首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple Myeloma (MM) is a B-cell malignancy that is characterized by osteolytic bone lesions. It has been postulated that positive feedback loops in the interactions between MM cells and the bone microenvironment form reinforcing 'vicious cycles', resulting in more bone resorption and MM cell population growth in the bone microenvironment. Despite many identified MM-bone interactions, the combined effect of these interactions and their relative importance are unknown. In this paper, we develop a computational model of MM-bone interactions and clarify whether the intercellular signaling mechanisms implemented in this model appropriately drive MM disease progression. This new computational model is based on the previous bone remodeling model of Pivonka et al., and explicitly considers IL-6 and MM-BMSC (bone marrow stromal cell) adhesion related pathways, leading to formation of two positive feedback cycles in this model. The progression of MM disease is simulated numerically, from normal bone physiology to a well established MM disease state. Our simulations are consistent with known behaviors and data reported for both normal bone physiology and for MM disease. The model results suggest that the two positive feedback cycles identified for this model are sufficient to jointly drive the MM disease progression. Furthermore, quantitative analysis performed on the two positive feedback cycles clarifies the relative importance of the two positive feedback cycles, and identifies the dominant processes that govern the behavior of the two positive feedback cycles. Using our proposed quantitative criteria, we identify which of the positive feedback cycles in this model may be considered to be 'vicious cycles'. Finally, key points at which to block the positive feedback cycles in MM-bone interactions are identified, suggesting potential drug targets.  相似文献   

2.
The biochemistry of a system made up of three kinds of cell is virtually impossible to work out without the use of in silico models. Here, we deal with homeostatic balance phenomena from a metabolic point of view and we present a new computational model merging three single-cell models, already available from our research group: the first model reproduced the metabolic behaviour of a hepatocyte, the second one represented an endothelial cell, and the third one described an adipocyte. Multiple interconnections were created among these three models in order to mimic the main physiological interactions that are known for the examined cell phenotypes. The ultimate aim was to recreate the accomplishment of the homeostatic balance as it was observed for an in vitro connected three-culture system concerning glucose and lipid metabolism in the presence of the medium flow. The whole model was based on a modular approach and on a set of nonlinear differential equations implemented in Simulink, applying Michaelis-Menten kinetic laws and some energy balance considerations to the studied metabolic pathways. Our in silico model was then validated against experimental datasets coming from literature about the cited in vitro model. The agreement between simulated and experimental results was good and the behaviour of the connected culture system was reproduced through an adequate parameter evaluation. The developed model may help other researchers to investigate further about integrated metabolism and the regulation mechanisms underlying the physiological homeostasis.  相似文献   

3.
《TARGETS》2002,1(6):196-205
In the pharmaceutical industry today, many of the potent compounds discovered using expensive technologies are eventually rejected because of poor physicochemical or absorption, distribution, metabolism, excretion and toxicology (ADME/Tox) properties. This problem can be addressed by placing fast and accurate computational technologies at the heart of drug discovery. Chemically diverse and potent compounds generated by de novo design algorithms are scored for ADME/Tox properties using rigorously validated statistical models. Every molecule passing through this in silico pipeline is thus associated with a wealth of predicted properties, thereby allowing for rapid assessment to determine which molecule should be further developed. Critical to this idea is a platform that allows for the efficient exchange of in silico and experimental data between all scientists regardless of specialization. By bridging the gap between the in silico and experimental cultures in this fashion, an information-driven, cost-effective drug discovery program can be realized.  相似文献   

4.
Identifying biomarkers for tuberculosis (TB) is an ongoing challenge in developing immunological correlates of infection outcome and protection. Biomarker discovery is also necessary for aiding design and testing of new treatments and vaccines. To effectively predict biomarkers for infection progression in any disease, including TB, large amounts of experimental data are required to reach statistical power and make accurate predictions. We took a two-pronged approach using both experimental and computational modeling to address this problem. We first collected 200 blood samples over a 2- year period from 28 non-human primates (NHP) infected with a low dose of Mycobacterium tuberculosis. We identified T cells and the cytokines that they were producing (single and multiple) from each sample along with monkey status and infection progression data. Machine learning techniques were used to interrogate the experimental NHP datasets without identifying any potential TB biomarker. In parallel, we used our extensive novel NHP datasets to build and calibrate a multi-organ computational model that combines what is occurring at the site of infection (e.g., lung) at a single granuloma scale with blood level readouts that can be tracked in monkeys and humans. We then generated a large in silico repository of in silico granulomas coupled to lymph node and blood dynamics and developed an in silico tool to scale granuloma level results to a full host scale to identify what best predicts Mycobacterium tuberculosis (Mtb) infection outcomes. The analysis of in silico blood measures identifies Mtb-specific frequencies of effector T cell phenotypes at various time points post infection as promising indicators of infection outcome. We emphasize that pairing wetlab and computational approaches holds great promise to accelerate TB biomarker discovery.  相似文献   

5.
Predicting efficacy and optimal drug delivery strategies for small molecule and biological therapeutics is challenging due to the complex interactions between diverse cell types in different tissues that determine disease outcome. Here we present a new methodology to simulate inflammatory disease manifestation and test potential intervention strategies in silico using agent-based computational models. Simulations created using this methodology have explicit spatial and temporal representations, and capture the heterogeneous and stochastic cellular behaviours that lead to emergence of pathology or disease resolution. To demonstrate this methodology we have simulated the prototypic murine T cell-mediated autoimmune disease experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. In the simulation immune cell dynamics, neuronal damage and tissue specific pathology emerge, closely resembling behaviour found in the murine model. Using the calibrated simulation we have analysed how changes in the timing and efficacy of T cell receptor signalling inhibition leads to either disease exacerbation or resolution. The technology described is a powerful new method to understand cellular behaviours in complex inflammatory disease, permits rational design of drug interventional strategies and has provided new insights into the role of TCR signalling in autoimmune disease progression.  相似文献   

6.
Metabolomics uses high-resolution mass spectrometry to provide a chemical fingerprint of thousands of metabolites present in cells, tissues or body fluids. Such metabolic phenotyping has been successfully used to study various biologic processes and disease states. High-resolution metabolomics can shed new light on the intricacies of host-parasite interactions in each stage of the Plasmodium life cycle and the downstream ramifications on the host’s metabolism, pathogenesis and disease. Such data can become integrated with other large datasets generated using top-down systems biology approaches and be utilised by computational biologists to develop and enhance models of malaria pathogenesis relevant for identifying new drug targets or intervention strategies. Here, we focus on the promise of metabolomics to complement systems biology approaches in the quest for novel interventions in the fight against malaria. We introduce the Malaria Host-Pathogen Interaction Center (MaHPIC), a new systems biology research coalition. A primary goal of the MaHPIC is to generate systems biology datasets relating to human and non-human primate (NHP) malaria parasites and their hosts making these openly available from an online relational database. Metabolomic data from NHP infections and clinical malaria infections from around the world will comprise a unique global resource.  相似文献   

7.
Although, both bisphosphonates and denosumab are effective in reducing the risk of skeletal-related events in patients with metastatic bone disease, many concerns were being raised about the possible association between their use and atypical femoral fractures. A case of an atypical femoral fracture in a metastatic bone disease patient, six months after discontinuation of long-term zoledronic acid therapy and sequential treatment with denosumab is reported. After extensive laboratory and imaging examination, the fracture was classified as atypical and it was finally treated with discontinuation of denosumab, long cephalomedullary interlocking nailing and vitamin D administration. Sequential treatment with bisphosphonates and denosumab in patients with metastatic bone disease, may lead to an overlapping treatment effect, increasing bone suppression and the risk of atypical femoral fracture. In addition, discontinuation of denosumab may activate bone remodeling units in an area with microdamage accumulation in cortical bone caused by the previous bone suppression from the antiresorptive treatment. The activation of bone remodeling units may accelerate the occurrence of the atypical femoral fractures.  相似文献   

8.
CommunityRx (CRx), an information technology intervention, provides patients with a personalized list of healthful community resources (HealtheRx). In repeated clinical studies, nearly half of those who received clinical “doses” of the HealtheRx shared their information with others (“social doses”). Clinical trial design cannot fully capture the impact of information diffusion, which can act as a force multiplier for the intervention. Furthermore, experimentation is needed to understand how intervention delivery can optimize social spread under varying circumstances. To study information diffusion from CRx under varying conditions, we built an agent-based model (ABM). This study describes the model building process and illustrates how an ABM provides insight about information diffusion through in silico experimentation. To build the ABM, we constructed a synthetic population (“agents”) using publicly-available data sources. Using clinical trial data, we developed empirically-informed processes simulating agent activities, resource knowledge evolution and information sharing. Using RepastHPC and chiSIM software, we replicated the intervention in silico, simulated information diffusion processes, and generated emergent information diffusion networks. The CRx ABM was calibrated using empirical data to replicate the CRx intervention in silico. We used the ABM to quantify information spread via social versus clinical dosing then conducted information diffusion experiments, comparing the social dosing effect of the intervention when delivered by physicians, nurses or clinical clerks. The synthetic population (N = 802,191) exhibited diverse behavioral characteristics, including activity and knowledge evolution patterns. In silico delivery of the intervention was replicated with high fidelity. Large-scale information diffusion networks emerged among agents exchanging resource information. Varying the propensity for information exchange resulted in networks with different topological characteristics. Community resource information spread via social dosing was nearly 4 fold that from clinical dosing alone and did not vary by delivery mode. This study, using CRx as an example, demonstrates the process of building and experimenting with an ABM to study information diffusion from, and the population-level impact of, a clinical information-based intervention. While the focus of the CRx ABM is to recreate the CRx intervention in silico, the general process of model building, and computational experimentation presented is generalizable to other large-scale ABMs of information diffusion.  相似文献   

9.
10.
11.

Background

Optimal selection of multiple regulatory genes, known as targets, for deletion to enhance or suppress the activities of downstream genes or metabolites is an important problem in genetic engineering. Such problems become more feasible to address in silico due to the availability of more realistic dynamical system models of gene regulatory and metabolic networks. The goal of the computational problem is to search for a subset of genes to knock out so that the activity of a downstream gene or a metabolite is optimized.

Methodology/Principal Findings

Based on discrete dynamical system modeling of gene regulatory networks, an integer programming problem is formulated for the optimal in silico target gene deletion problem. In the first result, the integer programming problem is proved to be NP-hard and equivalent to a nonlinear programming problem. In the second result, a heuristic algorithm, called GKONP, is designed to approximate the optimal solution, involving an approach to prune insignificant terms in the objective function, and the parallel differential evolution algorithm. In the third result, the effectiveness of the GKONP algorithm is demonstrated by applying it to a discrete dynamical system model of the yeast pheromone pathways. The empirical accuracy and time efficiency are assessed in comparison to an optimal, but exhaustive search strategy.

Significance

Although the in silico target gene deletion problem has enormous potential applications in genetic engineering, one must overcome the computational challenge due to its NP-hardness. The presented solution, which has been demonstrated to approximate the optimal solution in a practical amount of time, is among the few that address the computational challenge. In the experiment on the yeast pheromone pathways, the identified best subset of genes for deletion showed advantage over genes that were selected empirically. Once validated in vivo, the optimal target genes are expected to achieve higher genetic engineering effectiveness than a trial-and-error procedure.  相似文献   

12.
13.

Background

Mounting clinical and experimental evidence suggests that the shift of carcinomas towards a mesenchymal phenotype is a common paradigm for both resistance to therapy and tumor recurrence. However, the mesenchymalization of carcinomas has not yet entered clinical practice as a crucial diagnostic paradigm.

Methodology/Principal Findings

By integrating in silico and in vitro studies with our epithelial and mesenchymal tumor models, we compare herein crucial molecular pathways of previously described carcinoma-derived mesenchymal tumor cells (A17) with that of both carcinomas and other mesenchymal phenotypes, such as mesenchymal stem cells (MSCs), breast stroma, and various types of sarcomas. We identified three mesenchymal/stromal-signatures which A17 cells shares with MSCs and breast stroma. By using a recently developed computational approach with publicly available microarray data, we show that these signatures: 1) significantly relates to basal-like breast cancer subtypes; 2) significantly relates to bone metastasis; 3) are up-regulated after hormonal treatment; 4) predict resistance to neoadjuvant therapies.

Conclusions/Significance

Our results demonstrate that mesenchymalization is an intrinsic property of the most aggressive tumors and it relates to therapy resistance as well as bone metastasis.  相似文献   

14.
Regulatory DNA elements, short genomic segments that regulate gene expression, have been implicated in developmental disorders and human disease. Despite this clinical urgency, only a small fraction of the regulatory DNA repertoire has been confirmed through reporter gene assays. The overall success rate of functional validation of candidate regulatory elements is low. Moreover, the number and diversity of datasets from which putative regulatory elements can be identified is large and rapidly increasing. We generated a flexible and user-friendly tool to integrate the information from different types of genomic datasets, e.g. ATAC-seq, ChIP-seq, conservation, aiming to increase the ease and success rate of functional prediction. To this end, we developed the EMERGE program that merges all datasets that the user considers informative and uses a logistic regression framework, based on validated functional elements, to set optimal weights to these datasets. ROC curve analysis shows that a combination of datasets leads to improved prediction of tissue-specific enhancers in human, mouse and Drosophila genomes. Functional assays based on this prediction can be expected to have substantially higher success rates. The resulting integrated signal for prediction of functional elements can be plotted in a build-in genome browser or exported for further analysis.  相似文献   

15.
《Endocrine practice》2015,21(5):468-473
Objective: The main cause of death in patients with parathyroid carcinoma is parathyroid hormone (PTH)-induced hypercalcemia. To date, the management of hypercalcemia has been based on the use of bisphosphonates and calcimimetic agents. In recent reports, the use of denosumab has shown encouraging results in cases of refractory hypercalcemia of malignancy. Our objective is to present a case of successful management of resistant hypercalcemia due to parathyroid carcinoma with denosumab, to review similar cases from the literature, and to propose denosumab's use in the clinical management of PTH-induced refractory hypercalcemiaMethods: Presentation of a case report and review of the literature for cases of parathyroid carcinoma–mediated hypercalcemia successfully treated with denosumab.Results: A 71-year-old man with metastatic parathyroid carcinoma was referred to our department for uncontrolled hypercalcemia, resistant to treatment with bisphosphonates and cinacalcet. Treatment with denosumab (120 mg per month) in addition to cinacalcet (180 mg per day) resulted in normalization of calcium levels and maintenance within the normal range for an observation period of 11 months. Review of the literature revealed 4 case reports and a letter to the editor, all of which reported the successful treatment of resistant hypercalcemia associated with parathyroid carcinoma.Conclusion: Based on the above findings of the effectiveness of denosumab in controlling refractory hypercalcemia, its safety in renal failure and the fact that denosumab may reduce PTH-induced bone loss, we endorse its use in the management of hypercalcemia in patients with parathyroid carcinoma and perhaps other conditions with PTH-induced hypercalcemia.Abbreviations: CT = computed tomography IV = intravenous PTH = parathyroid hormone  相似文献   

16.
Predicting the response of a specific cancer to a therapy is a major goal in modern oncology that should ultimately lead to a personalised treatment. High-throughput screenings of potentially active compounds against a panel of genomically heterogeneous cancer cell lines have unveiled multiple relationships between genomic alterations and drug responses. Various computational approaches have been proposed to predict sensitivity based on genomic features, while others have used the chemical properties of the drugs to ascertain their effect. In an effort to integrate these complementary approaches, we developed machine learning models to predict the response of cancer cell lines to drug treatment, quantified through IC50 values, based on both the genomic features of the cell lines and the chemical properties of the considered drugs. Models predicted IC50 values in a 8-fold cross-validation and an independent blind test with coefficient of determination R2 of 0.72 and 0.64 respectively. Furthermore, models were able to predict with comparable accuracy (R2 of 0.61) IC50s of cell lines from a tissue not used in the training stage. Our in silico models can be used to optimise the experimental design of drug-cell screenings by estimating a large proportion of missing IC50 values rather than experimentally measuring them. The implications of our results go beyond virtual drug screening design: potentially thousands of drugs could be probed in silico to systematically test their potential efficacy as anti-tumour agents based on their structure, thus providing a computational framework to identify new drug repositioning opportunities as well as ultimately be useful for personalized medicine by linking the genomic traits of patients to drug sensitivity.  相似文献   

17.
Rational engineering of metabolism is important for bio-production using microorganisms. Metabolic design based on in silico simulations and experimental validation of the metabolic state in the engineered strain helps in accomplishing systematic metabolic engineering. Flux balance analysis (FBA) is a method for the prediction of metabolic phenotype, and many applications have been developed using FBA to design metabolic networks. Elementary mode analysis (EMA) and ensemble modeling techniques are also useful tools for in silico strain design. The metabolome and flux distribution of the metabolic pathways enable us to evaluate the metabolic state and provide useful clues to improve target productivity. Here, we reviewed several computational applications for metabolic engineering by using genome-scale metabolic models of microorganisms. We also discussed the recent progress made in the field of metabolomics and 13C-metabolic flux analysis techniques, and reviewed these applications pertaining to bio-production development. Because these in silico or experimental approaches have their respective advantages and disadvantages, the combined usage of these methods is complementary and effective for metabolic engineering.  相似文献   

18.
19.
Amyotrophic Lateral Sclerosis is a fatal, progressive neurodegenerative disease characterized by loss of motor neuron function for which there is no effective treatment. One of the main difficulties in developing new therapies lies on the multiple events that contribute to motor neuron death in amyotrophic lateral sclerosis. Several pathological mechanisms have been identified as underlying events of the disease process, including excitotoxicity, mitochondrial dysfunction, oxidative stress, altered axonal transport, proteasome dysfunction, synaptic deficits, glial cell contribution, and disrupted clearance of misfolded proteins. Our approach in this study was based on a holistic vision of these mechanisms and the use of computational tools to identify polypharmacology for targeting multiple etiopathogenic pathways. By using a repositioning analysis based on systems biology approach (TPMS technology), we identified and validated the neuroprotective potential of two new drug combinations: Aliretinoin and Pranlukast, and Aliretinoin and Mefloquine. In addition, we estimated their molecular mechanisms of action in silico and validated some of these results in a well-established in vitro model of amyotrophic lateral sclerosis based on cultured spinal cord slices. The results verified that Aliretinoin and Pranlukast, and Aliretinoin and Mefloquine promote neuroprotection of motor neurons and reduce microgliosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号