共查询到20条相似文献,搜索用时 15 毫秒
1.
Ecological immunology distinguishes between the long-term evolutionary costs of possessing defences against parasites and the short-term costs of using them. Evolutionary biologists have typically focused on the former in the search for constraints on the evolution of resistance. Here, we show in the peach-potato aphid, Myzus persicae, that short-term costs may be of equal evolutionary importance. Survivors of more resistant aphid clones suffered a higher reduction of fecundity upon parasitoid attack than survivors of more susceptible clones. This genetically based trade-off between benefits and costs of defence may limit the evolution of increased resistance and explain the maintenance of genetic variation for resistance under environmental variation in parasitism risk. 相似文献
2.
3.
4.
Hermógenes Fernández-Marín David R. Nash Sarah Higginbotham Catalina Estrada Jelle S. van Zweden Patrizia d'Ettorre William T. Wcislo Jacobus J. Boomsma 《Proceedings. Biological sciences / The Royal Society》2015,282(1807)
Fungus-farming ant colonies vary four to five orders of magnitude in size. They employ compounds from actinomycete bacteria and exocrine glands as antimicrobial agents. Atta colonies have millions of ants and are particularly relevant for understanding hygienic strategies as they have abandoned their ancestors'' prime dependence on antibiotic-based biological control in favour of using metapleural gland (MG) chemical secretions. Atta MGs are unique in synthesizing large quantities of phenylacetic acid (PAA), a known but little investigated antimicrobial agent. We show that particularly the smallest workers greatly reduce germination rates of Escovopsis and Metarhizium spores after actively applying PAA to experimental infection targets in garden fragments and transferring the spores to the ants'' infrabuccal cavities. In vitro assays further indicated that Escovopsis strains isolated from evolutionarily derived leaf-cutting ants are less sensitive to PAA than strains from phylogenetically more basal fungus-farming ants, consistent with the dynamics of an evolutionary arms race between virulence and control for Escovopsis, but not Metarhizium. Atta ants form larger colonies with more extreme caste differentiation relative to other attines, in societies characterized by an almost complete absence of reproductive conflicts. We hypothesize that these changes are associated with unique evolutionary innovations in chemical pest management that appear robust against selection pressure for resistance by specialized mycopathogens. 相似文献
5.
Jeremy B. Searle Petr Kotlík Ramugondo V. Rambau Silvia Marková Jeremy S. Herman Allan D. McDevitt 《Proceedings. Biological sciences / The Royal Society》2009,276(1677):4287-4294
Recent genetic studies have challenged the traditional view that the ancestors of British Celtic people spread from central Europe during the Iron Age and have suggested a much earlier origin for them as part of the human recolonization of Britain at the end of the last glaciation. Here we propose that small mammals provide an analogue to help resolve this controversy. Previous studies have shown that common shrews (Sorex araneus) with particular chromosomal characteristics and water voles (Arvicola terrestris) of a specific mitochondrial (mt) DNA lineage have peripheral western/northern distributions with striking similarities to that of Celtic people. We show that mtDNA lineages of three other small mammal species (bank vole Myodes glareolus, field vole Microtus agrestis and pygmy shrew Sorex minutus) also form a ‘Celtic fringe’. We argue that these small mammals most reasonably colonized Britain in a two-phase process following the last glacial maximum (LGM), with climatically driven partial replacement of the first colonists by the second colonists, leaving a peripheral geographical distribution for the first colonists. We suggest that these natural Celtic fringes provide insight into the same phenomenon in humans and support its origin in processes following the end of the LGM. 相似文献
6.
Although only discovered in 1999, the symbiotic filamentous actinobacteria present on the integument of certain species of leaf-cutting ants have been the subject of intense research. These bacteria have been shown to specifically suppress fungal garden parasites by secretion of antibiotics. However, more recently, a wider role for these bacteria has been suggested from research revealing their generalist anti-fungal activity. Here we show, for the first time, evidence for a role of these bacteria in the defence of young worker ants against a fungal entomopathogen. Experimental removal of the bacterial bio-film using an antibiotic resulted in a significant increase in susceptibility of worker ants to infection by the entomopathogenic fungus Metarhizium anisopliae. This is the first direct evidence for the advantage of maintaining a bacterial bio-film on the cuticle as a defensive strategy of the ants themselves and not exclusively for protection of the fungus garden. 相似文献
7.
The importance of symbiotic microbes to insects cannot be overstated; however, we have a poor understanding of the evolutionary processes that shape most insect–microbe interactions. Many bark beetle (Coleoptera: Curculionidae, Scolytinae) species are involved in what have been described as obligate mutualisms with symbiotic fungi. Beetles benefit through supplementing their nutrient‐poor diet with fungi and the fungi benefit through gaining transportation to resources. However, only a few beetle–fungal symbioses have been experimentally manipulated to test whether the relationship is obligate. Furthermore, none have tested for adaptation of beetles to their specific symbionts, one of the requirements for coevolution. We experimentally manipulated the western pine beetle–fungus symbiosis to determine whether the beetle is obligately dependent upon fungi and to test for fine‐scale adaptation of the beetle to one of its symbiotic fungi, Entomocorticium sp. B. We reared beetles from a single population with either a natal isolate of E. sp. B (isolated from the same population from which the beetles originated), a non‐natal isolate (a genetically divergent isolate from a geographically distant beetle population), or with no fungi. We found that fungi were crucial for the successful development of western pine beetles. We also found no significant difference in the effects of the natal and non‐natal isolate on beetle fitness parameters. However, brood adult beetles failed to incorporate the non‐natal fungus into their fungal transport structure (mycangium) indicating adaption by the beetle to particular genotypes of symbiotic fungi. Our results suggest that beetle–fungus mutualisms and symbiont fidelity may be maintained via an undescribed recognition mechanism of the beetles for particular symbionts that may promote particular associations through time. 相似文献
8.
Females tend to be smaller than males in woody dioecious plant species, but they tend to be larger in herbs. The smaller size of females in woody species has been attributed to higher reproductive costs, yet no satisfactory explanation has been provided for their larger size in herbs. Because herbs have higher nitrogen concentrations in their tissues than woody plants, and because pollen is particularly rich in nitrogen, we predicted that male growth would be more compromised by reproduction than female growth. To test this hypothesis, we conducted three experiments on the annual dioecious herb Mercurialis annua. First, we compared the timing of reproduction between males and females and found that males started flowering earlier than females; early flowering is expected to compromise growth more than later flowering. Second, we compared plants allowed to flower with those prevented from flowering by experimental debudding and found that males incurred a higher reproductive cost than females in terms of both biomass and, particularly, nitrogen. Third, we grew plants under varying levels of nitrogen availability and found that although sexual size dimorphism was unaffected by nitrogen, females, but not males, decreased their relative allocation to both roots and reproduction under high nitrogen availability. We propose that males deal with the high cost of pollen production in terms of nitrogen by allocating biomass to nitrogen-harvesting roots, whereas females pay for carbon-rich seeds and fruits by investing in photosynthetic organs. Sexual dimorphism would thus seem to be the outcome of allocation to above- versus below-ground sinks that supply resources (carbon versus nitrogen) limiting the female and male reproduction differentially. 相似文献
9.
William H. Kimbel Yoel Rak 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2010,365(1556):3365-3376
Cranial base morphology differs among hominoids in ways that are usually attributed to some combination of an enlarged brain, retracted face and upright locomotion in humans. The human foramen magnum is anteriorly inclined and, with the occipital condyles, is forwardly located on a broad, short and flexed basicranium; the petrous elements are coronally rotated; the glenoid region is topographically complex; the nuchal lines are low; and the nuchal plane is horizontal. Australopithecus afarensis (3.7–3.0 Ma) is the earliest known species of the australopith grade in which the adult cranial base can be assessed comprehensively. This region of the adult skull was known from fragments in the 1970s, but renewed fieldwork beginning in the 1990s at the Hadar site, Ethiopia (3.4–3.0 Ma), recovered two nearly complete crania and major portions of a third, each associated with a mandible. These new specimens confirm that in small-brained, bipedal Australopithecus the foramen magnum and occipital condyles were anteriorly sited, as in humans, but without the foramen''s forward inclination. In the large male A.L. 444-2 this is associated with a short basal axis, a bilateral expansion of the base, and an inferiorly rotated, flexed occipital squama—all derived characters shared by later australopiths and humans. However, in A.L. 822-1 (a female) a more primitive morphology is present: although the foramen and condyles reside anteriorly on a short base, the nuchal lines are very high, the nuchal plane is very steep, and the base is as relatively narrow centrally. A.L. 822-1 illuminates fragmentary specimens in the 1970s Hadar collection that hint at aspects of this primitive suite, suggesting that it is a common pattern in the A. afarensis hypodigm. We explore the implications of these specimens for sexual dimorphism and evolutionary scenarios of functional integration in the hominin cranial base. 相似文献
10.
Background and Aims
The ability to simulate plant competition accurately is essential for plant functional type (PFT)-based models used in climate-change studies, yet gaps and uncertainties remain in our understanding of the details of the competition mechanisms and in ecosystem responses at a landscape level. This study examines secondary succession in a temperate deciduous forest in eastern China with the aim of determining if competition between tree types can be explained by differences in leaf ecophysiological traits and growth allometry, and whether ecophysiological traits and habitat spatial configurations among PFTs differentiate their responses to climate change.Methods
A temperate deciduous broadleaved forest in eastern China was studied, containing two major vegetation types dominated by Quercus liaotungensis (OAK) and by birch/poplar (Betula platyphylla and Populus davidiana; BIP), respectively. The Terrestrial Ecosystem Simulator (TESim) suite of models was used to examine carbon and water dynamics using parameters measured at the site, and the model was evaluated against long-term data collected at the site.Key Results
Simulations indicated that a higher assimilation rate for the BIP vegetation than OAK led to the former''s dominance during early successional stages with relatively low competition. In middle/late succession with intensive competition for below-ground resources, BIP, with its lower drought tolerance/resistance and smaller allocation to leaves/roots, gave way to OAK. At landscape scale, predictions with increased temperature extrapolated from existing weather records resulted in increased average net primary productivity (NPP; +19 %), heterotrophic respiration (+23 %) and net ecosystem carbon balance (+17 %). The BIP vegetation in higher and cooler habitats showed 14 % greater sensitivity to increased temperature than the OAK at lower and warmer locations.Conclusions
Drought tolerance/resistance and morphology-related allocation strategy (i.e. more allocation to leaves/roots) played key roles in the competition between the vegetation types. The overall site-average impacts of increased temperature on NPP and carbon stored in plants were found to be positive, despite negative effects of increased respiration and soil water stress, with such impacts being more significant for BIP located in higher and cooler habitats. 相似文献11.
Luis Cayetano Lukas Rothacher Jean-Christophe Simon Christoph Vorburger 《Proceedings. Biological sciences / The Royal Society》2015,282(1799)
Defences against parasites are typically associated with costs to the host that contribute to the maintenance of variation in resistance. This also applies to the defence provided by the facultative bacterial endosymbiont Hamiltonella defensa, which protects its aphid hosts against parasitoid wasps while imposing life-history costs. To investigate the cost–benefit relationship within protected hosts, we introduced multiple isolates of H. defensa to the same genetic backgrounds of black bean aphids, Aphis fabae, and we quantified the protection against their parasitoid Lysiphlebus fabarum as well as the costs to the host (reduced lifespan and reproduction) in the absence of parasitoids. Surprisingly, we observed the opposite of a trade-off. Strongly protective isolates of H. defensa reduced lifespan and lifetime reproduction of unparasitized aphids to a lesser extent than weakly protective isolates. This finding has important implications for the evolution of defensive symbiosis and highlights the need for a better understanding of how strain variation in protective symbionts is maintained. 相似文献
12.
Theoretical models of life-history evolution assume trade-offs between present and future reproduction and/or survival. Models of the evolution of sex assume trade-offs between male function and female function. Generally, experiments designed to evaluate the cost of reproduction on other functions tend to ignore male function. The present work on Gladiolus takes into account simultaneously the different primary functions of the plant and separates sexual reproduction into one male component (pollen production) and one female component (seed production). The study of environmental (within-clone), between-clone and genetic correlations using strains of Gladiolus and principal component analysis show that trade-offs exist between male function, female function and survival, including both characters of plant vigour, perennation (corm production) and vegetative propagation (cormel production). Phenotypic correlations, using different species and species-hybrids, have been obtained which confirm these results. In particular, these results underline the importance of the impact of pollen production on the other functions. 相似文献
13.
Sarah E. Diamond Joel G. Kingsolver 《Proceedings. Biological sciences / The Royal Society》2011,278(1703):289-297
Immune defences are an important component of fitness. Yet susceptibility to pathogens is common, suggesting the presence of ecological and evolutionary limitations on immune defences. Here, we use structural equation modelling to quantify the direct effects of resource quality and selection history, and their indirect effects mediated via body condition prior to an immune challenge on encapsulation and melanization immune defences in the tobacco hornworm, Manduca sexta. We also investigate allocation trade-offs among immune defences and growth rate following an immune challenge. We found considerable variation in the magnitude and direction of the direct effects of resource quality and selection history on immune defences and their indirect effects mediated via body condition and allocation trade-offs. Greater resource quality and evolutionary exposure to pathogens had positive direct effects on encapsulation and melanization. The indirect effect of resource quality on encapsulation mediated via body condition was substantial, whereas indirect effects on melanization were negligible. Individuals in better condition prior to the immune challenge had greater encapsulation; however, following the immune challenge, greater encapsulation traded off with slower growth rate. Our study demonstrates the importance of experimentally and analytically disentangling the relative contributions of direct and indirect effects to understand variation in immune defences. 相似文献
14.
Christopher A. Bell Emily Magkourilou Peter E. Urwin Katie J. Field 《Ecology and evolution》2021,11(7):2997
- Plants typically interact with multiple above‐ and below‐ground organisms simultaneously, with their symbiotic relationships spanning a continuum ranging from mutualism, such as with arbuscular mycorrhizal fungi (AMF), to parasitism, including symbioses with plant‐parasitic nematodes (PPN).
- Although research is revealing the patterns of plant resource allocation to mutualistic AMF partners under different host and environmental constraints, the root ecosystem, with multiple competing symbionts, is often ignored. Such competition is likely to heavily influence resource allocation to symbionts.
- Here, we outline and discuss the competition between AMF and PPN for the finite supply of host plant resources, highlighting the need for a more holistic understanding of the influence of below‐ground interactions on plant resource allocation. Based on recent developments in our understanding of other symbiotic systems such as legume–rhizobia and AMF‐aphid‐plant, we propose hypotheses for the distribution of plant resources between contrasting below‐ground symbionts and how such competition may affect the host.
- We identify relevant knowledge gaps at the physiological and molecular scales which, if resolved, will improve our understanding of the true ecological significance and potential future exploitation of AMF‐PPN‐plant interactions in order to optimize plant growth. To resolve these outstanding knowledge gaps, we propose the application of well‐established methods in isotope tracing and nutrient budgeting to monitor the movement of nutrients between symbionts. By combining these approaches with novel time of arrival experiments and experimental systems involving multiple plant hosts interlinked by common mycelial networks, it may be possible to reveal the impact of multiple, simultaneous colonizations by competing symbionts on carbon and nutrient flows across ecologically important scales.
15.
Background and Aims
Masting, i.e. synchronous but highly variable interannual seed production, is a strong sink for carbon and nutrients. It may, therefore, compete with vegetative growth. It is currently unknown whether increased atmospheric CO2 concentrations will affect the carbon balance (or that of other nutrients) between reproduction and vegetative growth of forest species. In this study, reproduction and vegetative growth of shoots of mature beech (Fagus sylvatica) trees grown at ambient and elevated atmospheric CO2 concentrations were quantified. It was hypothesized that within a shoot, fruiting has a negative effect on vegetative growth, and that this effect is ameliorated at increased CO2 concentrations.Methods
Reproduction and its competition with leaf and shoot production were examined during two masting events (in 2007 and 2009) in F. sylvatica trees that had been exposed to either ambient or elevated CO2 concentrations (530 µmol mol−1) for eight consecutive years, between 2000 and 2008.Key Results
The number of leaves per shoot and the length of terminal shoots was smaller or shorter in the two masting years compared with the one non-masting year (2008) investigated, but they were unaffected by elevated CO2 concentrations. The dry mass of terminal shoots was approx. 2-fold lower in the masting year (2007) than in the non-masting year in trees growing at ambient CO2 concentrations, but this decline was not observed in trees exposed to elevated CO2 concentrations. In both the CO2 treatments, fruiting significantly decreased nitrogen concentration by 25 % in leaves and xylem tissue of 1- to 3-year-old branches in 2009.Conclusions
Our findings indicate that there is competition for resources between reproduction and shoot growth. Elevated CO2 concentrations reduced this competition, indicating effects on the balance of resource allocation between reproduction and vegetative growth in shoots with rising atmospheric CO2 concentrations. 相似文献16.
In this study, we sequenced mt Cox 1 gene sequences of five nematode spp. that were infective to arthropod, Gryllotalpa africana.
The nematode belongs to Thelastomatoidea, a group of pinworms that parasitizes only invertebrates. Currently, in India spp. of
this group are distinguished mainly on the basis of morphological characters that present possible confusions. Therefore, we
identified the species through morphological and genetic analysis. We selected mt Cox 1 gene region to show their phylogenetic
position with closely related spp. and confirmed their molecular validation. The present findings are important to confirm the
phylogenetic position and relationship among five nematode spp. and avoid misidentification regarding their validation, as it is
more necessary in that case when many species harbours the same host. 相似文献
17.
Christine T. Griffin 《Journal of nematology》2012,44(2):177-184
The entomopathogenic nematodes (EPN) Heterorhabditis and Steinernema are widely used for the biological control of insect pests and are gaining importance as model organisms for studying parasitism and symbiosis. In this paper recent advances in the understanding of EPN behavior are reviewed. The “foraging strategy” paradigm (distinction between species with ambush and cruise strategies) as applied to EPN is being challenged and alternative paradigms proposed. Infection decisions are based on condition of the potential host, and it is becoming clear that already-infected and even long-dead hosts may be invaded, as well as healthy live hosts. The state of the infective juvenile (IJ) also influences infection, and evidence for a phased increase in infectivity of EPN species is mounting. The possibility of social behavior - adaptive interactions between IJs outside the host - is discussed. EPNs’ symbiotic bacteria (Photorhabdus and Xenorhabdus) are important for killing the host and rendering it suitable for nematode reproduction, but may reduce survival of IJs, resulting in a trade-off between survival and reproduction. The symbiont also contributes to defence of the cadaver by affecting food-choice decisions of insect and avian scavengers. I review EPN reproductive behavior (including sperm competition, copulation and evidence for attractive and organizational effects of pheromones), and consider the role of endotokia matricida as parental behavior exploited by the symbiont for transmission. 相似文献
18.
BACKGROUND: Carnivorous pitcher plants (CPPs) use cone-shaped leaves to trap animals for nutrient supply but are not able to kill all intruders of their traps. Numerous species, ranging from bacteria to vertrebrates, survive and propagate in the otherwise deadly traps. This paper reviews the literature on phytotelmata of CPPs. PITCHER: Fluid as a Habitat The volumes of pitchers range from 0·2 mL to 1·5 L. In Nepenthes and Cephalotus, the fluid is secreted by the trap; the other genera collect rain water. The fluid is usually acidic, rich in O(2) and contains digestive enzymes. In some taxa, toxins or detergents are found, or the fluid is extremely viscous. In Heliamphora or Sarracenia, the fluid differs little from pure water. INQUILINE: Diversity Pitcher inquilines comprise bacteria, protozoa, algae, fungi, rotifers, crustaceans, arachnids, insects and amphibia. The dominant groups are protists and Dipteran larvae. The various species of CPPs host different sets of inquilines. Sarracenia purpurea hosts up to 165 species of inquilines, followed by Nepenthes ampullaria with 59 species, compared with only three species from Brocchinia reducta. Reasons for these differences include size, the life span of the pitcher as well as its fluid. MUTUALISTIC: Activities Inquilines closely interact with their host. Some live as parasites, but the vast majority are mutualists. Beneficial activities include secretion of enzymes, feeding on the plant's prey and successive excretion of inorganic nutrients, mechanical break up of the prey, removal of excessive prey and assimilation of atmospheric N(2). CONCLUSIONS: There is strong evidence that CPPs influence their phytotelm. Two strategies can be distinguished: (1) Nepenthes and Cephalotus produce acidic, toxic or digestive fluids and host a limited diversity of inquilines. (2) Genera without efficient enzymes such as Sarracenia or Heliamphora host diverse organisms and depend to a large extent on their symbionts for prey utilization. 相似文献
19.
Background and Aims
Although most studies on plant defence strategies have focused on a particular defence trait, some plant species develop multiple defence traits. To clarify the effects of light on the development of multiple defence traits, the production of direct and indirect defence traits of young plants of Mallotus japonicus were examined experimentally under different light conditions.Methods
The young plants were cultivated under three light conditions in the experimental field for 3 months from May to July. Numbers of ants and pearl bodies on leaves in July were examined. After cultivation, the plants were collected and the developments of trichomes and pellucid dots, and extrafloral nectaries (EFNs) on the leaves were examined. On plants without nectar-collecting insects, the size of EFNs and the volume of extrafloral nectar secreted from the EFNs were examined.Key results
Densities of trichomes and pellucid dots did not differ significantly among the plants under the different light conditions, suggesting that the chemical and physical defences function under both high and low light availability. The number of EFNs on the leaves did not differ significantly among the plants under the different light conditions, but there appeared to be a trade-off between the size of EFNs and the number of pearl bodies; the largest EFNs and the smallest number of pearl bodies were found under high light availability. EFN size was significantly correlated with the volume of extrafloral nectar secreted for 24 h. The number of ants on the plants was smaller under low light availability than under high and moderate light availability.Conclusions
These results suggest that direct defence traits function regardless of light conditions, but light conditions affected the development of indirect defence traits. 相似文献20.
Joseph R. Hoyt Kate E. Langwig Keping Sun Guanjun Lu Katy L. Parise Tinglei Jiang Winifred F. Frick Jeffrey T. Foster Jiang Feng A. Marm Kilpatrick 《Proceedings. Biological sciences / The Royal Society》2016,283(1826)
Predicting species'' fates following the introduction of a novel pathogen is a significant and growing problem in conservation. Comparing disease dynamics between introduced and endemic regions can offer insight into which naive hosts will persist or go extinct, with disease acting as a filter on host communities. We examined four hypothesized mechanisms for host–pathogen persistence by comparing host infection patterns and environmental reservoirs for Pseudogymnoascus destructans (the causative agent of white-nose syndrome) in Asia, an endemic region, and North America, where the pathogen has recently invaded. Although colony sizes of bats and hibernacula temperatures were very similar, both infection prevalence and fungal loads were much lower on bats and in the environment in Asia than North America. These results indicate that transmission intensity and pathogen growth are lower in Asia, likely due to higher host resistance to pathogen growth in this endemic region, and not due to host tolerance, lower transmission due to smaller populations, or lower environmentally driven pathogen growth rate. Disease filtering also appears to be favouring initially resistant species in North America. More broadly, determining the mechanisms allowing species persistence in endemic regions can help identify species at greater risk of extinction in introduced regions, and determine the consequences for disease dynamics and host–pathogen coevolution. 相似文献