首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Adipocytes from mesenteric white adipose tissue amplify the inflammatory response and participate in inflammation-driven immune dysfunction in Crohn''s disease by releasing proinflammatory mediators. Peroxisome proliferator-activated receptors (PPAR)-α and -γ, pregnane x receptor (PXR), farnesoid x receptor (FXR) and liver x-receptor (LXR) are ligand-activated nuclear receptor that provide counter-regulatory signals to dysregulated immunity and modulates adipose tissue.

Aims

To investigate the expression and function of nuclear receptors in intestinal and adipose tissues in a rodent model of colitis and mesenteric fat from Crohn''s patients and to investigate their modulation by probiotics.

Methods

Colitis was induced by TNBS administration. Mice were administered vehicle or VSL#3, daily for 10 days. Abdominal fat explants obtained at surgery from five Crohn''s disease patients and five patients with colon cancer were cultured with VSL#3 medium.

Results

Probiotic administration attenuated development of signs and symptoms of colitis, reduced colonic expression of TNFα, IL-6 and IFNγ and reserved colonic downregulation of PPARγ, PXR and FXR caused by TNBS. Mesenteric fat depots isolated from TNBS-treated animals had increased expression of inflammatory mediators along with PPARγ, FXR, leptin and adiponectin. These changes were prevented by VSL#3. Creeping fat and mesenteric adipose tissue from Crohn''s patients showed a differential expression of PPARγ and FXR with both tissue expressing high levels of leptin. Exposure of these tissues to VSL#3 medium abrogates leptin release.

Conclusions

Mesenteric adipose tissue from rodent colitis and Crohn''s disease is metabolically active and shows inflammation-driven regulation of PPARγ, FXR and leptin. Probiotics correct the inflammation-driven metabolic dysfunction.  相似文献   

3.

Objective

Infiltration of activated immune cells and increased cytokine production define the immunophenotype of gastrointestinal (GI) inflammation. In addition, intestinal inflammation is accompanied by alteration in the numbers of serotonin (5-hydroxytryptamine; 5-HT) synthesizing enterochromaffin (EC) cells and in 5-HT amount. It has been established that EC cells express interleukin (IL)-13 receptor, additionally IL-13 has been implicated in the pathogenesis of ulcerative colitis. In this study, we investigated the role of IL-13 mediated 5-HT signaling in pathogenesis of colitis.

Methodology

Colitis was induced in IL-13 deficient (IL-13−/−) and wild-type (WT) mice with dextran sulfate sodium (DSS) and dinitrobenzene sulfonic acid (DNBS), as well as in IL-13−/− mice given recombinant mouse IL-13 (rmIL-13) and 5-hydroxytryptamine (5-HTP), the direct precursor of 5-HT.

Principal Findings and Conclusion

Elevated colonic IL-13 levels were observed in WT mice receiving DSS in comparison to control. IL-13−/− mice administered DSS exhibited significantly reduced severity of colitis compared to WT mice as reflected by macroscopic and histological damage assessments. Following DSS administration, significantly lower pro-inflammatory cytokine production and fewer infiltrating macrophages were observed in IL-13−/− mice compared to WT. The reduced severity of colitis observed in IL-13−/− mice was also accompanied by down-regulation of EC cell numbers and colonic 5-HT content. In addition, increasing colonic 5-HT content by administration of rmIL-13 or 5-HTP exacerbated severity of DSS colitis in IL-13−/− mice. IL-13−/− mice also exhibited reduced severity of DNBS-induced colitis. These results demonstrate that IL-13 plays a critical role in the pathogenesis of experimental colitis and 5-HT is an important mediator of IL-13 driven intestinal inflammation. This study revealed important information on immune-endocrine axis in gut in relation to inflammation which may ultimately lead to better strategy in managing various intestinal inflammatory conditions including inflammatory bowel disease.  相似文献   

4.

Background

The Mutyh DNA glycosylase is involved in the repair of oxidized DNA bases. Mutations in the human MUTYH gene are responsible for colorectal cancer in familial adenomatous polyposis. Since defective DNA repair genes might contribute to the increased cancer risk associated with inflammatory bowel diseases, we compared the inflammatory response of wild-type and Mutyh−/− mice to oxidative stress.

Methodology/Principal Findings

The severity of colitis, changes in expression of genes involved in DNA repair and inflammation, DNA 8-oxoguanine levels and microsatellite instability were analysed in colon of mice treated with dextran sulfate sodium (DSS). The Mutyh−/− phenotpe was associated with a significant accumulation of 8-oxoguanine in colon DNA of treated mice. A single DSS cycle induced severe acute ulcerative colitis in wild-type mice, whereas lesions were modest in Mutyh−/− mice, and this was associated with moderate variations in the expression of several cytokines. Eight DSS cycles caused chronic colitis in both wild-type and Mutyh−/− mice. Lymphoid hyperplasia and a significant reduction in Foxp3+ regulatory T cells were observed only in Mutyh−/− mice.

Conclusions

The findings indicate that, in this model of ulcerative colitis, Mutyh plays a major role in maintaining intestinal integrity by affecting the inflammatory response.  相似文献   

5.

Background

Liraglutide is a glucagon-like peptide-1 analogue that stimulates insulin secretion and improves β-cell function. However, it is not clear whether liraglutide achieves its glucose lowering effect only by its known effects or whether other as yet unknown mechanisms are involved. The aim of this study was to examine the effects of liraglutide on Fibroblast growth factor-21 (FGF-21) activity in High-fat diet (HFD) fed ApoE−/− mice with adiponectin (Acrp30) knockdown.

Method

HFD-fed ApoE−/− mice were treated with adenovirus vectors expressing shAcrp30 to produce insulin resistance. Hyperinsulinemic-euglycemic clamp studies were performed to evaluate insulin sensitivity of the mouse model. QRT-PCR and Western blot were used to measure the mRNA and protein expression of the target genes.

Results

The combination of HFD, ApoE deficiency, and hypoadiponectinemia resulted in an additive effect on insulin resistance. FGF-21 mRNA expressions in both liver and adipose tissues were significantly increased while FGF-21 receptor 1 (FGFR-1) and β-Klotho mRNA levels in adipose tissue, as well as FGFR-1-3 and β-Klotho mRNA levels in liver were significantly decreased in this model. Liraglutide treatment markedly improved insulin resistance and increased FGF-21 expression in liver and FGFR-3 in adipose tissue, restored β-Klotho mRNA expression in adipose tissue as well as FGFR-1-3, β-Klotho levels and phosphorylation of FGFR1 up to the levels observed in control mice in liver. Liraglutide treatment also further increased FGF-21 proteins in liver and plasma. In addition, as shown by hyperinsulinemic-euglycemic clamp, liraglutide treatment also markedly improved glucose metabolism and insulin sensitivity in these animals.

Conclusion

These findings demonstrate an additive effect of HFD, ApoE deficiency, and adiponectin knockdown on insulin resistance and unveil that the regulation of glucose metabolism and insulin sensitivity by liraglutide may be partly mediated via increased FGF-21 and its receptors action.  相似文献   

6.
7.

Aims

Option to attenuate atherosclerosis by depleting B2 cells is currently limited to anti-CD20 antibodies which deplete all B-cell subtypes. In the present study we evaluated the capacity of a monoclonal antibody to B cell activating factor-receptor (BAFFR) to selectively deplete atherogenic B2 cells to prevent both development and progression of atherosclerosis in the ApoE−/− mouse.

Methods and Results

To determine whether the BAFFR antibody prevents atherosclerosis development, we treated ApoE−/− mice with the antibody while feeding them a high fat diet (HFD) for 8 weeks. Mature CD93 CD19+ B2 cells were reduced by treatment, spleen B-cell zones disrupted and spleen CD20 mRNA expression decreased while B1a cells and non-B cells were spared. Atherosclerosis was ameliorated in the hyperlipidemic mice and CD19+ B cells, CD4+ and CD8+ T cells were reduced in atherosclerotic lesions. Expressions of proinflammatory cytokines, IL1β, TNFα, and IFNγ in the lesions were also reduced, while MCP1, MIF and VCAM-1 expressions were unaffected. Plasma immunoglobulins were reduced, but MDA-oxLDL specific antibodies were unaffected. To determine whether anti-BAFFR antibody ameliorates progression of atherosclerosis, we first fed ApoE−/− mice a HFD for 6 weeks, and then instigated anti-BAFFR antibody treatment for a further 6 week-HFD. CD93 CD19+ B2 cells were selectively decreased and atherosclerotic lesions were reduced by this treatment.

Conclusion

Anti-BAFFR monoclonal antibody selectively depletes mature B2 cells while sparing B1a cells, disrupts spleen B-cell zones and ameliorates atherosclerosis development and progression in hyperlipidemic ApoE−/− mice. Our findings have potential for clinical translation to manage atherosclerosis-based cardiovascular diseases.  相似文献   

8.

Aims

Portal hypertension characterized by generalized vasodilatation with endothelial dysfunction affecting nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) has been suggested to involve bacterial translocation and/or the angiotensin system. The possibility that ingestion of probiotics prevents endothelial dysfunction in rats following common bile duct ligation (CBDL) was evaluated.

Methods

Rats received either control drinking water or the probiotic VSL#3 solution (50 billion bacteria.kg body wt−1.day−1) for 7 weeks. After 3 weeks, rats underwent surgery with either resection of the common bile duct or sham surgery. The reactivity of mesenteric artery rings was assessed in organ chambers, expression of proteins by immunofluorescence and Western blot analysis, oxidative stress using dihydroethidium, and plasma pro-inflammatory cytokine levels by flow cytometry.

Results

Both NO- and EDH-mediated relaxations to acetylcholine were reduced in the CBDL group compared to the sham group, and associated with a reduced expression of Cx37, Cx40, Cx43, IKCa and SKCa and an increased expression of endothelial NO synthase (eNOS). In aortic sections, increased expression of NADPH oxidase subunits, angiotensin converting enzyme, AT1 receptors and angiotensin II, and formation of ROS and peroxynitrite were observed. VSL#3 prevented the deleterious effect of CBDL on EDH-mediated relaxations, vascular expression of connexins, IKCa, SKCa and eNOS, oxidative stress, and the angiotensin system. VSL#3 prevented the CBDL-induced increased plasma TNF-α, IL-1α and MCP-1 levels.

Conclusions

These findings indicate that VSL#3 ingestion prevents endothelial dysfunction in the mesenteric artery of CBDL rats, and this effect is associated with an improved vascular oxidative stress most likely by reducing bacterial translocation and the local angiotensin system.  相似文献   

9.
10.
11.

Background & Aims

CCL25/CCR9 is a non-promiscuous chemokine/receptor pair and a key regulator of leukocyte migration to the small intestine. We investigated here whether CCL25/CCR9 interactions also play a role in the regulation of inflammatory responses in the large intestine.

Methods

Acute inflammation and recovery in wild-type (WT) and CCR9−/− mice was studied in a model of dextran sulfate sodium (DSS)-induced colitis. Distribution studies and phenotypic characterization of dendritic cell subsets and macrophage were performed by flow cytometry. Inflammatory bowel disease (IBD) scores were assessed and expression of inflammatory cytokines was studied at the mRNA and the protein level.

Results

CCL25 and CCR9 are both expressed in the large intestine and are upregulated during DSS colitis. CCR9−/− mice are more susceptible to DSS colitis than WT littermate controls as shown by higher mortality, increased IBD score and delayed recovery. During recovery, the CCR9−/− colonic mucosa is characterized by the accumulation of activated macrophages and elevated levels of Th1/Th17 inflammatory cytokines. Activated plasmacytoid dendritic cells (DCs) accumulate in mesenteric lymph nodes (MLNs) of CCR9−/− animals, altering the local ratio of DC subsets. Upon re-stimulation, T cells isolated from these MLNs secrete significantly higher levels of TNFα, IFNγ, IL2, IL-6 and IL-17A while down modulating IL-10 production.

Conclusions

Our results demonstrate that CCL25/CCR9 interactions regulate inflammatory immune responses in the large intestinal mucosa by balancing different subsets of dendritic cells. These findings have important implications for the use of CCR9-inhibitors in therapy of human IBD as they indicate a potential risk for patients with large intestinal inflammation.  相似文献   

12.

Background

Chronic inflammation and oxidative stress play fundamental roles in the pathogenesis of non-alcoholic steatohepatitis (NASH). Previously, we reported that myeloperoxidase (MPO), an aggressive oxidant-generating neutrophil enzyme, is associated with NASH severity in man. We now investigated the hypothesis that MPO contributes to the development and progression of NASH.

Methodology

Low-density lipoprotein receptor-deficient mice with an MPO-deficient hematopoietic system (LDLR−/−/MPO−/−tp mice) were generated and compared with LDLR−/−/MPO+/+tp mice after induction of NASH by high-fat feeding.

Results

High-fat feeding caused a ∼4-fold induction of liver MPO in LDLR−/−/MPO+/+ mice which was associated with hepatic sequestration of MPO-positive neutrophils and high levels of nitrotyrosine, a marker of MPO activity. Importantly, LDLR−/−/MPO−/−tp mice displayed markedly reduced hepatic neutrophil and T-lymphocyte infiltration (p<0.05), and strong down regulation of pro-inflammatory genes such as TNF-α and IL-6 (p<0.05, p<0.01) in comparison with LDLR−/−/MPO+/+tp mice. Next to the generalized reduction of inflammation, liver cholesterol accumulation was significantly diminished in LDLR−/−/MPO−/−tp mice (p = 0.01). Moreover, MPO deficiency appeared to attenuate the development of hepatic fibrosis as evident from reduced hydroxyproline levels (p<0.01). Interestingly, visceral adipose tissue inflammation was markedly reduced in LDLR−/−/MPO−/−tp mice, with a complete lack of macrophage crown-like structures. In conclusion, MPO deficiency attenuates the development of NASH and diminishes adipose tissue inflammation in response to a high fat diet, supporting an important role for neutrophils in the pathogenesis of metabolic disease.  相似文献   

13.
14.

Rationale

It is clear that lipid disorder and inflammation are associated with cardiovascular diseases and underlying atherosclerosis. Nur77 has been shown to be involved in inflammatory response and lipid metabolism.

Objective

Here, we explored the role of Nur77 in atherosclerotic plaque progression in apoE−/− mice fed a high-fat/high cholesterol diet.

Methods and Results

The Nur77 gene, a nuclear hormone receptor, was highly induced by treatment with Cytosporone B (Csn-B, specific Nur77 agonist), recombinant plasmid over-expressing Nur77 (pcDNA-Nur77), while inhibited by treatment with siRNAs against Nur77 (si-Nur77) in THP-1 macrophage-derived foam cells, HepG2 cells and Caco-2 cells, respectively. In addition, the expression of Nur77 was highly induced by Nur77 agonist Csn-B, lentivirus encoding Nur77 (LV-Nur77), while silenced by lentivirus encoding siRNA against Nur77 (si-Nur77) in apoE−/− mice fed a high-fat/high cholesterol diet, respectively. We found that increased expression of Nur77 reduced macrophage-derived foam cells formation and hepatic lipid deposition, downregulated gene levels of inflammatory molecules, adhesion molecules and intestinal lipid absorption, and decreases atherosclerotic plaque formation.

Conclusion

These observations provide direct evidence that Nur77 is an important nuclear hormone receptor in regulation of atherosclerotic plaque formation and thus represents a promising target for the treatment of atherosclerosis.  相似文献   

15.
Madan M  Amar S 《PloS one》2008,3(9):e3204

Background

Accumulating evidence implicates a fundamental link between the immune system and atherosclerosis. Toll-like receptors are principal sensors of the innate immune system. Here we report an assessment of the role of the TLR2 pathway in atherosclerosis associated with a high-fat diet and/or bacteria in ApoE+/− mice.

Methods and Results

To explore the role of TLR2 in inflammation- and infection-associated atherosclerosis, 10 week-old ApoE+/−-TLR2+/+, ApoE+/−-TLR2+/− and ApoE+/−-TLR2−/− mice were fed either a high fat diet or a regular chow diet. All mice were inoculated intravenously, once per week for 24 consecutive weeks, with 50 µl live Porphyromonas gingivalis (P.g) (107 CFU) or vehicle (normal saline). Animals were euthanized 24 weeks after the first inoculation. ApoE+/−-TLR2+/+ mice showed a significant increase in atheromatous lesions in proximal aorta and aortic tree compared to ApoE+/−-TLR2+/− and ApoE+/−-TLR2−/− mice for all diet conditions. They also displayed profound changes in plaque composition, as evidenced by increased macrophage infiltration and apoptosis, increased lipid content, and decreased smooth muscle cell mass, all reflecting an unstable plaque phenotype. SAA levels from ApoE+/−-TLR2+/+ mice were significantly higher than from ApoE+/−-TLR2+/− and ApoE+/−-TLR2−/− mice. Serum cytokine analysis revealed increased levels of pro-inflammatory cytokines in ApoE+/−-TLR2+/+ mice compared to ApoE+/−-TLR2+/− and TLR2−/− mice, irrespective of diet or bacterial challenge. ApoE+/−-TLR2+/+ mice injected weekly for 24 weeks with FSL-1 (a TLR2 agonist) also demonstrated significant increases in atherosclerotic lesions, SAA and serum cytokine levels compared to ApoE+/−-TLR2−/− mice under same treatment condition. Finally, mass-spectrometry (MALDI-TOF-MS) of aortic samples analyzed by 2-dimentional gel electrophoresis differential display, identified 6 proteins upregulated greater than 2-fold in ApoE+/−-TLR2+/+ mice fed the high fat diet and inoculated with P.g compared to any other group.

Conclusion

Genetic deficiency of TLR2 reduces diet- and/or pathogen-associated atherosclerosis in ApoE+/− mice, along with differences in plaque composition suggesting greater structural stability while TLR-2 ligand-specific activation triggers atherosclerosis. The present data offers new insights into the pathophysiological pathways involved in atherosclerosis and paves the way for new pharmacological interventions aimed at reducing atherosclerosis.  相似文献   

16.

Background

Guanylate Cyclase C (GC-C; Gucy2c) is a transmembrane receptor expressed in intestinal epithelial cells. Activation of GC-C by its secreted ligand guanylin stimulates intestinal fluid secretion. Familial mutations in GC-C cause chronic diarrheal disease or constipation and are associated with intestinal inflammation and infection. Here, we investigated the impact of GC-C activity on mucosal immune responses.

Methods

We utilized intraperitoneal injection of lipopolysaccharide to elicit a systemic cytokine challenge and then measured pro-inflammatory gene expression in colonic mucosa. GC-C+/+ and GC-C−/− mice were bred with interleukin (IL)-10 deficient animals and colonic inflammation were assessed. Immune cell influx and cytokine/chemokine expression was measured in the colon of wildtype, IL-10−/−, GC-C+/+IL-10−/− and GC-C−/−IL-10−/− mice. GC-C and guanylin production were examined in the colon of these animals and in a cytokine-treated colon epithelial cell line.

Results

Relative to GC-C+/+ animals, intraperitoneal lipopolysaccharide injection into GC-C−/− mice increased proinflammatory gene expression in both whole colon tissue and in partially purified colonocyte isolations. Spontaneous colitis in GC-C−/−IL-10−/− animals was significantly more severe relative to GC-C+/+IL-10−/− mice. Unlike GC-C+/+IL-10−/− controls, colon pathology in GC-C−/−IL-10−/− animals was apparent at an early age and was characterized by severely altered mucosal architecture, crypt abscesses, and hyperplastic subepithelial lesions. F4/80 and myeloperoxidase positive cells as well as proinflammatory gene expression were elevated in GC-C−/−IL-10−/− mucosa relative to control animals. Guanylin was diminished early in colitis in vivo and tumor necrosis factor α suppressed guanylin mRNA and protein in intestinal goblet cell-like HT29-18-N2 cells.

Conclusions

The GC-C signaling pathway blunts colonic mucosal inflammation that is initiated by systemic cytokine burst or loss of mucosal immune cell immunosuppression. These data as well as the apparent intestinal inflammation in human GC-C mutant kindred underscore the importance of GC-C in regulating the response to injury and inflammation within the gut.  相似文献   

17.
18.

Background

Inflammation has been proposed to be important in the pathogenesis of diabetic retinopathy. An early feature of inflammation is the release of cytokines leading to increased expression of endothelial activation markers such as vascular cellular adhesion molecule-1 (VCAM-1). Here we investigated the impact of diabetes and dyslipidemia on VCAM-1 expression in mouse retinal vessels, as well as the potential role of tumor necrosis factor-α (TNFα).

Methodology/Principal Findings

Expression of VCAM-1 was examined by confocal immunofluorescence microscopy in vessels of wild type (wt), hyperlipidemic (ApoE−/−) and TNFα deficient (TNFα−/−, ApoE−/−/TNFα−/−) mice. Eight weeks of streptozotocin-induced diabetes resulted in increased VCAM-1 in wt mice, predominantly in small vessels (<10 µm). Diabetic wt mice had higher total retinal TNFα, IL-6 and IL-1β mRNA than controls; as well as higher soluble VCAM-1 (sVCAM-1) in plasma. Lack of TNFα increased higher basal VCAM-1 protein and sVCAM-1, but failed to up-regulate IL-6 and IL-1β mRNA and VCAM-1 protein in response to diabetes. Basal VCAM-1 expression was higher in ApoE−/− than in wt mice and both VCAM-1 mRNA and protein levels were further increased by high fat diet. These changes correlated to plasma cholesterol, LDL- and HDL-cholesterol, but not to triglycerides levels. Diabetes, despite further increasing plasma cholesterol in ApoE−/− mice, had no effects on VCAM-1 protein expression or on sVCAM-1. However, it increased ICAM-1 mRNA expression in retinal vessels, which correlated to plasma triglycerides.

Conclusions/Significance

Hyperglycemia triggers an inflammatory response in the retina of normolipidemic mice and up-regulation of VCAM-1 in retinal vessels. Hypercholesterolemia effectively promotes VCAM-1 expression without evident stimulation of inflammation. Diabetes-induced endothelial activation in ApoE−/− mice seems driven by elevated plasma triglycerides but not by cholesterol. Results also suggest a complex role for TNFα in the regulation of VCAM-1 expression, being protective under basal conditions but pro-inflammatory in response to diabetes.  相似文献   

19.

Objective

The angiotensin II (AngII)-infused apolipoprotein E-deficient (ApoE−/−) mouse model is widely used to study atherosclerosis and abdominal aortic aneurysm. An increase in blood pressure has been reported in this model however the underlying mechanism has not been fully explored. In this study, we investigated whether vasomotor dysfunction develops in AngII-infused ApoE−/− mice and the underlying mechanism involved.

Methods

ApoE−/− mice were infused with vehicle (distilled water) or AngII subcutaneously for 14 days. Blood pressure and heart rate were measured using the non-invasive tail cuff method. Aortic vascular reactivity and expression of key proteins (endothelial nitric oxide synthase (eNOS), phospho-eNOS and caveolin-1) were assessed using tension myography and Western blotting respectively. Plasma nitric oxide (NO) level was estimated using a colorimetric assay.

Results

AngII infusion caused a time-dependent increase in blood pressure (P<0.001). Aortas from AngII-infused mice were significantly less responsive to acetylcholine-induced endothelium-dependent relaxation when compared to aortas from mice infused with vehicle control (P<0.05). Contractile responses to phenylephrine (P<0.01) and potassium chloride (P<0.001) were significantly enhanced in aortas from AngII-infused mice. eNOS phosphorylation was significantly decreased in the aorta of AngII-infused mice (P<0.05). Aortic caveolin-1 protein expression was significantly increased in AngII-infused mice (P<0.05). Plasma nitrate/nitrite level was significantly reduced in AngII-infused mice (P<0.05). Pharmacological disruption of caveolae using methyl-β-cyclodextrin (MβCD) in isolated aortas from AngII-infused mice caused a significant leftward shift of the acetylcholine-induced relaxation concentration-response curve when compared to vehicle control (P<0.05).

Conclusion

Upregulation of caveolin-1 protein expression and reduced NO bioavailability contributes to aortic endothelial dysfunction in AngII-infused ApoE−/− mice.  相似文献   

20.

Background

Our previous studies have shown that OX40-OX40L interaction regulates the expression of nuclear factor of activated T cells c1(NFATc1) in ApoE−/− mice during atherogenesis. The aim of this study was to investigate whether OX40-OX40L interaction promotes Th cell activation via NFATc1 in ApoE−/− mice.

Methods and Results

The lymphocytes isolated from spleen of ApoE−/− mice were cultured with anti-CD3 mAb in the presence or absence of anti-OX40 or anti-OX40L antibodies. The expression of NFATc1 mRNA and protein in isolated lymphocytes were measured by real time PCR (RT-PCR) and flow cytometry (FCM), respectively. The proliferation of lymphocytes was analyzed by MTT method,and the expression of IL-2, IL-4 and IFN-γ in the cultured cells and supernatant were measured by RT-PCR and enzyme-linked immunosorbent assary (ELISA), respectively. After stimulating OX40-OX40L signal pathway, the expression of NFATc1 and the proliferation of leukocytes were significantly increased. Anti-OX40L suppressed the expression of NFATc1 in lymphocytes of ApoE−/− mice. Anti-OX40L or the NFATc1 inhibitor (CsA) markedly suppressed the cell proliferation induced by anti-OX40. Moreover, the expression of IL-2 and IFN-γ was increased in lymphocytes induced by OX40-OX40L interaction. Blocking OX40-OX40L interaction or NFATc1 down-regulated the expression of IL-2 and IFN-γ, but didn’t alter the expression of IL-4 in supernatants.

Conclusion

These results suggest that OX40-OX40L interaction promotes the proliferation and activation of lymphocytes through NFATc1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号