首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study evaluated clams as bioindicators of fecal protozoan contamination using three approaches: (i) clam tissue spiking experiments to compare several detection techniques; (ii) clam tank exposure experiments to evaluate clams that had filtered Cryptosporidium oocysts from inoculated water under a range of simulated environmental conditions; (iii) sentinel clam outplanting to assess the distribution and magnitude of fecal contamination in three riverine systems in California. Our spiking and tank experiments showed that direct fluorescent antibody (DFA), immunomagnetic separation (IMS) in combination with DFA, and PCR techniques could be used to detect Cryptosporidium in clam tissues. The most analytically sensitive technique was IMS concentration with DFA detection of oocysts in clam digestive gland tissues, which detected 10 oocysts spiked into a clam digestive gland 83% of the time. In the tank experiment, oocyst dose and clam collection time were significant predictors for detecting Cryptosporidium parvum oocysts in clams. In the wild clam study, Cryptosporidium and Giardia were detected in clams from all three study regions by IMS-DFA analysis of clam digestive glands, with significant variation by sampling year and season. The presence of C. parvum DNA in clams from riverine ecosystems was confirmed with PCR and DNA sequence analysis.  相似文献   

2.
Asian freshwater clams, Corbicula fluminea, exposed for 24 h to 38 liters of water contaminated with infectious Cryptosporidium parvum oocysts (1.00 × 106 oocysts/liter; approximately 1.9 × 105 oocysts/clam) were examined (hemolymph, gills, gastrointestinal [GI] tract, and feces) on days 1, 2, 3, 7, and 14 postexposure (PE). No oocysts were detected in the water 24 h after the contamination event. The percentage of oocyst-containing clams varied from 20 to 100%, depending on the type of tissue examined and the technique used—acid-fast stain (AFS) or immunofluorescent antibody (IFA). The oocysts were found in clam tissues and feces on days 1 through 14 PE; the oocysts extracted from the tissues on day 7 PE were infectious for neonatal BALB/c mice. Overall, the highest number of positive samples was obtained when gills and GI tracts were processed with IFA (prevalence, 97.5%). A comparison of the relative oocyst numbers indicated that overall, 58.3% of the oocysts were found in clam tissues and 41.7% were found in feces when IFA was used; when AFS was used, the values were 51.9 and 48.1%, respectively. Clam-released oocysts were always surrounded by feces; no free oocysts or oocysts disassociated from fecal matter were observed. The results indicate that these benthic freshwater clams are capable of recovery and sedimentation of waterborne C. parvum oocysts. To optimize the detection of C. parvum oocysts in C. fluminea tissue, it is recommended that gill and GI tract samples be screened with IFA (such as that in the commercially available MERIFLUOR test kit).  相似文献   

3.
The survival of Cryptosporidium parvum oocysts in a waste stabilization pond system in northwestern Spain and the effects of sunlight and the depth and type of pond on oocyst viability were evaluated using an assay based on the exclusion or inclusion of two fluorogenic vital dyes, 4′,6-diamidino-2-phenylindole (DAPI) and propidium iodide (PI). All tested factors had significant effects (P < 0.01) over time on C. parvum oocyst viability. Sunlight exposure was the most influential factor for oocyst inactivation. A 40% reduction was observed after 4 days exposure to sunlight conditions compared with dark conditions. The type of pond also caused a significant reduction in C. parvum oocyst viability (P < 0.01). Inactivation rates reflected that the facultative pond was the most aggressive environment for oocysts placed both at the surface (presence of sunlight) and at the bottom (absence of sunlight) of the pond, followed by the maturation pond and the anaerobic pond. The mean inactivation rates of oocysts in the ponds ranged from 0.0159 to 0.3025 day−1.  相似文献   

4.
The association of Cryptosporidium parvum oocysts with suspended particles can alter the oocysts' effective physical properties and influence their transport in aquatic systems. To assess this behavior, C. parvum oocysts were mixed with various suspended sediments under a variety of water chemical conditions, and the resulting settling of the oocysts was observed. Direct microscopic observations showed that oocysts attached to suspended sediments. Settling column and batch experiments demonstrated that oocysts are removed from suspension at a much higher rate when associated with sediments. The rate of oocyst sedimentation depended primarily on the type of sediment with which the oocysts were mixed. Changes in background water conditions had a relatively small impact on the extent of oocyst-particle association and the resulting oocyst deposition. We believe that the ubiquitous association of C. parvum oocysts with suspended particles enhances the sedimentation of oocysts in natural waters and that this interaction should generally be considered when predicting the migration of pathogens in the environment.  相似文献   

5.
Of 2,361 water concentrates analyzed for the presence of Cryptosporidium spp. oocysts between January 1992 and May 1998, 269 (11.4%) were positive, of which 235 (87.4%) were raw and 34 were final water concentrates. Of 740 oocysts enumerated in positive samples, 656 oocysts (88.7%) were detected in raw and 84 oocysts (11.3%) were detected in final water concentrates by using a commercially available fluorescein isothiocyanate-labeled anti-Cryptosporidium sp. monoclonal antibody and the nuclear fluorogen 4′,6′-diamidino-2-phenylindole (DAPI). Of raw water positive samples, 66.8% had oocysts that contained nuclei, while 58.8% of final water samples had oocysts that contained nuclei. The most frequently identified oocysts had either no DAPI-positive nuclei and no internal morphology according to Nomarski differential interference-contrast microscopy (DIC) or four DAPI-positive nuclei together with internal contents according to DIC (39.5 and 32.8% of raw and 42.9 and 30.9% of final water positives, respectively). By use of the presence of DAPI-stained nuclei to support oocyst identification based upon oocyst wall fluorescence, 56.5% of oocysts were identified when at least one nucleus was present, while increasing the number of nuclei necessary for identification to four reduced the percentage identifiable to 32.8% in raw water concentrates. In final water concentrates, 51% of oocysts were identified using oocyst wall fluorescence and the presence of at least one nucleus, while increasing the number of nuclei necessary for identification to four reduced the percentage identifiable to 30.9%. By consolidating our identification criteria from the presence of at least one nucleus to the presence of four nuclei, we excluded approximately 20% of oocysts in either water type. Approximately 40% of oocysts detected in these United Kingdom samples were empty and could not be detected by alternative methods, including the PCR and fluorescence in situ hybridization.  相似文献   

6.
An existing method for the detection of Cryptosporidium oocysts in water was modified to investigate oocyst prevalence in large volumes of water. Surface waters and sewage effluents were filtered, eluted from the filter, and concentrated using centrifugation. The resultant pellet was then homogenized, sonicated, and placed on a sucrose gradient to separate oocysts from the sediment. The uppermost gradient layer was then examined by immunofluorescence using a labeled monoclonal antibody. Using this technique, average numbers of oocysts detected in raw and treated sewage were 5.18 X 10(3) and 1.30 X 10(3)/L, respectively. Filtered sewage effluents had significantly lower numbers of oocysts (10.0/L). These data show that sand filtration may reduce the concentrations of this parasite in waste waters. Highly variable oocyst numbers were encountered in surface waters. Since Cryptosporidium oocysts are frequently present in environmental waters, they could be responsible for waterborne outbreaks of disease.  相似文献   

7.
This study has been conducted to estimate the occurrence of Cryptosporidium oocysts in water supplies in the Metropolitan area of Seoul, South Korea, for 10 years from 2000 to 2009. Water samples were collected quarterly at 6 intakes in the Han River and its largest stream and 6 conventional Water Treatment Plants (WTPs) serving drinking water for 10 million people of Seoul. Cryptosporidium oocysts were found in 22.5% of intake water samples and arithmetic mean was 0.65 oocysts/10 L (range 0-22 oocysts/10 L). Although the annual mean of oocyst number was as low as 0.04-1.90 oocysts/10 L, 3 peaks in 2004 and 2007 were observed and the pollution level was a little higher in winter. The lowest density was observed at Paldang intake and the pollution level increased at Kuui and Jayang intakes. At the end of the largest stream, oocysts were found in 70% of collected samples (mean 5.71 oocysts/10 L) and it seemed that its joining the Han River resulted in the increase at Kuui intake and downstream. Oocyst removal by physical process exceeded 2.0-2.3 log and then all finished water samples collected at 6 WTPs were negative for Cryptosporidium in each 100 L sample for 10 years. These results suggested that domestic wastewater from the urban region could be a source of Cryptosporidium pollution and separating sewage systems adjacent to the intakes could be meaningful for some intakes having weakness related to parasitological water quality.  相似文献   

8.
Understanding the behavior of Cryptosporidium oocysts in the environment is critical to developing improved watershed management practices for protection of the public from waterborne cryptosporidiosis. Analytical methods of improved specificity and sensitivity are essential to this task. We developed a nested PCR-restriction fragment length polymorphism assay that allows detection of a single oocyst in environmental samples and differentiates the human pathogen Cryptosporidium parvum from other Cryptosporidium species. We tested our method on surface water and animal fecal samples from the Wachusett Reservoir watershed in central Massachusetts. We also directly compared results from our method with those from the immunofluorescence microscopy assay recommended in the Information Collection Rule. Our results suggest that immunofluorescence microscopy may not be a reliable indicator of public health risk for waterborne cryptosporidiosis. Molecular and environmental data identify both wildlife and dairy farms as sources of oocysts in the watershed, implicate times of cold water temperatures as high-risk periods for oocyst contamination of surface waters, and suggest that not all oocysts in the environment pose a threat to public health.  相似文献   

9.
Microelectrophoresis is a common technique for probing the surface chemistry of the Cryptosporidium parvum oocyst. Results of previous studies of the electrophoretic mobility of C. parvum oocysts in which microelectrophoresis was used are incongruent. In this work we demonstrated that capillary electrophoresis may also be used to probe the surface characteristics of C. parvum oocysts, and we related the surface chemistry of C. parvum oocysts to their stability in water. Capillary electrophoresis results indicated that oocysts which were washed in a phosphate buffer solution had neutrally charged surfaces. Inactivation of oocysts with formalin did not influence their electrophoretic mobility, while oocyst populations that were washed in distilled water consisted of cells with both neutral and negative surface charges. These results indicate that washing oocysts in low-ionic-strength distilled water can impart a negative charge to a fraction of the oocysts in the sample. Rapid coagulation experiments indicated that oocysts did not aggregate in a 0.5 M NaCl solution; oocyst stability in the salt solution may have been the result of Lewis acid-base forces, steric stabilization, or some other factor. The presence of sucrose and Percoll could not be readily identified on the surface of C. parvum oocysts by attenuated total reflectance-Fourier transform infrared spectroscopy, suggesting that these purification reagents may not be responsible for the stability of the uncharged oocysts. These findings imply that precipitate enmeshment may be the optimal mechanism of coagulation for removal of oocysts in water treatment systems. The results of this work may help elucidate the causes of variation in oocyst surface characteristics, may ultimately lead to improved removal efficiencies in full-scale water treatment systems, and may improve fate and transport predictions for oocysts in natural systems.  相似文献   

10.
From May to June 2012, a waterborne outbreak of 124 cases of cryptosporidiosis occurred in the plumbing systems of an older high-rise apartment complex in Seoul, Republic of Korea. The residents of this apartment complex had symptoms of watery diarrhea and vomiting. Tap water samples in the apartment complex and its adjacent buildings were collected and tested for 57 parameters under the Korean Drinking Water Standards and for additional 11 microbiological parameters. The microbiological parameters included total colony counts, Clostridium perfringens, Enterococcus, fecal streptococcus, Salmonella, Shigella, Pseudomonas aeruginosa, Cryptosporidium oocysts, Giardia cysts, total culturable viruses, and Norovirus. While the tap water samples of the adjacent buildings complied with the Korean Drinking Water Standards for all parameters, fecal bacteria and Cryptosporidium oocysts were detected in the tap water samples of the outbreak apartment complex. It turned out that the agent of the disease was Cryptosporidium parvum. The drinking water was polluted with sewage from a septic tank in the apartment complex. To remove C. parvum oocysts, we conducted physical processes of cleaning the water storage tanks, flushing the indoor pipes, and replacing old pipes with new ones. Finally we restored the clean drinking water to the apartment complex after identification of no oocysts.  相似文献   

11.
Several recent outbreaks of toxoplasmosis were related to drinking water. We propose a strategy for Toxoplasma oocyst detection as part of an approach to detecting multiple waterborne parasites, including Giardia and Cryptosporidium spp., by the U.S. Environmental Protection Agency method with the same sample. Water samples are filtered to recover Toxoplasma oocysts and purified on a sucrose density gradient. Detection is based on PCR and mouse inoculation (bioassay) to determine the presence and infectivity of recovered oocysts. In an experimental seeding assay with 100 liters of deionized water, a parasite density of 1 oocyst/liter was successfully detected by PCR in 60% of cases and a density of 10 oocysts/liter was detected in 100% of cases. The sensitivity of the PCR assay varied from less than 10 to more than 1000 oocysts/liter, depending on the sample source. PCR was always more sensitive than mouse inoculation. This detection strategy was then applied to 139 environmental water samples collected over a 20-month period. Fifty-three samples contained PCR inhibitors, which were overcome in 39 cases by bovine serum albumin addition. Among 125 interpretable samples, we detected Toxoplasma DNA in 10 cases (8%). None of the samples were positive by mouse inoculation. This strategy efficiently detects Toxoplasma oocysts in water and may be suitable as a public health sentinel method.  相似文献   

12.
Hoar  B. R.  Atwill  E. R.  Farver  T. B.  Jones  T. 《Quantitative Microbiology》2000,2(1):21-36
Populations of beef cattle represent a potential non-point source of environmental contamination for Cryptosporidium parvum if on-farm management practices fail to minimize transport from bovine manure to adjacent water sources. Characterizing this risk of contamination requires several parameters to be estimated, the most important being a valid and precise estimate of the oocyst loading rate per animal unit. The oocyst loading rate is defined in this study as the total number of oocysts excreted by a cohort of adult beef cows during a 24[emsp4 ]h period. We propose a methodology for estimating this parameter for low prevalent populations whereby the majority of individuals are test negative. Under specific degrees of confidence and at the population scale, this methodology generates estimates for maximal oocyst loading based on the sensitivity of the diagnostic test and the point prevalence and intensity of fecal shedding from a cross-sectional survey of the target population.Our cross-sectional survey on California beef cows generated a prevalence of infection of 1.1 % (6/557) and an intensity of oocyst shedding ranging from 219 to 5,491 oocysts/g, with a geometric mean of 835 oocysts/g from six positive cows. Negative binomial estimate of the percent recovery of the diagnostic assay was 0.235. Based on this percent recovery and using approximately 19.4[emsp4 ]mg of feces per assay, the DT90 of our assay, defined as the concentration of oocysts at which our diagnostic assay had a 90 % probability of detecting one or more oocysts in a sample, was 755 oocyst/g feces. At a 95 % confidence level, the estimated maximum number of oocysts being excreted in the feces of California beef cows ranged from 4.8 to 14.4 oocysts/g feces/cow, or 7.7×104 to 2.3×105 oocysts/beef cow/day.  相似文献   

13.
Cryptosporidium parvum can be found in both source and drinking water and has been reported to cause serious waterborne outbreaks which threaten public health safety. The U.S. Environmental Protection Agency has developed method 1622 for detection of Cryptosporidium oocysts present in water. Method 1622 involves four key processing steps: filtration, immunomagnetic separation (IMS), fluorescent-antibody (FA) staining, and microscopic evaluation. The individual performance of each of these four steps was evaluated in this study. We found that the levels of recovery of C. parvum oocysts at the IMS-FA and FA staining stages were high, averaging more than 95%. In contrast, the level of recovery declined significantly, to 14.4%, when the filtration step was incorporated with tap water as a spiking medium. This observation suggested that a significant fraction of C. parvum oocysts was lost during the filtration step. When C. parvum oocysts were spiked into reclaimed water, tap water, microfiltration filtrate, and reservoir water, the highest mean level of recovery of (85.0% ± 5.2% [mean ± standard deviation]) was obtained for the relatively turbid reservoir water. Further studies indicated that it was the suspended particles present in the reservoir water that contributed to the enhanced C. parvum oocyst recovery. The levels of C. parvum oocyst recovery from spiked reservoir water with different turbidities indicated that particle size and concentration could affect oocyst recovery. Similar observations were also made when silica particles of different sizes and masses were added to seeded tap water. The optimal particle size was determined to be in the range from 5 to 40 μm, and the corresponding optimal concentration of suspended particles was 1.42 g for 10 liters of tap water.  相似文献   

14.
Accurate quantification of Cryptosporidium parvum oocysts in animal fecal deposits on land is an essential starting point for estimating watershed C. parvum loads. Due to the general poor performance and variable recovery efficiency of existing enumeration methods, protocols were devised based on initial dispersion of oocysts from feces by vortexing in 2 mM tetrasodium pyrophosphate, followed by immunomagnetic separation. The protocols were validated by using an internal control seed preparation to determine the levels of oocyst recovery for a range of fecal types. The levels of recovery of 102 oocysts from cattle feces (0.5 g of processed feces) ranged from 31 to 46%, and the levels of recovery from sheep feces (0.25 g of processed feces) ranged from 21% to 35%. The within-sample coefficients of variation for the percentages of recovery from five replicates ranged from 10 to 50%. The ranges for levels of recovery of oocysts from cattle, kangaroo, pig, and sheep feces (juveniles and adults) collected in a subsequent watershed animal fecal survey were far wider than the ranges predicted by the validation data. Based on the use of an internal control added to each fecal sample, the levels of recovery ranged from 0 to 83% for cattle, from 4 to 62% for sheep, from 1 to 42% for pigs, and from 40 to 73% for kangaroos. Given the variation in the levels of recovery of oocysts from different fecal matrices, it is recommended that an internal control be added to at least one replicate of every fecal sample analyzed to determine the percentage of recovery. Depending on the animal type and based on the lowest approximate percentages of recovery, between 10 and 100 oocysts g of feces−1 must be present to be detected.  相似文献   

15.
Cryptosporidium parvum is a waterborne pathogen that poses potential risk to drinking water consumers. The detection of Cryptosporidium oocysts, its transmissive stage, is used in the latest U.S. Environmental Protection Agency method 1622, which utilizes organic fluorophores such as fluorescein isothiocyanate (FITC) to label the oocysts by conjugation with anti-Cryptosporidium sp. monoclonal antibody (MAb). However, FITC exhibits low resistance to photodegradation. This property will inevitably limit the detection accuracy after a short period of continuous illumination. In view of this, the use of inorganic fluorophores, such as quantum dot (QD), which has a high photobleaching threshold, in place of the organic fluorophores could potentially enhance oocyst detection. In this study, QD605-streptavidin together with biotinylated MAb was used for C. parvum oocyst detection. The C. parvum oocyst detection sensitivity increased when the QD605-streptavidin concentration was increased from 5 to 15 nM and eventually leveled off at a saturation concentration of 20 nM and above. The minimum QD605-streptavidin saturation concentration for detecting up to 4,495 ± 501 oocysts (mean ± standard deviation) was determined to be 20 nM. The difference in the enumeration between 20 nM QD605-streptavidin with biotinylated MAb and FITC-MAb was insignificant (P > 0.126) when various C. parvum oocyst concentrations were used. The QD605 was highly photostable while the FITC intensity decreased to 19.5% ± 5.6% of its initial intensity after 5 min of continuous illumination. The QD605-based technique was also shown to be sensitive for oocyst detection in reservoir water. This observation showed that the QD method developed in this study was able to provide a sensitive technique for detecting C. parvum oocysts with the advantage of having a high photobleaching threshold.  相似文献   

16.
In the past few years many waterborne outbreaks related to Cryptosporidium have been described. Current methods for detection of Cryptosporidium in water for the most part rely on viability assays which are not informative concerning the infectivity of oocysts. However, for estimation of the risk of infection with Cryptosporidium this information is required. For environmental samples the oocyst counts are often low, and the oocysts have been exposed to unfavorable conditions. Therefore, determination of the infectivity of environmental oocysts requires an assay with a high level of sensitivity. We evaluated the applicability of in vitro cell culture immunofluorescence assays with HCT-8 and Caco-2 cells for determination of oocyst infectivity in naturally contaminated water samples. Cell culture assays were compared with other viability and infectivity assays. Experiments with Cryptosporidium oocysts from different sources revealed that there was considerable variability in infectivity, which was illustrated by variable 50% infective doses, which ranged from 40 to 614 oocysts, and the results indicated that not only relatively large numbers of fresh oocysts but also aged oocysts produced infection in cell cultures. Fifteen Dutch surface water samples were tested, and the cell culture immunofluorescence assays were not capable of determining the infectivity for the low numbers of naturally occurring Cryptosporidium oocysts present in the samples. A comparison with other viability assays, such as the vital dye exclusion assay, demonstrated that surrogate methods overestimate the number of infectious oocysts and therefore the risk of infection with Cryptosporidium. For accurate risk assessment, further improvement of the method for detection of Cryptosporidium in water is needed.  相似文献   

17.
Concurrent with recent advances seen with Cryptosporidium parvum detection in both treated and untreated water is the need to properly evaluate these advances. A micromanipulation method by which known numbers of C. parvum oocysts, even a single oocyst, can be delivered to a test matrix for detection sensitivity is presented. Using newly developed nested PCR-restriction fragment length polymorphism primers, PCR sensitivity was evaluated with 1, 2, 3, 4, 5, 7, or 10 oocysts. PCR detection rates (50 samples for each number of oocysts) ranged from 38% for single oocysts to 92% for 5 oocysts, while 10 oocysts were needed to achieve 100% detection. The nested PCR conditions amplified products from C. parvum, Cryptosporidium baileyi, and Cryptosporidium serpentis but no other Cryptosporidium sp. or protozoan tested. Restriction enzyme digestion with VspI distinguished between C. parvum genotypes 1 and 2. Restriction enzyme digestion with DraII distinguished C. parvum from C. baileyi and C. serpentis. Use of known numbers of whole oocysts encompasses the difficulty of liberating DNA from the oocyst and eliminates the standard deviation inherent within a dilution series. To our knowledge this is the first report in which singly isolated C. parvum oocysts were used to evaluate PCR sensitivity. This achievement illustrates that PCR amplification of a single oocyst is feasible, yet sensitivity remains an issue, thereby illustrating the difficulty of dealing with low oocyst numbers when working with environmental water samples.  相似文献   

18.
Collaborative and in-house laboratory trials were conducted to evaluate Cryptosporidium oocyst and Giardia cyst recoveries from source and finished-water samples by utilizing the Filta-Max system and U.S. Environmental Protection Agency (EPA) methods 1622 and 1623. Collaborative trials with the Filta-Max system were conducted in accordance with manufacturer protocols for sample collection and processing. The mean oocyst recovery from seeded, filtered tap water was 48.4% ± 11.8%, while the mean cyst recovery was 57.1% ± 10.9%. Recovery percentages from raw source water samples ranged from 19.5 to 54.5% for oocysts and from 46.7 to 70.0% for cysts. When modifications were made in the elution and concentration steps to streamline the Filta-Max procedure, the mean percentages of recovery from filtered tap water were 40.2% ± 16.3% for oocysts and 49.4% ± 12.3% for cysts by the modified procedures, while matrix spike oocyst recovery percentages ranged from 2.1 to 36.5% and cyst recovery percentages ranged from 22.7 to 68.3%. Blinded matrix spike samples were analyzed quarterly as part of voluntary participation in the U.S. EPA protozoan performance evaluation program. A total of 15 blind samples were analyzed by using the Filta-Max system. The mean oocyst recovery percentages was 50.2% ± 13.8%, while the mean cyst recovery percentages was 41.2% ± 9.9%. As part of the quality assurance objectives of methods 1622 and 1623, reagent water samples were seeded with a predetermined number of Cryptosporidium oocysts and Giardia cysts. Mean recovery percentages of 45.4% ± 11.1% and 61.3% ± 3.8% were obtained for Cryptosporidium oocysts and Giardia cysts, respectively. These studies demonstrated that the Filta-Max system meets the acceptance criteria described in U.S. EPA methods 1622 and 1623.  相似文献   

19.
Molecular and immunological probes were used to identify various life stages of Perkinsus olseni, a protozoan parasite of the Manila clam Ruditapes philippinarum, from a marine environment and decomposing clam tissue. Western blotting revealed that the antigenic determinants of the rabbit anti-P. olseni antibody developed in this study were peptides with molecular masses of 55.9, 24.0, and 19.2 kDa. Immunofluorescent assay indicated that the rabbit anti-P. olseni IgG was specific to all life stages, including the prezoosporangium, trophozoite, and zoospore. Perkinsus olseni prezoosporangium-like cells were successfully isolated from marine sediment collected from Hwangdo on the west coast of Korea, where P. olseni-associated clam mortality has recurred for the past decade. Purified cells were positively stained with the rabbit anti-P. olseni antibody in an immunofluorescence assay, confirming for the first time the presence of P. olseni in marine sediment. Actively replicating zoospores inside the prezoosporangia were observed in the decomposing clam tissue collected from Hwangdo. P. olseni was also isolated from the feces and pseudofeces of infected clams and confirmed by PCR. The clams released 1-2 prezoosporangia per day through feces. The data suggested that the fecal discharge and decomposition of the infected clam tissue could be the two major P. olseni transmission routes.  相似文献   

20.
Our primary goal was to generate an accurate estimate of the daily environmental loading rate of Cryptosporidium parvum oocysts for adult beef cattle, using immunomagnetic separation coupled with direct immunofluorescence microscopy for a highly sensitive diagnostic assay. An additional goal was to measure the prevalence and intensity of fecal shedding of C. parvum oocysts in pre- and postparturient cows as an indicator of their potential to infect young calves. This diagnostic method could detect with a ≥90% probability oocyst concentrations as low as 3.2 oocysts g of feces−1, with a 54% probability of detecting just one oocyst g of feces−1. Using this diagnostic method, the overall apparent prevalence of adult beef cattle testing positive for C. parvum was 7.1% (17 of 240), with 8.3 and 5.8% of cattle shedding oocysts during the pre- and postcalving periods, respectively. The mean intensity of oocyst shedding for test-positive cattle was 3.38 oocysts g of feces−1. The estimated environmental loading rate of C. parvum ranged from 3,900 to 9,200 oocysts cow−1 day−1, which is substantially less than a previous estimate of 1.7 × 105 oocysts cow−1 day−1 (range of 7.7 × 104 to 2.3 × 105 oocysts cow−1 day−1) (B. Hoar, E. R. Atwill, and T. B. Farver, Quant. Microbiol. 2:21-36, 2000). Use of this highly sensitive assay functioned to detect a greater proportion of low-intensity shedders in our population of cattle, which reduced the estimated mean intensity of shedding and thereby reduced the associated environmental loading rate compared to those of previous studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号