hydrolases; (ii) a linker region highly enriched in threonine residues and other amino acids with hydroxylated or small side chains (Thr-rich region); and (iii) a C-terminal domain similar in sequence to the substrate-binding domain of PHA(SCL) depolymerases. Differences in the codon usage of phaZ6 for some codons from the average codon usage of P. lemoignei indicated that phaZ6 might be derived from other organisms by gene transfer. Multialignment of separate domains of bacterial PHA(SCL) depolymerases suggested that not only complete depolymerase genes but also individual domains might have been exchanged between bacteria during evolution of PHA(SCL) depolymerases.  相似文献   

13.
The enzymatic degradability of chemosynthesized atactic poly([R,S]-3-hydroxybutyrate) [a-P(3HB)] by two types of extracellular poly(3-hydroxyalkanoate) (PHA) depolymerases purified from Ralstonia pickettii T1 (PhaZ(ral)) and Acidovorax Sp. TP4 (PhaZ(aci)), defined respectively as PHA depolymerase types I and II according to the position of the lipase box in the catalytic domain, were studied. The enzymatic degradation of a-P(3HB) by PhaZ(aci) depolymerase was confirmed from the results of weight loss and the scanning electron micrographs. The degradation products were characterized by one- and two-dimension (1)H NMR spectroscopy. It was found that a-P(3HB) could be degraded into monomer, dimer, and trimer by PhaZ(aci) depolymerase at temperatures ranging from 4 to 20 degrees C, while a-P(3HB) could hardly be hydrolyzed by PhaZ(ral) depolymerase in the same temperature range. These results suggested that the chemosynthesized a-P(3HB) could be degraded in the pure state by natural PHA depolymerase.  相似文献   

14.
15.
The substrate specificities of extracellular lipases purified from Bacillus subtilis, Pseudomonas aeruginosa, Pseudomonas alcaligenes, Pseudomonas fluorescens, and Burkholderia cepacia (former Pseudomonas cepacia) and of extracellular polyhydroxyalkanoate (PHA) depolymerases purified from Comamonas sp., Pseudomonas lemoignei, and P. fluorescens GK13, as well as that of an esterase purified from P. fluorescens GK 13, to various polyesters and to lipase substrates were analyzed. All lipases and the esterase of P. fluorescens GK13 but none of the PHA depolymerases tested hydrolyzed triolein, thereby confirming a functional difference between lipases and PHA depolymerases. However, most lipases were able to hydrolyze polyesters consisting of an omega-hydroxyalkanoic acid such as poly(6-hydroxyhedxanoate) or poly(4-hydroxybutyrate). The dimeric ester of hydroxyhexanoate was the main product of enzymatic hydrolysis of polycaprolactone by P. aeruginosa lipase. Polyesters containing side chains in the polymer backbone such as poly (3-hydroxybutyrate) and other poly(3-hydroxyalkanoates) were not or were only slightly hydrolyzed by the lipases tested.  相似文献   

16.
Enzymatic degradability has been investigated for a series of bacterial poly(3-hydroxybutyrate-co-3-hydroxypropionate)s (P(3HB-co-3HP)s) with 3-hydroxypropionate (3HP) unit contents from 11 to 86 mol % as well as poly(3-hydroxybutyrate) (P(3HB)) and chemosynthesized poly(3-hydroxypropionate) (P(3HP)). The behavior of degradation by two types of extracellular poly(3-hydroxyalkanoate) (PHA) depolymerases purified from Ralstonia pikettii T1 and Acidovorax Sp. TP4, defined respectively as PHA depolymerase types I and II according to the position of the lipase box in the catalytic domain, were compared in relation to the thermal properties and crystalline structures of the PHA samples elucidated by differential scanning calorimetry and wide-angle X-ray diffraction. The degradation products were characterized by high-performance liquid chromatography and one- (1D) and two-dimension (2D) (1)H NMR spectroscopy. It was found that the PHA depolymerase of Acidovorax Sp. TP4 showed degradation behavior different from that shown by depolymerase of R. pikettii T1. PHA depolymerase from Acidovorax Sp. TP4 degraded the P(3HB-co-3HP) films with lower crystallinity in higher rates than those with higher crystallinity, no matter what kinds of crystalline structures they formed. In contrast, PHA depolymerase from R. pikettii T1 degraded P(3HB-co-3HP) films forming P(3HB) crystalline structure in higher rates than those forming P(3HP)s. The increase in amorphous nature of the P(3HB-co-3HP) films with P(3HB)-homopolymer-like crystalline structure increases and then decreases the rate of degradation by depolymerase from R. pikettii T1. The 3-hydroxybutyrate (3HB) monomer was produced as a major product by the hydrolysis of P(3HB) film by PHA depolymerase from Acidovorax Sp. TP4. The P(3HB-co-3HP) films could be degraded into 3HB and 3-hydroxypropionate (3HP) monomer at last, indicating that the catalytic domain of the enzyme recognized at least two monomeric units as substrates. While the PHA depolymerase from R. pikettii T1 hydrolyzed P(3HB) film into 3HB dimer as a major product, and the catalytic domain recognized at least three monomeric units. The degradation behavior of P(3HB-co-3HP) films by the PHA depolymerase of Acidovorax Sp. TP4 could be distinguished from that by the depolymerase of R. pikettii T1.  相似文献   

17.
Medium-chain-length (mcl) poly(3-hydroxyalkanoates) (PHAs) are storage polymers that are produced from various substrates and accumulate in Pseudomonas strains belonging to rRNA homology group I. In experiments aimed at increasing PHA production in Pseudomonas strains, we generated an mcl PHA-overproducing mutant of Pseudomonas putida KT2442 by transposon mutagenesis, in which the aceA gene was knocked out. This mutation inactivated the glyoxylate shunt and reduced the in vitro activity of isocitrate dehydrogenase, a rate-limiting enzyme of the citric acid cycle. The genotype of the mutant was confirmed by DNA sequencing, and the phenotype was confirmed by biochemical experiments. The aceA mutant was not able to grow on acetate as a sole carbon source due to disruption of the glyoxylate bypass and exhibited two- to fivefold lower isocitrate dehydrogenase activity than the wild type. During growth on gluconate, the difference between the mean PHA accumulation in the mutant and the mean PHA accumulation in the wild-type strain was 52%, which resulted in a significant increase in the amount of mcl PHA at the end of the exponential phase in the mutant P. putida KT217. On the basis of a stoichiometric flux analysis we predicted that knockout of the glyoxylate pathway in addition to reduced flux through isocitrate dehydrogenase should lead to increased flux into the fatty acid synthesis pathway. Therefore, enhanced carbon flow towards the fatty acid synthesis pathway increased the amount of mcl PHA that could be accumulated by the mutant.  相似文献   

18.
Poly(L-lactic acid) (PLA)-degrading Amycolatopsis sp. strains K104-1 and K104-2 were isolated by screening 300 soil samples for the ability to form clear zones on the PLA-emulsified mineral agar plates. Both of the strains assimilated >90% of emulsified 0.1% (wt/vol) PLA within 8 days under aerobic conditions. A novel PLA depolymerase with a molecular weight of 24,000 was purified to homogeneity from the culture supernatant of strain K104-1. The purified enzyme degraded high-molecular-weight PLA in emulsion and in solid film, ultimately forming lactic acid. The optimum pH for the enzyme activity was 9.5, and the optimum temperature was 55 to 60 degrees C. The PLA depolymerase also degraded casein and fibrin but did not hydrolyze collagen type I, triolein, tributyrin, poly(beta-hydroxybutyrate), or poly(epsilon-caprolactone). The PLA-degrading and caseinolytic activities of the enzyme were inhibited by diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride but were not significantly affected by soybean trypsin inhibitor, N-tosyl-L-lysyl chloromethyl ketone, N-tosyl-L-phenylalanyl chloromethyl ketone, and Streptomyces subtilisin inhibitor. Thus, Amycolatopsis sp. strain K104-1 excretes the unique PLA-degrading and fibrinolytic serine enzyme, utilizing extracellular polylactide as a sole carbon source.  相似文献   

19.
Rhodospirillum rubrum possesses a putative intracellular poly(3-hydroxybutyrate) (PHB) depolymerase system consisting of a soluble PHB depolymerase, a heat-stable activator, and a 3-hydroxybutyrate dimer hydrolase (J. M. Merrick and M. Doudoroff, J. Bacteriol. 88:60-71, 1964). In this study we reinvestigated the soluble R. rubrum PHB depolymerase (PhaZ1). It turned out that PhaZ1 is a novel type of PHB depolymerase with unique properties. Purified PhaZ1 was specific for amorphous short-chain-length polyhydroxyalkanoates (PHA) such as native PHB, artificial PHB, and oligomer esters of (R)-3-hydroxybutyrate with 3 or more 3-hydroxybutyrate units. Atactic PHB, (S)-3-hydroxybutyrate oligomers, medium-chain-length PHA, and lipase substrates (triolein, tributyrin) were not hydrolyzed. The PHB depolymerase structural gene (phaZ1) was cloned. Its deduced amino acid sequence (37,704 Da) had no significant similarity to those of intracellular PHB depolymerases of Wautersia eutropha or of other PHB-accumulating bacteria. PhaZ1 was found to have strong amino acid homology with type-II catalytic domains of extracellular PHB depolymerases, and Ser(42), Asp(138), and His(178) were identified as catalytic-triad amino acids, with Ser(42) as the putative active site. Surprisingly, the first 23 amino acids of the PHB depolymerase previously assumed to be intracellular revealed features of classical signal peptides, and Edman sequencing of purified PhaZ1 confirmed the functionality of the predicted cleavage site. Extracellular PHB depolymerase activity was absent, and analysis of cell fractions unequivocally showed that PhaZ1 is a periplasm-located enzyme. The previously assumed intracellular activator/depolymerase system is unlikely to have a physiological function in PHB mobilization in vivo. A second gene, encoding the putative true intracellular PHB depolymerase (PhaZ2), was identified in the genome sequence of R. rubrum.  相似文献   

20.
Many poly(lactic acid) (PLA)-degrading microorganisms have been isolated from the natural environment by culture-based methods, but there is no study about unculturable PLA-degrading microorganisms. In this study, we constructed a metagenomic library consisting of the DNA extracted from PLA disks buried in compost. We identified three PLA-degrading genes encoding lipase or hydrolase. The purified enzymes degraded not only PLA, but also various aliphatic polyesters, tributyrin, and p-nitrophenyl esters. From their substrate specificities, the PLA depolymerases were classified into an esterase rather than a lipase. Among the PLA depolymerases, PlaM4 exhibited thermophilic properties; that is, it showed the highest activity at 70 degrees C and was stable even after incubation for 1 h at 50 degrees C. PlaM4 had absorption and degradation activities for solid PLA at 60 degrees C, which indicates that the enzyme can effectively degrade PLA in a high-temperature environment. On the other hand, the enzyme classification based on amino acid sequences showed that the other PLA depolymerases, PlaM7 and PlaM9, were not classified into known lipases or esterases. This is the first report on the identification and characterization of PLA depolymerase from a metagenome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号