首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adipose tissue hypoxia occurs early in obesity and is associated with increased tissue macrophages and systemic inflammation that impacts muscle insulin responsiveness. We investigated how hypoxia interacted with adipocyte-macrophage crosstalk and inflammatory cytokine release, using co-culture and conditioned media (CM). Murine primary adipocytes from lean or obese mice were cultured under normoxic (21% O2) or hypoxic (1% O2) conditions. RAW264.7 macrophages were incubated under normoxic or hypoxic conditions with or without adipocyte conditioned media. Macrophage and adipocyte-macrophage co-culture CM were also collected. We found hypoxia did not elicit direct cytokine release from macrophages. However, adipocyte CM or adipocyte co-culture, synergistically stimulated TNFα and MCP-1 release from macrophages that was not further impacted by hypoxia. Exposure of muscle cells to elevated cytokines led to reduced insulin and muscle stress/inflammatory signaling. We conclude hypoxia or obesity induces release of inflammatory TNFα and MCP-1 from mice primary adipocytes but the two environmental conditions do not synergize to worsen macrophage signal transduction or insulin responsiveness.  相似文献   

2.
The effect of granulocyte-macrophage (GM)-CSF on the proliferation of murine pulmonary alveolar macrophages in vitro was investigated. About 20% of freshly isolated alveolar macrophages formed colonies in both liquid and soft agar cultures in the presence of GM-CSF. GM-CSF was also found to be capable of maintaining the survival of these colony-forming cells in vitro. Moreover, GM-CSF could substitute for CSF-1 in maintaining the survival of CSF-1-responding pulmonary alveolar macrophage colony-forming cells in the absence of CSF-1. The concentration of GM-CSF required for maintaining the survival of colony-forming cells without proliferation was much lower than that required for the proliferation of these cells in vitro. It also enhanced the CSF-1-dependent clonal growth of alveolar macrophages. These data suggest that the colony-forming cells that respond to GM-CSF are the same subset of macrophages that form colonies in the presence of CSF-1. GM-CSF did not inhibit the binding of 125I-CSF-1 to alveolar macrophages at 0 degrees C. However, the preincubation of macrophages with GM-CSF at 37 degrees C resulted in a transient down-regulation of CSF-1 binding activity.  相似文献   

3.
Colony stimulating factor-1 (CSF-1) (or macrophage CSF) is involved in the survival, proliferation, differentiation, and activation of cells of the monocyte/macrophage lineage. Because the mitogen-activated protein kinase family members extracellular signal-regulated kinases (ERKs), p38, and c-Jun N-terminal kinase are widely implicated in such cellular functions, we measured their activity in growing and growth-arrested cultures of bone marrow-derived macrophages (BMM), as well as their stimulation by saturating concentrations of CSF-1. ERK activity was approximately 2-fold higher in cycling BMM compared with growth-arrested BMM; in addition, CSF-1-stimulated BMM DNA synthesis was partially inhibited by PD98059, a specific inhibitor of MEK activation, suggesting a role for a mitogen-activated protein-ERK kinase (MEK)/ERK pathway in the control of DNA synthesis but surprisingly not in the control of cyclin D1 mRNA or c-myc mRNA expression. The suppression of BMM apoptosis by CSF-1, i.e. enhanced survival, was not reversed by PD98059, suggesting that a MEK/ERK pathway is not involved in this process. Using a quantitative kinase assay, it was found that CSF-1 gave a slight increase in BMM p38 activity, supporting prior data that CSF-1 is a relatively weak stimulator of inflammatory cytokine production in monocytes/macrophages. Relatively high concentrations of the p38 inhibitor, SKB202190, suppressed CSF-1-stimulated BMM DNA synthesis. No evidence could be obtained for the involvement of p38 activity in BMM apoptosis following CSF-1 withdrawal. We were not able to show that CSF-1 enhanced BMM JNK-1 activity to a significant extent; again, no role could be found for JNK-1 activity in the BMM apoptosis occurring after CSF-1 removal.  相似文献   

4.
Macrophage colony stimulating factor (M-CSF) or CSF-1 controls the development of the macrophage lineage through its receptor tyrosine kinase, c-Fms. cAMP has been shown to influence proliferation and differentiation in many cell types, including macrophages. In addition, modulation of cellular ERK activity often occurs when cAMP levels are raised. We have shown previously that agents that increase cellular cAMP inhibited CSF-1-dependent proliferation in murine bone marrow-derived macrophages (BMM) which was associated with an enhanced extracellular signal-regulated kinase (ERK) activity. We report here that increasing cAMP levels, by addition of either 8-bromo cAMP (8BrcAMP) or prostaglandin E(1) (PGE1), can induce macrophage differentiation in M1 myeloid cells engineered to express the CSF-1 receptor (M1/WT cells) and can potentiate CSF-1-induced differentiation in the same cells. The enhanced CSF-1-dependent differentiation induced by raising cAMP levels correlated with enhanced ERK activity. Thus, elevated cAMP can promote either CSF-1-induced differentiation or inhibit CSF-1-induced proliferation depending on the cellular context. The mitogen-activated protein kinase/extracellular signal-related protein kinase kinase (MEK) inhibitor, PD98059, inhibited both the cAMP- and the CSF-1R-dependent macrophage differentiation of M1/WT cells suggesting that ERK activity might be important for differentiation in the M1/WT cells. Surprisingly, addition of 8BrcAMP or PGE1 to either CSF-1-treated M1/WT or BMM cells suppressed the CSF-1R-dependent tyrosine phosphorylation of cellular substrates, including that of the CSF-1R itself. It appears that there are at least two CSF-1-dependent pathway(s), one MEK/ERK dependent pathway and another controlling the bulk of the tyrosine phosphorylation, and that cAMP can modulate signalling through both of these pathways.  相似文献   

5.
CSF-1, by binding to its high-affinity receptor CSF-1R, sustains the survival and proliferation of monocyte/macrophages, which are central cells of innate immunity and inflammation. The MAPK ERK5 (also known as big MAPK-1, BMK1, or MAPK7) is a 98-kDa molecule sharing high homology with ERK1/2. ERK5 is activated by oxidative stress or growth factor stimulation. This study was undertaken to characterize ERK5 involvement in macrophage signaling that is elicited by CSF-1. Exposure to the CSF-1 of primary human macrophages or murine macrophage cell lines, as well as murine fibroblasts expressing ectopic CSF-1R, resulted in a rapid and sustained increase of ERK5 phosphorylation on activation-specific residues. In the BAC1.2F5 macrophage cell line, ERK5 was also activated by another mitogen, GM-CSF, while macrophage activators such as LPS or IFN-gamma and a number of nonproliferative cytokines failed. Src family kinases were found to link the activation of CSF-1R to that of ERK5, whereas protein kinase C or the serine phosphatases PP1 and PP2A seem not to be involved in the process. Treatment of macrophages with ERK5-specific small interfering RNA markedly reduced CSF-1-induced DNA synthesis and total c-Jun phosphorylation and expression, while increasing the expression of the cyclin-dependent kinase inhibitor p27. Following CSF-1 treatment, the active form of ERK5 rapidly translocated from cytosol to nucleus. Taken together, the results reported in this study show that ERK5 is indispensable for optimal CSF-1-induced proliferation and indicate a novel target for its control.  相似文献   

6.
Colony stimulating factor-1 (CSF-1)-dependent macrophages play crucial roles in the development and progression of several pathological conditions including atherosclerosis and breast cancer metastasis. Macrophages in both of these pathologies take up increased amounts of glucose. Since we had previously shown that CSF-1 stimulates glucose uptake by macrophages, we have now investigated whether glucose metabolism is required for the survival of CSF-1-dependent macrophages as well as examined the mechanism by which CSF-1 stimulates glucose uptake. Importantly, we found that CSF-1-induced macrophage survival required metabolism of the glucose taken up in response to CSF-1 stimulation. Kinetic studies showed that CSF-1 stimulated an increase in the number of glucose transporters at the plasma membrane, including Glut1. The uptake of glucose induced by CSF-1 required intact PI3K and PLC signalling pathways, as well as the downstream effectors Akt and PKC, together with a dynamic actin cytoskeleton. Expression of constitutively active Akt partially restored glucose uptake and macrophage survival in the absence of CSF-1, suggesting that Akt is necessary but not sufficient for optimal glucose uptake and macrophage survival. Taken together, these results suggest that CSF-1 regulates macrophage survival, in part, by stimulating glucose uptake via Glut1, and PI3K and PLC signalling pathways.  相似文献   

7.
8.
Integrins, following binding to proteins of the extracellular matrix (ECM) including collagen, laminin and fibronectin (FN), are able to transduce molecular signals inside the cells and to regulate several biological functions such as migration, proliferation and differentiation. Besides activation of adaptor molecules and kinases, integrins transactivate Receptor Tyrosine Kinases (RTK). In particular, adhesion to the ECM may promote RTK activation in the absence of growth factors. The Colony-Stimulating Factor-1 Receptor (CSF-1R) is a RTK that supports the survival, proliferation, and motility of monocytes/macrophages, which are essential components of innate immunity and cancer development. Macrophage interaction with FN is recognized as an important aspect of host defense and wound repair. The aim of the present study was to investigate on a possible cross-talk between FN-elicited signals and CSF-1R in macrophages. FN induced migration in BAC1.2F5 and J774 murine macrophage cell lines and in human primary macrophages. Adhesion to FN determined phosphorylation of the Focal Adhesion Kinase (FAK) and Src Family Kinases (SFK) and activation of the SFK/FAK complex, as witnessed by paxillin phosphorylation. SFK activity was necessary for FAK activation and macrophage migration. Moreover, FN-induced migration was dependent on FAK in either murine macrophage cell lines or human primary macrophages. FN also induced FAK-dependent/ligand-independent CSF-1R phosphorylation, as well as the interaction between CSF-1R and β1. CSF-1R activity was necessary for FN-induced macrophage migration. Indeed, genetic or pharmacological inhibition of CSF-1R prevented FN-induced macrophage migration. Our results identified a new SFK-FAK/CSF-1R signaling pathway that mediates FN-induced migration of macrophages.  相似文献   

9.
Since the osteopetrotic (op/op) mouse was demonstrated to have a mutation within the coding region of the CSF-1 gene itself, it serves as a model for investigating the differentiation mechanism of macrophage populations in the absence of functional CSF-1. The op/op mice were severely monocytopenic and showed marked reduction and abnormal differentiation of tissue macrophages. Osteoclasts as well as marginal metallophilic macrophages and marginal zone macrophages in the spleen were absent. Most of the tissue macrophages were reduced in number and ultrastructurally immature. However, the degree of reduction in numbers of macrophages in the mutant mice was variable among tissues, suggesting that the heterogeneity of macrophages was generated by their different dependency on CSF-1. After daily CSF-1 injection, the numbers of monocytes, tissue macrophages, and osteoclasts were remarkably increased, and the macrophages showed morphological maturation. However, the numbers of macrophages in the ovary, uterus, and synovial membrane were not increased. In the bone marrow, macrophage precursors detected by monoclonal antibody ER-MP58 proliferated and differentiated into preosteoclasts and osteoclasts. In the spleen, marginal metallophilic macrophages and marginal zone macrophages developed slowly. In this manner, CSF-1 plays an important role in the development, proliferation, and differentiation of certain tissue macrophage populations and osteoclasts. In the op/op mice, Kupffer cells proliferated, transformed into epithelioid cells and multinucleated giant cells, and participated in glucan-induced granuloma formation. In CSF-1-treated op/op mice, the process of granuloma formation was similar to that in normal littermates due to increased monocytopoiesis and monocyte influx into the granulomas. These results indicate that CSF-1 is a potent inducer of the development and differentiation of CSF-1-dependent monocyte/macrophages, and that CSF-1-independent macrophages also play an important role in granuloma formation. Mol Reprod Dev 46:85–91, 1997. © 1997 Wiley Liss, Inc.  相似文献   

10.
We previously reported that lipids such as cholesterol esters, triglycerides, and some phospholipids that constitute cell membranes or serum lipoproteins induced growth of mouse peritoneal macrophages in vitro. In this paper, we compared the macrophage growth-stimulating activity of cardiolipin (CL), an active phospholipid with that of CSF-1. Growth kinetics and maximal degree of growth of exudated macrophages induced by CL were similar to those of CSF-1. CL did not stimulate macrophages to release soluble macrophage growth factors. Also, the activity of CL was not blocked as much by anti-CSF-1, suggesting that most of the effect of CL was direct and not mediated by CSF-1 or other protein factors. There was no synergistic effect between CL and CSF-1. CL induced growth of both exudate and resident macrophages, whereas CSF-1 induced very little resident macrophage growth. Furthermore, although the growth-stimulating activities of both substances were inhibited by IFN-gamma and TNF, CL was more resistant to these inhibitory effects. These results suggest that the lipid has some different characters from CSF-1 and may induce the growth of resident macrophages in inflammations or tumors.  相似文献   

11.
The role of stimulatory factors, such as the CSF, in the regulation of hemopoiesis has been extensively documented. Less is known of the negative regulators of hemopoiesis. In this report, we show that the macrophage activating agents, TNF-alpha, IFN-gamma, and LPS, are all potent inhibitors of CSF-1-stimulated murine bone marrow-derived macrophage (BMM) DNA synthesis and increase in cell numbers. The inhibitory effects of TNF-alpha and IFN-gamma do not appear to be due to endotoxin contamination in the recombinant cytokine preparations. The inhibition of proliferation is reversible and is not due to a general loss of growth factor responsiveness, inasmuch as the three agents do not inhibit CSF-1-stimulated BMM survival, protein synthesis, or fluid phase pinocytosis. Because TNF-alpha and LPS are known to rapidly and potently down-modulate CSF-1 receptor levels in BMM, the results also suggest that low levels of receptor occupancy are sufficient for biological responses to CSF-1. The inhibitory effects of TNF-alpha, IFN-gamma, or LPS were also seen when granulocyte-macrophage-CSF or IL-3 was used to stimulate BMM DNA synthesis. The results suggest that TNF-alpha, IFN-gamma, and LPS appear to be inhibiting CSF-stimulated proliferation by acting at a post-receptor level, possibly by regulation of some critical event(s) in the mitogenic signaling pathway.  相似文献   

12.
IFN gamma/LPS treatment increases macrophage tumoricidal and microbicidal activity and inhibits CSF-1-induced macrophage proliferation. The mechanism underlying the latter effect was investigated in the CSF-1-dependent mouse macrophage cell line, BAC-1.2F5. IFN-gamma and LPS together dramatically reduced the total number of CSF-1 receptors (CSF-1R) via selective degradation of the cell surface form. Processing and transport of intracellular CSF-1R to the cell surface were unaffected. IFN-gamma alone had no effect but significantly enhanced LPS-induced CSF-1R down-regulation. The reduction in CSF-1R number was protein kinase C-dependent and involved changes in serine phosphorylation of the receptor at different sites. CSF-1R down-modulation by this mechanism may be important in switching off the energy-consuming processes of CSF-1R-mediated proliferation and chemotaxis in activated macrophages.  相似文献   

13.
Mice null for the T-cell protein tyrosine phosphatase (Tcptp-/-) die shortly after birth due to complications arising from the development of a systemic inflammatory disease. It was originally reported that Tcptp-/- mice have increased numbers of macrophages in the spleen; however, the mechanism underlying the aberrant growth and differentiation of macrophages in Tcptp-/- mice is not known. We have identified Tcptp as an important regulator of colony-stimulating factor 1 (CSF-1) signaling and mononuclear phagocyte development. The number of CSF-1-dependent CFU is increased in Tcptp-/- bone marrow. Tcptp-/- mice also have increased numbers of granulocyte-macrophage precursors (GMP), and these Tcptp-/- GMP yield more macrophage colonies in response to CSF-1 relative to wild-type cells. Furthermore, we have identified the CSF-1 receptor (CSF-1R) as a physiological target of Tcptp through substrate-trapping experiments and its hyperphosphorylation in Tcptp-/- macrophages. Tcptp-/- macrophages also have increased tyrosine phosphorylation and recruitment of a Grb2/Gab2/Shp2 complex to the CSF-1R and enhanced activation of Erk after CSF-1 stimulation, which are important molecular events in CSF-1-induced differentiation. These data implicate Tcptp as a critical regulator of CSF-1 signaling and mononuclear phagocyte development in hematopoiesis.  相似文献   

14.
Granulocyte/macrophage (GM)-CSF is one of the hemopoietic growth factors that stimulates neutrophilic granulocyte and macrophage production by bone marrow progenitor cells. In this study, the effect of GM-CSF on the growth and differentiation of murine pulmonary alveolar macrophages (PAM) was investigated. In the presence of GM-CSF, normal murine PAM were induced to proliferate and develop into macrophage colonies with a dose-response curve similar to that of bone marrow GM colony-forming cells. PAM also responded to CSF-1, a lineage-restricted growth factor, but required much higher doses of CSF-1 and a longer incubation time for optimal colony formation. The proliferative response of PAM to CSF-1, however, was greatly enhanced by the concurrent addition of low doses of GM-CSF. In contrast, low doses of CSF-1 failed to potentiate the proliferative response of PAM to GM-CSF. Macrophages derived from GM-CSF cultures were rounder and less stretched and possessed less FcR-mediated phagocytic activity than cells produced in CSF-1 cultures. A study with hydrocortisone-induced monocytopenia showed that nearly one half of lung macrophages may be sustained by local proliferation of PAM without the continuous migration of blood monocytes. This study suggests that GM-CSF may play a major role in the production of PAM by two modes of action, 1) direct stimulation of cell proliferation and 2) enhancement of their responsiveness to CSF-1, thereby producing more mature and functionally competent macrophages.  相似文献   

15.
There is recent interest in the role of monocyte/macrophage subpopulations in pathology. How the hemopoietic growth factors, macrophage-colony stimulating factor (M-CSF or CSF-1) and granulocyte macrophage (GM)-CSF, regulate their in vivo development and function is unclear. A comparison is made here on the effect of CSF-1 receptor (CSF-1R) and GM-CSF blockade/depletion on such subpopulations, both in the steady state and during inflammation. In the steady state, administration of neutralizing anti-CSF-1R monoclonal antibody (mAb) rapidly (within 3-4 days) lowered, specifically, the number of the more mature Ly6C(lo) peripheral blood murine monocyte population and resident peritoneal macrophages; it also reduced the accumulation of murine exudate (Ly6C(lo)) macrophages in two peritonitis models and alveolar macrophages in lung inflammation, consistent with a non-redundant role for CSF-1 (or interleukin-34) in certain inflammatory reactions. A neutralizing mAb to GM-CSF also reduced inflammatory macrophage numbers during antigen-induced peritonitis and lung inflammation. In GM-CSF gene-deficient mice, a detailed kinetic analysis of monocyte/macrophage and neutrophil dynamics in antigen-induced peritonitis suggested that GM-CSF was acting, in part, systemically to maintain the inflammatory reaction. A model is proposed in which CSF-1R signaling controls the development of the macrophage lineage at a relatively late stage under steady state conditions and during certain inflammatory reactions, whereas in inflammation, GM-CSF can be required to maintain the response by contributing to the prolonged extravasation of immature monocytes and neutrophils. A correlation has been observed between macrophage numbers and the severity of certain inflammatory conditions, and it could be that CSF-1 and GM-CSF contribute to the control of these numbers in the ways proposed.  相似文献   

16.
Macrophage inflammatory protein 1 modulates macrophage function.   总被引:34,自引:0,他引:34  
Macrophage inflammatory protein 1 (MIP 1), initially purified from the conditioned medium of endotoxin-stimulated macrophages, is a low m.w. heparin-binding protein doublet comprising two peptides, MIP 1 alpha and MIP 1 beta. Although native doublet MIP 1 has previously been shown to exert pyrogenic, mitogenic, and proinflammatory effects on other cell types, its actions on its cell of origin, the macrophage, have not been well catalogued. Our study reports several aspects of macrophage function that are modulated by MIP 1. MIP 1 was not directly cytotoxic for WEHI tumor cells, but MIP 1-treated macrophage exhibited enhanced antibody-independent macrophage cytotoxicity for tumor targets. MIP 1 treatment stimulated proliferation of mature tissue macrophages, and this effect was enhanced upon costimulations with either CSF-1 or granulocyte-macrophage-CSF. Thioglycollate-elicited peritoneal exudate macrophages incubated with native doublet MIP 1-secreted bioactive TNF and IL-6, as well as immunoreactive IL-1 alpha, and these effects were enhanced significantly when the cells were costimulated with IFN-gamma. Purified preparations of the recombinantly derived MIP 1 alpha peptide alone stimulated the secretion of TNF, IL-1 alpha, and IL-6 by peritoneal macrophages, but MIP 1 beta did not. In fact, as little as eightfold excess MIP 1 beta blocked TNF-induction by MIP 1 alpha to a significant degree. By contrast to these apparent "macrophage activating" properties of MIP 1, the cytokine failed to trigger the macrophage oxidative burst, or to up-regulate the expression of Ia on the macrophage surface. Taken together, these data reveal that MIP 1 peptides act as autocrine modulators of their cells of origin, and raise the possibility that MIP 1 peptides may play a role in modulating macrophage responses to inflammatory stimuli in vivo.  相似文献   

17.
The role of mononuclear phagocyte-specific colony-stimulating factor (CSF-1) in human monocyte to macrophage differentiation was investigated. The addition of 1000 U/ml of CSF-1 to serum-free monocyte cultures resulted in monocyte survival comparable to that in cultures containing 5% AB serum, whereas cells in serum- and CSF-1-free medium lost their viability in 3 to 5 days. The requirement for CSF-1 coincided with the time (40 to 64 hr of culture) when the major changes in morphology and biochemical function took place in monocytes undergoing differentiation into macrophages. If CSF-1 was removed from the cultures before this time, death of the monocytes resulted. In cultures containing CSF-1, as in serum containing cultures, the lysosomal enzyme acid phosphatase was enhanced 10- to 20-fold by day 4 to 5. Superoxide production in response to phorbol myristic acetate was maintained in CSF-1 cultured monocytes, but declined with time in monocytes cultured in serum. The expression of monocyte-macrophage antigens p150.95 (LeuM5), OKM1, LeuM3, Fc receptors (32.2), and HLA-DR had increased in CSF-1 containing cultures at day 4. When antigen expression was analyzed at day 2 to 3, when cell size and 90 degrees scatter characteristics were still identical to control serum-free cultures, only p150.95, HLA-DR and FcR expression were enhanced by CSF-1. Low amounts of lipopolysaccharide (0.1 ng/ml) were found to enhance monocyte survival in the absence of added CSF-1. Lipopolysaccharide-containing cultures were found to produce CSF-1 (up to 450 U/ml, as detected by radioimmunoassay). Lipopolysaccharide (1 microgram/ml), however, did not induce enhanced expression of the maturation-related antigens. Based on these observations we conclude that CSF-1 is enhancing human monocyte survival and is involved in the events leading to the differentiation of monocytes into macrophages.  相似文献   

18.
Previous studies have shown that colony stimulating factor-1 (CSF-1) deficiency dramatically reduced atherogenesis in mice. In this report we investigate this mechanism and explore a therapeutic avenue based on inhibition of CSF-1 signaling. Lesions from macrophage colony stimulating factor-1 (Csf1)+/− mice showed increased numbers of apoptotic macrophages, decreased overall macrophage content, and inflammation. In vitro studies indicated that CSF-1 is chemotactic for monocytes. Bone marrow transplantation studies suggested that vascular cell-derived, rather than macrophage-derived, CSF-1 is responsible for the effect on atherosclerosis. Consistent with previous studies, CSF-1 affected lesion development in a dose-dependent manner, suggesting that pharmacological inhibition of CSF-1 might achieve similar results. Indeed, we observed that treatment of hyperlipidemic mice with a CSF-1 receptor kinase inhibitor inhibited plaque progression. This observation was accompanied by a reduction in the expression of adhesion factors (ICAM-1), macrophage markers (F4/80), inflammatory cytokines (Il-6, Il-1β), and macrophage matrix degradation enzymes (MMP-9). We conclude that the M-CSF pathway contributes to monocyte recruitment and macrophage survival and that this pathway is a potential target for therapeutic intervention.  相似文献   

19.
Signaling through the colony-stimulating factor-1 receptor (CSF-1R) mediates the proliferation, differentiation, and activation of macrophages and their progenitors. In this study we report on the use of an anti-goldfish CSF-1R antibody to specifically recognize a population of CSF-1R positive cells from goldfish tissues. Furthermore, using our previously characterized primary kidney macrophage culture system, we show that CSF-1R positive cells include monocytes, macrophages, and their progenitor cells. Freshly isolated progenitor cells had a higher median florescent intensity ratio than those progenitor cells cultured for up to four days. The decrease in CSF-1R expression on the progenitor cells coincides with the appearance and development of monocytes and macrophages. Monocytes were consistently CSF-1R+ and maintained the high level of CSF-1R expression as they developed into macrophages. Like that of mammalian systems, CSF-1R is expressed on all macrophage sub-populations (progenitors, monocytes, macrophages), and CSF-1R expression increases with macrophage development in teleosts.  相似文献   

20.
To investigate the role of specific cytokines in the development of the fully mature macrophage, we have employed murine bone marrow cells that were grown in the presence of CSF-1, a colony-stimulating factor that has been shown to induce the proliferation and differentiation of macrophages from their precursor cells. The CSF-1 employed in these studies was partially purified to ensure removal of contaminating interferon (IFN) from the preparations. After 1 to 2 wk in the presence of the partially purified CSF-1, the adherent macrophages were removed from flasks enzymatically and were recultured at known densities in the absence of CSF-1. Cell surface antigens (Mac-1 and Ia) and Fc receptor capacity (as assessed by Fc-mediated phagocytosis) were examined as markers of macrophage differentiation. Basal levels of Fc receptor capacity and Mac-1 antigen were markedly influenced by exposure to CSF-1, and appear to be modulated by CSF-induced, macrophage-derived IFN. When the bone marrow-derived macrophages were exposed to exogenous IFN in the absence of CSF-1, they proved to be extremely inducible with respect to Fc-mediated phagocytosis (IFN-beta and rIFN-gamma) and Ia antigen expression (rIFN-gamma) when compared with thioglycollate-elicited macrophages. Thus, macrophage growth factors, such as CSF-1, promote macrophage maturation by inducing the production of autostimulatory signals, such as macrophage-derived IFN. In addition, exogenous cytokine stimuli, such as IFN-gamma, further amplify the differentiative potential of these cells. Bone marrow-derived macrophages, propagated under well-defined conditions and never exposed to eliciting agents, provide a powerful model for studying the role of cytokines, such as CSF-1 and IFN, in the differentiative pathway of macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号