首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies on the degenerative animal model of multiple sclerosis suggested that the copper-chelator cuprizone might directly suppress T-cell functions. Peripheral T-cell function in the cuprizone model has already been explored; therefore, in the present study, we investigated, for the first time, how cuprizone feeding affects the thymus, the organ of T-cell maturation and selection. We found that even one week of cuprizone treatment induced significant thymic atrophy, affecting the cortex over the medulla. Fluorescent microscopy and flow-cytometric analyses of thymi from cuprizone- and vehicle-treated mice indicated that eradication of the cluster of the differentiation-4 (CD4)-CD8 double-positive T-cell subset was behind the substantial cell loss. This result was confirmed with CD3-CD4-CD8 triple-staining experiments. Ultrastructurally, we observed degraded as well as enlarged mitochondria, myelin-bodies, large lipid droplets, and large lysosomes in the thymi of cuprizone-treated mice. Some of these features were similar to those in physiological and steroid-induced accelerated aging. According to our results, apoptosis was mainly of mitochondrial origin mediated by both caspase-3- and apoptosis inducing factor-mediated mechanisms. Additionally, mitogen activated protein kinase activation and increased pro-apoptotic B cell lymphoma-2 family protein expression were the major underlying processes. Our results do not indicate a functional relationship between cuprizone-induced thymus involution and the absence of inflammatory responses or the selective demyelination observed in the cuprizone model. On the other hand, due to the reversible nature of cuprizone’s deleterious effects, the cuprizone model could be valuable in studying thymus regeneration as well as remyelination processes.  相似文献   

2.
3.
Immature CD4- CD8+ murine thymocytes   总被引:8,自引:0,他引:8  
Mature thymocytes are usually defined and separated from other less mature thymocytes on the basis of their mutually exclusive expression of either CD4 or CD8. However, such murine "single positives" include a subpopulation of immature cells with properties resembling CD4- CD8- thymocytes or CD4+ CD8+ cortical blasts. Most of these immature single positives are CD4- CD8+, some expressing relatively low levels of CD8. They are large, dividing cortisone-sensitive cells found in the outer cortex. They express high levels of the heat-stable antigen (recognized by the monoclonals M1/69, B2A2, and J11d) but they are MEL-14-. The absence of detectable surface CD3, the absence of alpha-chain messenger RNA, and the predominance of the truncated form of the beta-chain messenger RNA all indicate that they do not express the T-cell antigen-receptor complex. Strategies for eliminating such immature cells from preparations of mature thymocytes are given, and their developmental significance is discussed.  相似文献   

4.
Thymic nurse cells (TNC) contain 20-200 thymocytes within specialized vacuoles in their cytoplasm. The purpose of the uptake of thymocytes by TNCs is unknown. TNCs also have the capacity to present self-antigens, which implies that they may serve a function in the process of thymic education. We have recently reported the development of thymic nurse cell lines that have the ability to bind and internalize T cells. Here, we use one of these TNC lines to identify the thymocyte subpopulation(s) involved in this internalization process. TNCs exposed to freshly isolated thymocytes bind and internalize CD4 and CD8 expressing thymocytes (CD4+CD8+ or double positives) exclusively. More specifically, a subset of the double-positive thymocyte population displayed binding capacity. These double-positive cells express cell surface alpha beta type T cell antigen receptor (TCR), as well as CD3 epsilon. Binding was not inhibited in the presence of antibodies against CD3, CD4, CD8, Class I antigens, or Class II antigens. These results describe two significant events in T cell development. First, TNCs exclusively bind and internalize a subset of alpha beta TCR expressing double-positive T cells. Also, binding is facilitated through a mechanism other than TCR recognition of major histocompatibility complex antigens. This suggests that thymocyte internalization may be independent of the process used by TNCs to present self-antigen.  相似文献   

5.
Physiological stress resulting from infections, trauma, surgery, alcoholism, malnutrition, and/or pregnancy results in a substantial depletion of immature CD4+CD8+ thymocytes. We previously identified 18 distinct stress-responsive microRNAs (miRs) in the thymus upon systemic stress induced by lipopolysaccharide (LPS) or the synthetic glucocorticoid, dexamethasone (Dex). MiRs are short, non-coding RNAs that play critical roles in the immune system by targeting diverse mRNAs, suggesting that their modulation in the thymus in response to stress could impact thymopoiesis. MiR-181d is one such stress-responsive miR, exhibiting a 15-fold down-regulation in expression. We utilized both transgenic and gene-targeting approaches to study the impact of miR-181d on thymopoiesis under normal and stress conditions. The over-expression of miR-181d in developing thymocytes reduced the total number of immature CD4+CD8+ thymocytes. LPS or Dex injections caused a 4-fold greater loss of these cells when compared with the wild type controls. A knockout mouse was developed to selectively eliminate miR-181d, leaving the closely spaced and contiguous family member miR-181c intact. The targeted elimination of just miR-181d resulted in a thymus stress-responsiveness similar to wild-type mice. These experiments suggest that one or more of three other miR-181 family members have overlapping or compensatory functions. Gene expression comparisons of thymocytes from the wild type versus transgenic mice indicated that miR-181d targets a number of stress, metabolic, and signaling pathways. These findings demonstrate that selected miRs enhance stress-mediated thymic involution in vivo.  相似文献   

6.
Host DNA synthesis is suppressed by the culture fluid of cell cultures infected with measles virus. This activity in the culture fluid is initiated somewhat later than the growth of infectious virus. Ninety percent of host DNA synthesis in HeLa cells is inhibited by culture fluid of 3-day-old cell cultures of Vero or HeLa cells infected with measles virus. This suppressing activity is not a property of the virion, but is due to nonvirion-associated component which shows none of the activities of measles virus such as hemagglutination, hemolysis, or cell fusion nor does it have the antigenicity of measles virus as tested by complement-fixation or hemagglutination-inhibiting antibody blocking tests. Neutralization of the activity of this component is not attained with the pooled sera of convalescent measles patients. This component has molecular weights of about 45,000, 20,000, and 3,000 and appears to be a heat-stable protein. The production of host DNA suppressing factor (DSF) is blocked by cycloheximide. Neither UV-inactivated nor antiserum-neutralized measles virus produce DSF. Furthermore, such activity of nonvirion-associated component is not detected in the culture fluid of cultures infected with other RNA viruses such as poliovirus, vesicular stomatitis virus, or Sindbis virus.  相似文献   

7.
8.
TCR-mediated stimulation induces activation and proliferation of mature T cells. When accompanied by signals through the costimulatory receptor CD28, TCR signals also result in the recruitment of cholesterol- and glycosphingolipid-rich membrane microdomains (lipid rafts), which are known to contain several molecules important for T cell signaling. Interestingly, immature CD4(+)CD8(+) thymocytes respond to TCR/CD28 costimulation not by proliferating, but by dying. In this study, we report that, although CD4(+)CD8(+) thymocytes polarize their actin cytoskeleton, they fail to recruit lipid rafts to the site of TCR/CD28 costimulation. We show that coupling of lipid raft mobilization to cytoskeletal reorganization can be mediated by phosphoinositide 3-kinase, and discuss the relevance of these findings to the interpretation of TCR signals by immature vs mature T cells.  相似文献   

9.
The association between the host immune environment and the size of the HIV reservoir during effective antiretroviral therapy is not clear. Progress has also been limited by the lack of a well-accepted assay for quantifying HIV during therapy. We examined the association between multiple measurements of HIV and T cell activation (as defined by markers including CD38, HLA-DR, CCR5 and PD-1) in 30 antiretroviral-treated HIV-infected adults. We found a consistent association between the frequency of CD4+ and CD8+ T cells expressing HLA-DR and the frequency of resting CD4+ T cells containing HIV DNA. This study highlights the need to further examine this relationship and to better characterize the biology of markers commonly used in HIV studies. These results may also have implications for reactivation strategies.  相似文献   

10.
Dengue virus (DENV) is the principal arthropod-borne viral pathogen afflicting human populations. While repertoires of antibodies to DENV have been linked to protection or enhanced infection, the role of T lymphocytes in these processes remains poorly defined. This study provides a comprehensive overview of CD4+ and CD8+ T cell epitope reactivities against the DENV 2 proteome in adult patients experiencing secondary DENV infection. Dengue virus-specific T cell responses directed against an overlapping 15mer peptide library spanning the DENV 2 proteome were analyzed ex vivo by enzyme-linked immunosorbent spot assay, and recognition of individual peptides was further characterized in specific T cell lines. Thirty novel T cell epitopes were identified, 9 of which are CD4+ and 21 are CD8+ T cell epitopes. We observe that whereas CD8+ T cell epitopes preferentially target nonstructural proteins (NS3 and NS5), CD4+ epitopes are skewed toward recognition of viral components that are also targeted by B lymphocytes (envelope, capsid, and NS1). Consistently, a large proportion of dengue virus-specific CD4+ T cells have phenotypic characteristics of circulating follicular helper T cells (CXCR5 expression and production of interleukin-21 or gamma interferon), suggesting that they are interacting with B cells in vivo. This study shows that during a dengue virus infection, the protein targets of human CD4+ and CD8+ T cells are largely distinct, thus highlighting key differences in the immunodominance of DENV proteins for these two cell types. This has important implications for our understanding of how the two arms of the human adaptive immune system are differentially targeted and employed as part of our response to DENV infection.  相似文献   

11.
Primary HIV-1 infection (PHI) is marked by a flu-like syndrome and high levels of viremia that decrease to a viral set point with the first emergence of virus-specific CD8+ T-cell responses. Here, we investigated in a large cohort of 527 subjects the immunodominance pattern of the first virus-specific cytotoxic T-lymphocyte (CTL) responses developed during PHI in comparison to CTL responses in chronic infection and demonstrated a distinct relationship between the early virus-specific CTL responses and the viral set point, as well as the slope of CD4+ T-cell decline. CTL responses during PHI followed clear hierarchical immunodominance patterns that were lost during the transition to chronic infection. Importantly, the immunodominance patterns of human immunodeficiency virus type 1 (HIV-1)-specific CTL responses detected in primary, but not in chronic, HIV-1 infection were significantly associated with the subsequent set point of viral replication. Moreover, the preservation of the initial CD8+ T-cell immunodominance patterns from the acute into the chronic phase of infection was significantly associated with slower CD4+ T-cell decline. Taken together, these data show that the specificity of the initial CTL response to HIV is critical for the subsequent control of viremia and have important implications for the rational selection of antigens for future HIV-1 vaccines.In the first weeks after human immunodeficiency virus type 1 (HIV-1) acquisition, viral loads peak at high levels, accompanied by a flu-like syndrome (15). A rapid depletion of the CD4+ T-cell population occurs during this acute infection, in particular, within the gastrointestinal tract-associated lymphoid tissue (6, 19, 20), marking a nonrecoverable scar on the immune system. With the resolution of the clinical syndromes, viral loads decrease to a set point, which persists at this level for months to years until progressive CD4+ T-cell decline results in the onset of AIDS. It has been shown that the initial viral set point following primary infection is a very strong predictor of the disease-free period until the onset of AIDS (18, 21, 22).The initial decrease in the viral load during primary HIV-1 infection (PHI) is temporally associated with the first emergence of virus-specific CD8+ T-cell responses, and several studies have provided strong evidence that HIV-1-specific CD8+ T-cell responses are capable of controlling viral replication (5, 16, 24, 25, 27, 31, 33). However, significant numbers of virus-specific CD8+ T cells are detectable both in chronically infected individuals who progress rapidly to AIDS and in those who do not experience HIV-1 disease progression for decades (1, 11), and the characteristics that define a protective HIV-1-specific CD8+ T-cell response are not known. In particular, the level of control over viral replication is not predicted by the overall breadth, magnitude, or function of virus-specific CD8+ T-cell responses in chronic HIV-1 infection (1, 4, 11, 26, 28).Here, we demonstrate in a large cohort of individuals identified during PHI that immunodominance patterns of virus-specific CD8+ T-cell responses detected in PHI, but not in chronic HIV-1 infection, are strongly associated with the subsequent set point of viral replication. These data show that the specificity of the initial CD8+ T-cell response to HIV is critical for the subsequent control of viremia and have important implications for the rational selection of antigens for future HIV-1 vaccines.  相似文献   

12.
The role of CD4+ helper T cells in modulating the acquired immune response to herpes simplex virus type 1 (HSV-1) remains ill defined; in particular, it is unclear whether CD4+ T cells are needed for the generation of the protective HSV-1-specific CD8+-T-cell response. This study examined the contribution of CD4+ T cells in the generation of the primary CD8+-T-cell responses following acute infection with HSV-1. The results demonstrate that the CD8+-T-cell response generated in the draining lymph nodes of CD4+-T-cell-depleted C57BL/6 mice and B6-MHC-II−/− mice is quantitatively and qualitatively distinct from the CD8+ T cells generated in normal C57BL/6 mice. Phenotypic analyses show that virus-specific CD8+ T cells express comparable levels of the activation marker CD44 in mice lacking CD4+ T cells and normal mice. In contrast, CD8+ T cells generated in the absence of CD4+ T cells express the interleukin 2 receptor α-chain (CD25) at lower levels. Importantly, the CD8+ T cells in the CD4+-T-cell-deficient environment are functionally active with respect to the expression of cytolytic activity in vivo but exhibit a diminished capacity to produce gamma interferon and tumor necrosis factor alpha. Furthermore, the primary expansion of HSV-1-specific CD8+ T cells is diminished in the absence of CD4+-T-cell help. These results suggest that CD4+-T-cell help is essential for the generation of fully functional CD8+ T cells during the primary response to HSV-1 infection.Infection due to herpes simplex virus type 1 (HSV-1) results in a wide spectrum of clinical presentations depending on the host''s age, the host''s immune status, and the route of inoculation (47). HSV-1 typically causes mild and self-limited lesions on the orofacial areas or genital sites. However, the disease can be life-threatening, as in the case of neonatal and central nervous system infections (18). The host''s immune responses, particularly CD8+ T cells, play an important role in determining the outcome of HSV infections in both the natural human host (18, 19, 28) and experimental murine models (11, 43). Immunodepletion and adoptive transfer studies have demonstrated the role of CD8+ T cells in reducing viral replication, resolving cutaneous disease, and providing overall protection upon rechallenge (6, 25, 26). CD8+ T cells play a particularly important role in preventing infection of the peripheral nervous system (PNS) and the reactivation of latent virus from neurons in the sensory ganglia of infected mice (21, 24, 36). The mechanisms that CD8+ T cells employ include gamma interferon (IFN-γ) production and functions associated with cytolytic granule content at the sites of primary infection (23, 31, 38). In the PNS of infected mice, the mechanisms primarily involve IFN-γ secretion (16, 20, 29), particularly against infected neurons expressing surface Qa-1 (41). Histopathological evidence from HSV-1-infected human ganglion sections show a large CD8+-T-cell infiltrate and the presence of inflammatory cytokines, suggesting that the presence of activated, effector memory cells within the PNS is important for maintaining HSV-1 latency in the natural human host (10, 42).The generation of a robust CD8+-T-cell response is essential for the control of various infectious pathogens. Some studies suggest that a brief interaction with antigen-presenting cells (APCs) is sufficient for CD8+-T-cell activation and expansion into functional effectors (44). However, the magnitude and quality of the overall CD8+-T-cell response generated may be dependent on additional factors (49). Recent evidence suggests that CD4+ T cells facilitate the activation and development of CD8+-T-cell responses either directly through the provision of cytokines or indirectly by the conditioning of dendritic cells (DC) (8, 48, 51). Those studies suggested that the latter mechanism is the dominant pathway, wherein CD4+ T cells assist CD8+-T-cell priming via the engagement of CD40 ligand (CD154) on CD4+ T cells and CD40 expressed on DC (4, 30, 33). This interaction results in the activation and maturation of DC, making them competent to stimulate antigen-specific CD8+-T-cell responses (35, 37).The requirement for CD4+-T-cell help in the generation of primary and secondary CD8+-T-cell responses to antigen varies. Primary CD8+-T-cell responses to infectious pathogens, such as Listeria monocytogenes, lymphocytic choriomeningitis virus (LCMV), influenza virus, and vaccinia virus, can be mounted effectively independently of CD4+-T-cell help (3, 12, 22, 34). In contrast, primary CD8+-T-cell responses to nonmicrobial antigens display an absolute dependence on CD4+-T-cell help (4, 5, 30, 33, 46). This observed difference in the requirement for CD4+-T-cell help may ultimately be a product of the initial inflammatory stimulus generated following immunization (49). Microbial antigens trigger an inflammatory response that can lead to the direct activation and priming of APCs, such as DC, thereby bypassing the need for CD4+-T-cell help. Nonmicrobial antigens, however, trigger an attenuated inflammatory response that does not directly activate and prime DCs. In the absence of this inflammation, CD4+ T cells are thought to condition and license DC functions through CD154/CD40 interactions, which leads to the subsequent activation of antigen-specific CD8+-T-cell responses (5, 49). Even in the case of pathogens where primary CD8+-T-cell responses were independent of CD4+-T-cell help, the secondary responses to these pathogens were found to be defective in the absence of CD4+-T-cell help (3, 12, 34, 40).The requirement for CD4+-T-cell help in priming CD8+-T-cell responses against HSV-1 infection is not well defined. Earlier studies with HSV-1 suggested that CD4+ T cells play an important role in the generation of primary CD8+-T-cell responses, detected in vitro, to acute infection with HSV-1 (14), principally through the provision of interleukin 2 (IL-2) for optimal CD8+-T-cell differentiation and proliferation. Subsequent studies, utilizing an in vivo approach, indicated that CD4+ T cells were not required for CD8+-T-cell-mediated cytolytic function (23). CD4+ T cells are thought to provide help by conditioning DC in a cognate, antigen-specific manner, thereby making them competent to stimulate HSV-1-specific CD8+-T-cell responses (37). By contrast, findings from other studies show that CD4+-T-cell-depleted mice were able to fully recover from acute infection with HSV-1 (38). These studies imply that the absence of CD4+ T cells does not prevent priming of CD8+ T cells in vivo.Studies from this laboratory have identified two distinct HSV-1-specific CD8+-T-cell subpopulations generated during the primary response, based upon the ability to synthesize IFN-γ following antigenic stimulation in vitro (1). To better understand the need for CD4+-T-cell help, we examined the functional characteristics and phenotypes of these CD8+-T-cell populations generated during a primary response to acute infection with HSV-1 in mice lacking CD4+ T cells. Our findings show that primary CD8+-T-cell responses to HSV-1 are compromised in the absence of CD4+-T-cell help. Specifically, the HSV-1 gB-specific CD8+ T cells produced in the absence of CD4+ T cells were found to be active with regard to cytolysis in vivo but were functionally impaired in the production of IFN-γ and TNF-α compared with intact C57BL/6 mice. Virus-specific CD8+ T cells were also reduced in number in CD4-depleted mice and in B6 mice lacking major histocompatibility complex (MHC) class II expression (B6-MHC-II−/−) compared to wild-type (WT) mice. In addition, our data showed higher virus burdens in the infectious tissues obtained from mice lacking CD4+ T cells than in those from intact mice. Collectively, these findings demonstrate that CD4+-T-cell help is essential for the generation of primary CD8+-T-cell responses following acute cutaneous infection with HSV-1.  相似文献   

13.
We report here that human immunodeficiency virus type 1 (HIV-1)-infected human thymocytes, in the absence of any exogenous stimulus but cocultivated with autologous thymic epithelial cells (TEC), obtained shortly (3 days) after thymus excision produce a high and sustained level of HIV-1 particles. The levels and kinetics of HIV-1 replication were similar for seven distinct viral strains irrespective of their phenotypes and genotypes. Contact of thymocytes with TEC is a critical requirement for optimal viral replication. Rather than an inductive signal resulting from the contact itself, soluble factors produced in the mixed culture are responsible for this effect. Specifically, the synergistic effects of tumor necrosis factor, interleukin-1 (IL-1), IL-6, and granulocyte-macrophage colony-stimulating factor may account by themselves for the high level of HIV-1 replication in thymocytes observed in mixed cultures. In conclusion, the microenvironment generated by TEC-thymocyte interaction might greatly favor optimal HIV-1 replication in the thymus.  相似文献   

14.
DNA vaccination is an effective means of eliciting both humoral and cellular immunity, including cytotoxic T lymphocytes (CTL). Using an influenza virus model, we previously demonstrated that injection of DNA encoding influenza virus nucleoprotein (NP) induced major histocompatibility complex class I-restricted CTL and cross-strain protection from lethal virus challenge in mice (J. B. Ulmer et al., Science 259:1745–1749, 1993). In the present study, we have characterized in more detail the cellular immune responses induced by NP DNA, which included robust lymphoproliferation and Th1-type cytokine secretion (high levels of gamma interferon and interleukin-2 [IL-2], with little IL-4 or IL-10) in response to antigen-specific restimulation of splenocytes in vitro. These responses were mediated by CD4+ T cells, as shown by in vitro depletion of T-cell subsets. Taken together, these results indicate that immunization with NP DNA primes both cytolytic CD8+ T cells and cytokine-secreting CD4+ T cells. Further, we demonstrate by adoptive transfer and in vivo depletion of T-cell subsets that both of these types of T cells act as effectors in protective immunity against influenza virus challenge conferred by NP DNA.Cellular immune responses play an important role in protection from disease caused by infectious pathogens, such as viruses and certain bacteria (e.g., Mycobacterium tuberculosis). The specific T cells involved in conferring immunity can include both CD4+ and CD8+ T cells, often through the action of secreted cytokines and cytolytic activity, respectively. Certain types of vaccines, such as subunit proteins and whole or partially purified preparations of inactivated organisms, in general induce CD4+ T-cell responses but not CD8+ cytotoxic T lymphocytes (CTL). In contrast, live attenuated organisms and subunit proteins formulated with certain experimental adjuvants can induce both types of responses. Recently, a different approach consisting of direct immunization with plasmid DNA expression vectors (i.e., DNA vaccines) has shown promise as a viable means of inducing broad-spectrum T-cell responses. The effectiveness of DNA vaccines in animal models is likely due, at least in part, to expression of antigens in situ (35), leading to the induction of CTL (29), antibodies (3, 4, 10, 21, 22, 32), and cytokine-secreting lymphocyte responses (12, 36). During the past 5 years, many reports have been published on the immunogenicity of DNA vaccines encoding various antigens in several animal models, thereby illustrating the applicability of the technology to many pathogens (for a review, see reference 6). However, in only a few instances has the nature of the effector cells responsible for protective immunity been described (7, 16). In the present study, we have analyzed in detail the cellular immune responses induced by influenza virus nucleoprotein (NP) DNA and have established that both CD4+ T cells secreting Th1-type cytokines and CD8+ cytotoxic T cells play important effector roles in heterosubtypic protective immunity against lethal influenza virus challenge in mice.  相似文献   

15.
The orphan steroid receptor, Nur77, is thought to be a central participant in events leading to TCR-mediated clonal deletion of immature thymocytes. Interestingly, although both immature and mature murine T cell populations rapidly up-regulate Nur77 after TCR stimulation, immature CD4+CD8+ thymocytes respond by undergoing apoptosis, whereas their mature descendants respond by dividing. To understand these developmental differences in susceptibility to the proapoptotic potential of Nur77, we compared its regulation and compartmentalization and show that mature, but not immature, T cells hyperphosphorylate Nur77 in response to TCR signals. Nur77 resides in the nucleus of immature CD4+CD8+ thymocytes throughout the course of its expression and is not found in either the organellar or cytoplasmic fractions. However, hyperphosphorylation of Nur77 in mature T cells, which is mediated by both the MAPK and PI3K/Akt pathways, shifts its localization from the nucleus to the cytoplasm. The failure of immature CD4+CD8+ thymocytes to hyperphosphorylate Nur77 in response to TCR stimulation may be due in part to decreased Akt activity at this developmental stage.  相似文献   

16.
Pandemic and seasonal influenza viruses cause considerable morbidity and mortality in the general human population. Protection from severe disease may result from vaccines that activate antigen-presenting DC for effective stimulation of influenza-specific memory T cells. Special attention is paid to vaccine-induced CD8+ T-cell responses, because they are mainly directed against conserved internal influenza proteins thereby presumably mediating cross-protection against circulating seasonal as well as emerging pandemic virus strains. Our study showed that influenza whole virus vaccines of major seasonal A and B strains activated DC more efficiently than those of pandemic swine-origin H1N1 and pandemic-like avian H5N1 strains. In contrast, influenza split virus vaccines had a low ability to activate DC, regardless which strain was investigated. We also observed that whole virus vaccines stimulated virus-specific CD8+ memory T cells much stronger compared to split virus counterparts, whereas both vaccine formats activated CD4+ Th cell responses similarly. Moreover, our data showed that whole virus vaccine material is delivered into the cytosolic pathway of DC for effective activation of virus-specific CD8+ T cells. We conclude that vaccines against seasonal and pandemic (-like) influenza strains that aim to stimulate cross-reacting CD8+ T cells should include whole virus rather than split virus formulations.  相似文献   

17.
We previously showed that CD8+ T cells are required for optimal primary immunity to low dose Leishmania major infection. However, it is not known whether immunity induced by low dose infection is durable and whether CD8+ T cells contribute to secondary immunity following recovery from low dose infection. Here, we compared primary and secondary immunity to low and high dose L. major infections and assessed the influence of infectious dose on the quality and magnitude of secondary anti-Leishmania immunity. In addition, we investigated the contribution of CD8+ T cells in secondary anti-Leishmania immunity following recovery from low and high dose infections. We found that the early immune response to low and high dose infections were strikingly different: while low dose infection preferentially induced proliferation and effector cytokine production by CD8+ T cells, high dose infection predominantly induced proliferation and cytokine production by CD4+ T cells. This differential activation of CD4+ and CD8+ T cells by high and low dose infections respectively, was imprinted during in vitro and in vivo recall responses in healed mice. Both low and high dose-infected mice displayed strong infection-induced immunity and were protected against secondary L. major challenge. While depletion of CD4+ cells in mice that healed low and high dose infections abolished resistance to secondary challenge, depletion of CD8+ cells had no effect. Collectively, our results show that although CD8+ T cells are preferentially activated and may contribute to optimal primary anti-Leishmania immunity following low dose infection, they are completely dispensable during secondary immunity.  相似文献   

18.
19.
E.tenella感染鸡CD4+、CD8+T细胞的动态变化研究   总被引:1,自引:0,他引:1  
用免疫组化ABC法检测了柔嫩艾美耳球虫(E.tenella)感染雏鸡后各免疫器官和盲肠局部的T淋巴细胞亚群CD4 淋巴细胞和CD8 T淋巴细胞数的动态变化。结果表明:(1)雏鸡初次感染E.tenella后,免疫器官盲肠扁桃体、脾脏、胸腺和盲肠黏膜中的CD4 T淋巴细胞均于第2天开始增殖,第6天~8天达到峰值;二次感染后第2天有短暂的下降,第5天开始缓慢回升,第8天二次达到峰值,但第二个峰值比第一个峰值低,说明CD4 T淋巴细胞积极参与启动免疫应答和抵抗初次感染。(2)雏鸡初次感染E.tenella后,免疫器官法氏囊、盲肠扁桃体、脾脏、胸腺和盲肠黏膜中的CD8 T淋巴细胞都于第2天开始增殖,第8天达到峰值;二次感染后立即回升,第5天达到峰值,然后缓慢下降,且第二个峰值比第一个峰值高,表明CD8 T淋巴细胞是抵抗再感染的主力。  相似文献   

20.
The level of sCD23 produced in the course of human immunodeficiency virus (HIV) infection was measured in patients grouped according to the Centers for Disease Control by using an immunoradiometric assay. Soluble CD23 was evaluated in supernatants of peripheral blood mononuclear cell (PBMC) (106 cells/ml) stimulated by phytohemagglutinin (PHA). Compared with healthy controls (m±S.D. = 1.0 ±0.34 U/ml, n = 7), higher values were observed in some of the patients of group II (asymptomatic) (m±S.D. = 2±1.33, n = 9) and some of the patients of group IV (AIDS) (m±S.D. = 1.3 ±1.40, n = 8). Those results prompted us to compare the plasma levels of sCD23 in group II and group IV HIV-infected patients and in healthy individuals. Soluble CD23 plasma levels in healthy patients (n = 42) ranged from 0 to 1.5 U/ml (m±S.D. = 0.9±0.33), in group II patients (n = 17) from 0 to 3 U/ml (m±S.D. = 0.92±0.83) and in group IV patients (n =73) from 0 to 2.9 U/ml (m±S.D. = 1.15±0.71). The differences between the patients and the healthy individuals were not statistically significant but individual sCD23 values higher than 2 U/ml were obtained in 6% of the group II patients and 16.7% of the group IV patients. Increased values of sCD23 were obtained in plasma from patients with secondary infectious diseases (groups IV-C1 and IV-C2) and from patients without secondary infectious diseases (group II, group IV-A and group IV-B). Elevated values of sCD23 were detected even in patients with low counts of CD4+ T cells and CD8+ T cells in their peripheral blood. sCD23 has numerous activities including control of IgE synthesis and cytokine-like properties. Our results show a disarray of sCD23 in HIV-infected patients which could be involved in drug reactions, allergic manifestations and the IgE-level increase. Further investigations should attempt to define the role of sCD23 in clinical manifestations of HIV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号