首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In addition to its well-characterized role in the lens, αB-crystallin performs other functions. Methylglyoxal (MGO) can alter the function of the basement membrane of retinal pigment epithelial (RPE) cells. Thus, if MGO is not efficiently detoxified, it can induce adverse reactions in RPE cells. In this study, we examined the mechanisms underlying the anti-apoptotic activity of αB-crystallin in the human retinal pigment epithelial cell line ARPE-19 following MGO treatment using various assays, including nuclear staining, flow cytometry, DNA electrophoresis, pulse field gel electrophoresis, western blot analysis, confocal microscopy and co-immunoprecipitation assays. To directly assess the role of phosphorylation of αB-crystallin, we used site-directed mutagenesis to convert relevant serine residues to alanine residues. Using these techniques, we demonstrated that MGO induces apoptosis in ARPE-19 cells. Silencing αB-crystallin sensitized ARPE-19 cells to MGO-induced apoptosis, indicating that αB-crystallin protects ARPE-19 cells from MGO-induced apoptosis. Furthermore, we found that αB-crystallin interacts with the caspase subtypes, caspase-2L, -2S, -3, -4, -7, -8, -9 and -12 in untreated control ARPE-19 cells and that MGO treatment caused the dissociation of these caspase subtypes from αB-crystallin; transfection of S19A, S45A or S59A mutants caused the depletion of αB-crystallin from the nuclei of untreated control RPE cells leading to the release of caspase subtypes. Additionally, transfection of these mutants enhanced MGO-induced apoptosis in ARPE-19 cells, indicating that phosphorylation of nuclear αB-crystallin on serine residues 19, 45 and 59 plays a pivotal role in preventing apoptosis in ARPE-19 cells. Taken together, these results suggest that αB-crystallin prevents caspase activation by physically interacting with caspase subtypes in the cytoplasm and nucleus, thereby protecting RPE cells from MGO-induced apoptosis.  相似文献   

2.
Endogenous danger signals released from necrotic cells contribute to retinal inflammation. We have now investigated the effects of necrotic cell extracts prepared from ARPE-19 human retinal pigment epithelial cells (ANCE) on the release of proinflammatory cytokines and chemokines by healthy ARPE-19 cells. ANCE were prepared by subjection of ARPE-19 cells to freeze-thaw cycles. The release of various cytokines and chemokines from ARPE-19 cells was measured with a multiplex assay system or enzyme-linked immunosorbent assays. The expression of interleukin (IL)–1α and the phosphorylation and degradation of the endogenous nuclear factor–κB (NF-κB) inhibitor IκB-α were examined by immunoblot analysis. Among the various cytokines and chemokines examined, we found that ANCE markedly stimulated the release of the proinflammatory cytokine IL-6 and the chemokines IL-8 and monocyte chemoattractant protein (MCP)–1 by ARPE-19 cells. ANCE-induced IL-6, IL-8, and MCP-1 release was inhibited by IL-1 receptor antagonist and by an IKK2 inhibitor (a blocker of NF-κB signaling) in a concentration-dependent manner, but was not affected by a pan-caspase inhibitor (Z-VAD-FMK). Recombinant IL-1α also induced the secretion of IL-6, IL-8, and MCP-1 from ARPE-19 cells, and IL-1α was detected in ANCE. Furthermore, ANCE induced the phosphorylation and degradation of IκB-α in ARPE-19 cells. Our findings thus suggest that IL-1α is an important danger signal that is released from necrotic retinal pigment epithelial cells and triggers proinflammatory cytokine and chemokine secretion from intact cells in a manner dependent on NF-κB signaling. IL-1α is therefore a potential therapeutic target for amelioration of sterile inflammation in the retina.  相似文献   

3.
We previously demonstrated that both Tiam1, an activator of Rac, and constitutively active V12Rac promote E-cadherin–mediated cell–cell adhesion in epithelial Madin Darby canine kidney (MDCK) cells. Moreover, Tiam1 and V12Rac inhibit invasion of Ras-transformed, fibroblastoid MDCK-f3 cells by restoring E-cadherin–mediated cell–cell adhesion. Here we show that the Tiam1/Rac-induced cellular response is dependent on the cell substrate. On fibronectin and laminin 1, Tiam1/Rac signaling inhibits migration of MDCK-f3 cells by restoring E-cadherin–mediated cell– cell adhesion. On different collagens, however, expression of Tiam1 and V12Rac promotes motile behavior, under conditions that prevent formation of E-cadherin adhesions. In nonmotile cells, Tiam1 is present in adherens junctions, whereas Tiam1 localizes to lamellae of migrating cells. The level of Rac activation by Tiam1, as determined by binding to a glutathione-S-transferase– PAK protein, is similar on fibronectin or collagen I, suggesting that rather the localization of the Tiam1/Rac signaling complex determines the substrate-dependent cellular responses. Rac activation by Tiam1 requires PI3-kinase activity. Moreover, Tiam1- but not V12Rac-induced migration as well as E-cadherin–mediated cell– cell adhesion are dependent on PI3-kinase, indicating that PI3-kinase acts upstream of Tiam1 and Rac.  相似文献   

4.
It was already shown that ouabain treatment can stimulate PKC isoenzymes leading to the activation of intracellular pathways involved in cell survival, growth and proliferation. We have previously demonstrated that ouabain or PMA treatment increases retinal ganglion cell survival, an effect mediated by PKC activation. The aim of this work was to investigate the role of EGF receptors in the ouabain effect and also to study which PKC isoform is activated by treatment with ouabain and PMA. Our results show that 2.5 μM tyrphostin, 1.0 μM PP1, 4.0 μM U73122, 1.0 μM JNK inhibitor V and 2.0 μM rottlerin blocked the ouabain effect indicating an involvement of receptors for EGF, Src, PLC, JNK and PKC δ respectively. The effect of PMA was only abolished when cultures were treated with rottlerin or with the JNK inhibitor suggesting the involvement of PKC δ and JNK. These results indicate that PKC δ could be a key regulator of retinal ganglion cell survival.  相似文献   

5.
Fabry disease is a lysosomal storage disorder caused by deficiency of alpha-galactosidase A (α-gal A), which results in the deposition of globotriaosylceramide (Gb3) in the vascular endothelium. Globotriaosylsphingosine (lyso-Gb3), a deacylated Gb3, is also increased in the plasma of patients with Fabry disease. Renal fibrosis is a key feature of advanced Fabry disease patients. Therefore, we evaluated the association of Gb3 and lyso-Gb3 accumulation and the epithelial–mesenchymal transition (EMT) on tubular epithelial cells of the kidney. In HK2 cells, exogenous treatments of Gb3 and lyso-Gb3 increased the expression of TGF-β, EMT markers (N-cadherin and α-SMA), and phosphorylation of PI3K/AKT, and decreased the expression of E-cadherin. Lyso-Gb3, rather than Gb3, strongly induced EMT in HK2 cells. In the mouse renal mesangial cell line, SV40 MES 13 cells, Gb3 strongly induced phenotype changes. The EMT induced by Gb3 was inhibited by enzyme α-gal A treatment, but EMT induced by lyso-Gb3 was not abrogated by enzyme treatment. However, TGF-β receptor inhibitor (TRI, SB525334) inhibited the activation of TGF-β and EMT markers in HK2 cells with Gb3 and lyso-Gb3 treatments. This study suggested that increased plasma lyso-Gb3 has a crucial role in the development of renal fibrosis through the cell-specific induction of the EMT in Fabry disease, and that TRI treatment, alongside enzyme replacement therapy, could be a potential therapeutic option for patients with Fabry disease.  相似文献   

6.
In mammals, gonadotropins stimulate oocyte maturation via the epidermal growth factor (EGF) network, and the protein kinase C (PKC) signaling pathway mediates this process. Tumor necrosis factor-α converting enzyme (TACE) is an important protein responding to PKC activation. However, the detailed signaling cascade between PKC and TACE in follicle-stimulating hormone (FSH)-induced oocyte maturation in vitro remains unclear. In this study, we found that rottlerin (mallotoxin, MTX), the inhibitor of PKC δ and θ, blocked FSH-induced maturation of mouse cumulus-oocyte complexes (COCs) in vitro. We further clarified the relationship between two molecules downstream of PKC δ and θ and TACE in COCs: nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) and its products, reactive oxygen species (ROS). We proved that the respective inhibitors of NOX, ROS and TACE could block FSH-stimulated oocyte maturation dose-dependently, but these inhibitory effects could be reversed partially by amphiregulin (Areg), an EGF family member. Notably, inhibition of PKC δ and θ prevented FSH-induced translocation of two cytosolic components of NOX, p47phox and p67phox, to the plasma membrane in cumulus cells. Moreover, FSH-induced TACE activity in cumulus cells was decreased markedly by inhibition of NOX and ROS. In conclusion, PKC δ and θ possibly mediate FSH-induced meiotic resumption in mouse COCs via NOX-ROS-TACE signaling pathway.  相似文献   

7.
8.
We previously demonstrated that RhoA-dependent signaling regulates transforming growth factor-β1 (TGF-β1)-induced cytoskeletal reorganization in the human retinal pigment epithelial cell line ARPE-19. Smad pathways have also been shown to mediate TGF-β1 activity. Here, we examined what regulates Rho GTPase activity and tested whether Smad signaling cross-talks with Rho pathways during TGF-β1-induced actin rearrangement. Using small interfering RNAs, we found that NET1, the guanine nucleotide exchange factor of RhoA, is critical for TGF-β1-induced cytoskeletal reorganization, N-cadherin expression, and RhoA activation. In ARPE-19 cells lacking NET1, TGF-β1-induced stress fibers and N-cadherin expression were not observed. Interestingly, in dominant-negative Smad3-expressing or constitutively active Smad7 cells, TGF-β1 failed to induce NET1 mRNA and protein expression. Consistent with these results, both dominant-negative Smad3 and constitutively active Smad7 blocked the cytoplasmic localization of NET1 and inhibited interactions between NET1 and RhoA. Finally, we found that NET1 is a direct gene target of TGF-β1 via Smad3. Taken together, our results demonstrate that Smad3 regulates RhoA activation and cytoskeletal reorganization by controlling NET1 in TGF-β1-induced ARPE-19 cells. These data define a new role for Smad3 as a modulator of RhoA activation in the regulation of TGF-β1-induced epithelial-mesenchymal transitions.  相似文献   

9.
Wound healing requires the vasculature to re-establish itself from the severed ends; endothelial cells within capillaries must detach from neighboring cells before they can migrate into the nascent wound bed to initiate angiogenesis. The dissociation of these endothelial capillaries is driven partially by platelets'' release of growth factors and cytokines, particularly the chemokine CXCL4/platelet factor-4 (PF4) that increases cell-cell de-adherence. As this retraction is partly mediated by increased transcellular contractility, the protein kinase c-δ/myosin light chain-2 (PKCδ/MLC-2) signaling axis becomes a candidate mechanism to drive endothelial dissociation. We hypothesize that PKCδ activation induces contractility through MLC-2 to promote dissociation of endothelial cords after exposure to platelet-released CXCL4 and VEGF. To investigate this mechanism of contractility, endothelial cells were allowed to form cords following CXCL4 addition to perpetuate cord dissociation. In this study, CXCL4-induced dissociation was reduced by a VEGFR inhibitor (sunitinib malate) and/or PKCδ inhibition. During combined CXCL4+VEGF treatment, increased contractility mediated by MLC-2 that is dependent on PKCδ regulation. As cellular force is transmitted to focal adhesions, zyxin, a focal adhesion protein that is mechano-responsive, was upregulated after PKCδ inhibition. This study suggests that growth factor regulation of PKCδ may be involved in CXCL4-mediated dissociation of endothelial cords.  相似文献   

10.
The Wnt/β-catenin signaling cascade activates genes that allow cells to adopt particular identities throughout development. In adult self-renewing tissues like intestine and blood, activation of the Wnt pathway maintains a progenitor phenotype, whereas forced inhibition of this pathway promotes differentiation. In the lung alveolus, type 2 epithelial cells (AT2) have been described as progenitors for the type 1 cell (AT1), but whether AT2 progenitors use the same signaling mechanisms to control differentiation as rapidly renewing tissues is not known. We show that adult AT2 cells do not exhibit constitutive β-catenin signaling in vivo, using the AXIN2+/LacZ reporter mouse, or after fresh isolation of an enriched population of AT2 cells. Rather, this pathway is activated in lungs subjected to bleomycin-induced injury, as well as upon placement of AT2 cells in culture. Forced inhibition of β-catenin/T-cell factor signaling in AT2 cultures leads to increased cell death. Cells that survive show reduced migration after wounding and reduced expression of AT1 cell markers (T1α and RAGE). These results suggest that AT2 cells may function as facultative progenitors, where activation of Wnt/β-catenin signaling during lung injury promotes alveolar epithelial survival, migration, and differentiation toward an AT1-like phenotype.  相似文献   

11.
Using the whole-cell configuration of the patch-clamp technique, we studied the conditions necessary for the activation of Cl-currents in retinal pigment epithelial (RPE) cells from rats with retinal dystrophy (RCS) and nondystrophic control rats. In RPE cells from both rat strains, intracellular application of 10 μm inositol-1,4,5-triphosphate (IP3) via the patch pipette led to a sustained activation of voltage-dependent Cl currents, blockable by 1 mm 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS). IP3 activated Cl currents in the presence of a high concentration of the calcium chelator BAPTA (10 mm) in the pipette solution, but failed to do so when extracellular calcium was removed. Intracellular application of 10−5 m Ca2+ via the patch pipette also led to a transient activation of Cl currents. When the cells were preincubated in a bath solution containing thapsigargin (1 μm) for 5 min before breaking into the whole-cell configuration, IP3 failed to activate voltage-dependent currents. Thus, IP3 led to release of Ca2+ from cytosolic calcium stores. This in turn activated an influx of extracellular calcium into the submembranal space by a mechanism as yet unknown, leading to an activation of calcium-dependent chloride currents. In RPE cells from RCS rats, which show an increased membrane conductance for calcium compared to normal rats, we observed an accelerated speed of Cl-current activation induced by IP3 which could be reduced by nifedipine (1 μm). Thus, the increased membrane conductance to calcium in RPE cells from RCS rats changes the response of the cell to the second messenger IP3. Received: 17 July 1995/Revised: 31 January 1996  相似文献   

12.
13.
Zinc is one of the most abundant essential elements in the human body, which is an essential, coenzyme-like component of many enzymes, and is indispensable to their functions. However, high levels of zinc ions can lead to cell damage. In the present study, we explored the effects of high concentrations of zinc chloride (ZnCl2) on lens epithelial cell proliferation and migration and further investigated the effects of different concentrations of ZnCl2 on caspase-9 and caspase-12, transforming growth factor-beta 1 (TGF-β1), and tumor necrosis factor-alpha (TNF-α). We found that ZnCl2 could inhibit human lens epithelial (HLE) B-3 cell migration and induce apoptosis/necrosis. In addition, ZnCl2 can efficiently decrease the expressions of caspase-9 and caspase-12, increase the expression of TNF-α at both gene and protein levels, and thus induces cell death. Taken together, our results indicate that ZnCl2 can inhibit HLE B-3 cell migration and proliferation by decreasing the expression of TGF-β1 and increasing the expression of TNF-α and finally lead to HLE B-3 cell death.  相似文献   

14.
β1 integrin regulates multiple epithelial cell functions by connecting cells with the extracellular matrix (ECM). While β1 integrin-mediated signaling in murine epithelial stem cells is well-studied, its role in human adult epithelial progenitor cells (ePCs) in situ remains to be defined. Using microdissected, organ-cultured human scalp hair follicles (HFs) as a clinically relevant model for studying human ePCs within their natural topobiological habitat, β1 integrin-mediated signaling in ePC biology was explored by β1 integrin siRNA silencing, specific β1 integrin-binding antibodies and pharmacological inhibition of integrin-linked kinase (ILK), a key component of the integrin-induced signaling cascade. β1 integrin knock down reduced keratin 15 (K15) expression as well as the proliferation of outer root sheath keratinocytes (ORSKs). Embedding of HF epithelium into an ECM rich in β1 integrin ligands that mimic the HF mesenchyme significantly enhanced proliferation and migration of ORSKs, while K15 and CD200 gene and protein expression were inhibited. Employing ECM-embedded β1 integrin-activating or -inhibiting antibodies allowed to identify functionally distinct human ePC subpopulations in different compartments of the HF epithelium. The β1 integrin-inhibitory antibody reduced β1 integrin expression in situ and selectively enhanced proliferation of bulge ePCs, while the β1 integrin-stimulating antibody decreased hair matrix keratinocyte apoptosis and enhanced transferrin receptor (CD71) immunoreactivity, a marker of transit amplifying cells, but did not affect bulge ePC proliferation. That the putative ILK inhibitor QLT0267 significantly reduced ORSK migration and proliferation and induced massive ORSK apoptosis suggests a key role for ILK in mediating the ß1 integrin effects. Taken together, these findings demonstrate that ePCs in human HFs require β1 integrin-mediated signaling for survival, adhesion, and migration, and that different human HF ePC subpopulations differ in their response to β1 integrin signaling. These insights may be exploited for cell-based regenerative medicine strategies that employ human HF-derived ePCs.  相似文献   

15.
Retinal inflammatory diseases induced by cytokines, such as tumor necrosis factor-α (TNF-α) are associated with an up-regulation of intercellular adhesion molecule-1 (ICAM-1) in the retinal pigment epithelial cells (RPECs). Retinal pigment epithelium (RPE) is a monolayer of epithelial cells that forms the outer blood-retinal barrier in the posterior segment of the eye, and is also implicated in the pathology of, such as neovascularization in age-related macular degeneration (AMD). However, the detailed mechanisms of TNF-α-induced ICAM-1 expression are largely unclear in human RPECs. We demonstrated that in RPECs, TNF-α could induce ICAM-1 protein and mRNA expression and promoter activity, and monocyte adhesion. TNF-α-mediated responses were attenuated by pretreatment with the inhibitor of PKCs (Ro318220), PKCδ (Rottlerin), MEK1/2 (U0126), JNK1/2 (SP600125), or AP-1 (Tanshinone IIA) and transfection with siRNA of TNFR1, TRAF2, JNK2, p42, or c-Jun. We showed that TNF-α could stimulate the TNFR1 and TRAF2 complex formation. TNF-α-stimulated JNK1/2 was also reduced by Rottlerin or SP600125. However, Rottlerin had no effect on TNF-α-induced p42/p44 MAPK phosphorylation. We observed that TNF-α induced c-Jun phosphorylation which was inhibited by Rottlerin or SP600125. On the other hand, TNF-α-stimulated ICAM-1 promoter activity was prominently lost in RPECs transfected with the point-mutated AP-1 ICAM-1 promoter plasmid. These results suggest that TNF-α-induced ICAM-1 expression and monocyte adhesion is mediated through a TNFR1/TRAF2/PKCδ/JNK1/2/c-Jun pathway in RPECs. These findings concerning TNF-α-induced ICAM-1 expression in RPECs imply that TNF-α might play an important role in ocular inflammation and diseases.  相似文献   

16.
17.
Lung cancer remains a leading cause of death due to its metastasis to distant organs. We have examined the effect of honokiol, a bioactive constituent from the Magnolia plant, on human non-small cell lung cancer (NSCLC) cell migration and the molecular mechanisms underlying this effect. Using an in vitro cell migration assay, we found that treatment of A549, H1299, H460 and H226 NSCLC cells with honokiol resulted in inhibition of migration of these cells in a dose-dependent manner, which was associated with a reduction in the levels of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2). Celecoxib, a COX-2 inhibitor, also inhibited cell migration. Honokiol inhibited PGE2-enhanced migration of NSCLC cells, inhibited the activation of NF-κB/p65, an upstream regulator of COX-2, in A549 and H1299 cells, and treatment of cells with caffeic acid phenethyl ester, an inhibitor of NF-κB, also inhibited migration of NSCLC cells. PGE2 has been shown to activate β-catenin signaling, which contributes to cancer cell migration. Therefore, we checked the effect of honokiol on β-catenin signaling. It was observed that treatment of NSCLC cells with honokiol degraded cytosolic β-catenin, reduced nuclear accumulation of β-catenin and down-regulated matrix metalloproteinase (MMP)-2 and MMP-9, which are the down-stream targets of β-catenin and play a crucial role in cancer cell metastasis. Honokiol enhanced: (i) the levels of casein kinase-1α, glycogen synthase kinase-3β, and (ii) phosphorylation of β-catenin on critical residues Ser45, Ser33/37 and Thr41. These events play important roles in degradation or inactivation of β-catenin. Treatment of celecoxib also reduced nuclear accumulation of β-catenin in NSCLC cells. FH535, an inhibitor of Wnt/β-catenin pathway, inhibited PGE2-enhanced cell migration of A549 and H1299 cells. These results indicate that honokiol inhibits non-small cell lung cancer cells migration by targeting PGE2-mediated activation of β-catenin signaling.  相似文献   

18.
Unrelated cells such as dental follicle precursor cells (DFPCs) and retinal Müller cells (MCs) make spheres after cultivation in serum-replacement medium (SRM). Until today, the relation and molecular processes of sphere formation from different cell types remain undescribed. Thus in this study we compared proteomes of spheres derived from MCs and DFPCs. 73% of 676 identified proteins were similar expressed in both cell types and many of them are expressed in the brain (55%). Moreover proteins are overrepresented that are associated with pathways for neural diseases such as Huntington disease or Alzheimer disease. Interestingly up-regulated proteins in DFPCs are involved in the biosynthesis of glycosphingolipids. These lipids are components of gangliosides such as GD3, which is a novel neural stem cell marker. In conclusion spheres from different types of cells have highly similar proteomes. These proteomes probably show essential cellular processes in neurosphere-like cell clusters.  相似文献   

19.
Cell and Tissue Biology - Eukaryotic cells use surface receptors to interact with the environment. Interacting with the cell receptors, pathogenic and opportunistic bacteria can invade cells that...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号