首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Angiotensin-(1–7) [Ang-(1–7)] counteracts many actions of the renin-angiotensin-aldosterone system. Despite its renoprotective effects, extensive controversy exists regarding the role of Ang-(1–7) in obstructive nephropathy, which is characterized by renal tubulointerstitial fibrosis and apoptosis.

Methods

To examine the effects of Ang-(1–7) in unilateral ureteral obstruction (UUO), male Sprague-Dawley rats were divided into three groups: control, UUO, and Ang-(1–7)-treated UUO rats. Ang-(1–7) was continuously infused (24 μg/[kg·h]) using osmotic pumps. We also treated NRK-52E cells in vitro with Ang II (1 μM) in the presence or absence of Ang-(1–7) (1 μM), Mas receptor antagonist A779 (1 μM), and Mas receptor siRNA (50 nM) to examine the effects of Ang-(1–7) treatment on Ang II-stimulated renal injury via Mas receptor.

Results

Angiotensin II (Ang II) and angiotensin type 1 receptor (AT1R) protein expression was higher in UUO kidneys than in controls. Ang-(1–7) treatment also decreased proapoptotic protein expression in UUO kidneys. Ang-(1–7) also significantly ameliorated TUNEL positive cells in UUO kidneys. Additionally, Ang-(1–7) reduced profibrotic protein expression and decreased the increased tumor growth factor (TGF)-β1/Smad signaling present in UUO kidneys. In NRK-52E cells, Ang II induced the expression of TGF-β1/Smad signaling effectors and proapoptotic and fibrotic proteins, as well as cell cycle arrest, which were attenuated by Ang-(1–7) pretreatment. However, treatment with A779 and Mas receptor siRNA enhanced Ang II-induced apoptosis and fibrosis. Moreover, Ang II increased tumor necrosis factor-α converting enzyme (TACE) and decreased angiotensin-converting enzyme 2 (ACE2) expression in NRK-52E cells, while pretreatment with Ang-(1–7) or A779 significantly inhibited or enhanced these effects, respectively.

Conclusion

Ang-(1–7) prevents obstructive nephropathy by suppressing renal apoptosis and fibrosis, possibly by regulating TGF-β1/Smad signaling and cell cycle arrest via suppression of AT1R expression. In addition, Ang-(1–7) increased and decreased ACE2 and TACE expression, respectively, which could potentially mediate a positive feedback mechanism via the Mas receptor.  相似文献   

2.
Experimental studies suggested that statins attenuate vascular AT1 receptor responsiveness. Moreover, the augmented excessive pressor response to systemic angiotensin II infusions in hypercholesterolemic patients was normalized with statin treatment. In 12 hypercholesterolemic patients, we tested the hypothesis that statin treatment attenuates angiotensin II-mediated vasoconstriction in hand veins assessed by a linear variable differential transducer. Subjects ingested daily doses of either atorvastatin (40 mg) or positive control irbesartan (150 mg) for 30 days in a randomized and cross-over fashion. Ang II–induced venoconstriction at minute 4 averaged 59%±10% before and 28%±9% after irbesartan (mean ± SEM; P<0.05) compared to 65%±11% before and 73%±11% after 30 days of atorvastatin treatment. Plasma angiotensin levels increased significantly after irbesartan treatment (Ang II: 17±22 before vs 52±40 pg/mL after [p = 0.048]; Ang-(1–7): 18±10 before vs 37±14 pg/mL after [p = 0.002]) compared to atorvastatin treatment (Ang II: 9±4 vs 11±10 pg/mL [p = 0.40]; Ang-(1–7): 24±9 vs 32±8 pg/mL [p = 0.023]). Our study suggests that statin treatment does not elicit major changes in angiotensin II-mediated venoconstriction or in circulating angiotensin II levels whereas angiotensin-(1–7) levels increased modestly. The discrepancy between local vascular and systemic angiotensin II responses might suggest that statin treatment interferes with blood pressure buffering reflexes.

Trial Registration

ClinicalTrials.gov NCT00154024  相似文献   

3.
The cardioprotective effects of estrogen are well recognized, but the mechanisms remain poorly understood. Accumulating evidence suggests that the local cardiac renin-angiotensin system (RAS) is involved in the development and progression of cardiac hypertrophy, remodeling, and heart failure. Estrogen attenuates the effects of an activated circulating RAS; however, its role in regulating the cardiac RAS is unclear. Bilateral oophorectomy (OVX; n = 17) or sham-operation (Sham; n = 13) was performed in 4-week-old, female mRen2.Lewis rats. At 11 weeks of age, the rats were randomized and received either 17 β-estradiol (E2, 36 µg/pellet, 60-day release, n = 8) or vehicle (OVX-V, n = 9) for 4 weeks. The rats were sacrificed, and blood and hearts were used to determine protein and/or gene expression of circulating and tissue RAS components. E2 treatment minimized the rise in circulating angiotensin (Ang) II and aldosterone produced by loss of ovarian estrogens. Chronic E2 also attenuated OVX-associated increases in cardiac Ang II, Ang-(1–7) content, chymase gene expression, and mast cell number. Neither OVX nor OVX+E2 altered cardiac expression or activity of renin, angiotensinogen, angiotensin-converting enzyme (ACE), and Ang II type 1 receptor (AT1R). E2 treatment in OVX rats significantly decreased gene expression of MMP-9, ACE2, and Ang-(1–7) mas receptor, in comparison to sham-operated and OVX littermates. E2 treatment appears to inhibit upsurges in cardiac Ang II expression in the OVX-mRen2 rat, possibly by reducing chymase-dependent Ang II formation. Further studies are warranted to determine whether an E2-mediated reduction in cardiac chymase directly contributes to this response in OVX rats.  相似文献   

4.
Angiotensin-(1-5) [Ang-(1-5)], which is a metabolite of Angiotensin-(1-7) [Ang-(1-7)] catalyzed by angiotensin-converting enzyme (ACE), is a pentapeptide of the renin-angiotensin system (RAS). It has been reported that Ang-(1-7) and Ang-(1-9) stimulate the secretion of atrial natriuretic peptide (ANP) via Mas receptor (Mas R) and Ang II type 2 receptor (AT2R), respectively. However, it still remains unknown whether Ang-(1-5) has a similar function to Ang-(1-7). We investigated the effect of Ang-(1-5) on ANP secretion and to define its signaling pathway using isolated perfused beating rat atria. Ang-(1-5) (0.3, 3, 10 μM) stimulated high pacing frequency-induced ANP secretion in a dose-dependent manner. Ang-(1-5)-induced ANP secretion (3 μM) was attenuated by the pretreatment with an antagonist of Mas R (A-779) but not by an antagonist of AT1R (losartan) or AT2R (PD123,319). An inhibitor for phosphatidylinositol 3-kinase (PI3K; wortmannin), protein kinase B (Akt; API-2), or nitric oxide synthase (NOS; L-NAME) also attenuated the augmentation of ANP secretion induced by Ang-(1-5). Ang-(1-5)-induced ANP secretion was markedly attenuated in isoproterenol-treated hypertrophied atria. The secretagogue effect of Ang-(1-5) on ANP secretion was similar to those induced by Ang-(1-9) and Ang-(1-7). These results suggest that Ang-(1-5) is an active mediator of renin-angiotensin system to stimulate ANP secretion via Mas R and PI3K-Akt-NOS pathway.  相似文献   

5.
Unopposed angiotensin (Ang) II-mediated cellular effects may lead to progressive glomerulosclerosis. While Ang-II can be locally generated in the kidneys, we previously showed that glomerular podocytes primarily convert Ang-I, the precursor of Ang-II, to Ang-(1-7) and Ang-(2-10), peptides that have been independently implicated in biological actions opposing those of Ang-II. Therefore, we hypothesized that Ang-(1-7) and Ang-(2-10) could be renoprotective in the fawn-hooded hypertensive rat, a model of focal segmental glomerulosclerosis. We evaluated the ability of 8–12 week-long intravenous administration of either Ang-(1-7) or Ang-(2-10) (100–400 ng/kg/min) to reduce glomerular injury in uni-nephrectomized fawn-hooded hypertensive rats, early or late in the disease. Vehicle-treated rats developed hypertension and lesions of focal segmental glomerulosclerosis. No reduction in glomerular damage was observed, as measured by either 24-hour urinary protein excretion or histological examination of glomerulosclerosis, upon Ang-(1-7) or Ang-(2-10) administration, regardless of peptide dose or disease stage. On the contrary, when given at 400 ng/kg/min, both peptides induced a further increase in systolic blood pressure. Content of Ang peptides was measured by parallel reaction monitoring in kidneys harvested at sacrifice. Exogenous administration of Ang-(1-7) and Ang-(2-10) did not lead to a significant increase in their corresponding intrarenal levels. However, the relative abundance of Ang-(1-7) with respect to Ang-II was increased in kidney homogenates of Ang-(1-7)-treated rats. We conclude that chronic intravenous administration of Ang-(1-7) or Ang-(2-10) does not ameliorate glomerular damage in a rat model of focal segmental glomerulosclerosis and may induce a further rise in blood pressure, potentially aggravating glomerular injury.  相似文献   

6.
Peptide hormones such as ANG II and endothelin contribute to cardiac remodeling after myocardial infarction by stimulating myocyte hypertrophy and myofibroblast proliferation. In contrast, angiotensin-(1-7) [ANG-(1-7)] infusion after myocardial infarction reduced myocyte size and attenuated ventricular dysfunction and remodeling. We measured the effect of ANG-(1-7) on protein and DNA synthesis in cultured neonatal rat myocytes to assess the role of the heptapeptide in cell growth. ANG-(1-7) significantly attenuated either fetal bovine serum- or endothelin-1-stimulated [(3)H]leucine incorporation into myocytes with no effect on [(3)H]thymidine incorporation. [d-Ala(7)]-ANG-(1-7), the selective ANG type 1-7 (AT(1-7)) receptor antagonist, blocked the ANG-(1-7)-mediated reduction in protein synthesis in cardiac myocytes, whereas the AT(1) and AT(2) angiotensin peptide receptors were ineffective. Serum-stimulated ERK1/ERK2 mitogen-activated protein kinase activity was significantly decreased by ANG-(1-7) in myocytes, a response that was also blocked by [d-Ala(7)]-ANG-(1-7). Both rat heart and cardiac myocytes express the mRNA for the mas receptor, and a 59-kDa immunoreactive protein was identified in both extracts of rat heart and cultured myocytes by Western blot hybridization with the use of an antibody to mas, an ANG-(1-7) receptor. Transfection of cultured myocytes with an antisense oligonucleotide to the mas receptor blocked the ANG-(1-7)-mediated inhibition of serum-stimulated MAPK activation, whereas a sense oligonucleotide was ineffective. These results suggest that ANG-(1-7) reduces the growth of cardiomyocytes through activation of the mas receptor. Because ANG-(1-7) is elevated after treatment with angiotensin-converting enzyme inhibitors or AT(1) receptor blockers, ANG-(1-7) may contribute to their beneficial effects on cardiac dysfunction and ventricular remodeling after myocardial infarction.  相似文献   

7.

Aims

Angiotensin-(1-9) [Ang-(1-9)] and Ang-(1-7) are cleaved by Ang converting enzyme 2 forming Ang I and Ang II, respectively, and the truncated Angs play a role in regulating atrial natriuretic peptide (ANP) secretion. Previously, we found that Ang-(1-7) stimulates ANP secretion via the Mas receptor. However, the effect of Ang-(1-9) on ANP secretion is still unknown. The aim of the present study is to determine whether Ang-(1-9) stimulates ANP secretion and to characterize the signaling pathway involved in stimulating secretion.

Main methods

We examined the effects of Ang-(1-9) on ANP secretion and atrial contractility with and without inhibitors in isolated perfused atria.

Key findings

Ang-(1-9) stimulated ANP secretion and concentration without change in atrial contractility. Ang-(1-9)-induced-ANP secretion was increased from 5% to 60% by 3 μM Ang-(1-9) during the low-stretch state of the atrium. This stimulatory effect of Ang-(1-9) on ANP secretion was attenuated by pretreatment with an Ang II type 2 receptor (AT2R) antagonist but not by AT1R or Mas receptor antagonist. In addition, pretreatment with inhibitors of phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), nitric oxide synthase (NOS) and soluble guanylyl cyclase (sGC) blocked Ang-(1-9)-induced ANP secretion. In the high-stretch atrial state, Ang-(1-9)-induced ANP secretion was increased more than in the low-stretch state following addition of 1 μM Ang-(1-9) (from 108% to 170%). In an in vivo experiment, acute infusion of Ang-(1-9) increased plasma ANP level without altering arterial blood pressure. This effect was attenuated by pretreatment with AT2R antagonist but not by Mas receptor antagonist.

Significance

These results suggest that Ang-(1-9) stimulates ANP secretion via the AT2R-PI3K-Akt-NO-cGMP pathway.  相似文献   

8.
Transactivation of the epidermal growth factor receptor (EGFR or ErbB) family members, namely EGFR and ErbB2, appears important in the development of diabetes-induced vascular dysfunction. Angiotensin-(1–7) [Ang-(1–7)] can prevent the development of hyperglycemia-induced vascular complications partly through inhibiting EGFR transactivation. Here, we investigated whether Ang-(1–7) can inhibit transactivation of ErbB2 as well as other ErbB receptors in vivo and in vitro. Streptozotocin-induced diabetic rats were chronically treated with Ang-(1–7) or AG825, a selective ErbB2 inhibitor, for 4 weeks and mechanistic studies performed in the isolated mesenteric vasculature bed as well as in cultured vascular smooth muscle cells (VSMCs). Ang-(1–7) or AG825 treatment inhibited diabetes-induced phosphorylation of ErbB2 receptor at tyrosine residues Y1221/22, Y1248, Y877, as well as downstream signaling via ERK1/2, p38 MAPK, ROCK, eNOS and IkB-α in the mesenteric vascular bed. In VSMCs cultured in high glucose (25 mM), Ang-(1–7) inhibited src-dependent ErbB2 transactivation that was opposed by the selective Mas receptor antagonist, D-Pro7-Ang-(1–7). Ang-(1–7) via Mas receptor also inhibited both Angiotensin II- and noradrenaline/norephinephrine-induced transactivation of ErbB2 and/or EGFR receptors. Further, hyperglycemia-induced transactivation of ErbB3 and ErbB4 receptors could be attenuated by Ang-(1–7) that could be prevented by D-Pro7-Ang-(1–7) in VSMC. These data suggest that Ang-(1–7) via its Mas receptor acts as a pan-ErbB inhibitor and might represent a novel general mechanism by which Ang-(1–7) exerts its beneficial effects in many disease states including diabetes-induced vascular complications.  相似文献   

9.

Background

The enhanced cardiac sympathetic afferent reflex (CSAR) is involved in the sympathetic activation that contributes to the pathogenesis and progression of hypertension. Activation of AT1 receptors by angiotension (Ang) II in the paraventricular nucleus (PVN) augments the enhanced CSAR and sympathetic outflow in hypertension. The present study is designed to determine whether Ang-(1-7) in PVN plays the similar roles as Ang II and the interaction between Ang-(1-7) and Ang II on CSAR in renovascular hypertension.

Methodology/Principal Findings

The two-kidney, one-clip (2K1C) method was used to induce renovascular hypertension. The CSAR was evaluated by the renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) responses to epicardial application of capsaicin in sinoaortic-denervated and cervical-vagotomized rats with urethane and α-chloralose anesthesia. Either Ang II or Ang-(1-7) in PVN caused greater increases in RSNA and MAP, and enhancement in CSAR in 2K1C rats than in sham-operated (Sham) rats. Mas receptor antagonist A-779 and AT1 receptor antagonist losartan induced opposite effects to Ang-(1-7) or Ang II respectively in 2K1C rats, but losartan had no effects in Sham rats. Losartan but not the A-779 abolished the effects of Ang II, while A-779 but not the losartan blocked the effects of Ang-(1-7). PVN pretreatment with Ang-(1-7) dose-dependently augmented the RSNA, MAP, and CSAR responses to the Ang II in 2K1C rats. Ang II level, AT1 receptor and Mas receptor protein expression in PVN increased in 2K1C rats compared with Sham rats but Ang-(1-7) level did not.

Conclusions

Ang-(1-7) in PVN is as effective as Ang II in enhancing the CSAR and increasing sympathetic outflow and both endogenous Ang-(1-7) and Ang II in PVN contribute to the enhanced CSAR and sympathetic outflow in renovascular hypertension. Ang-(1-7) in PVN potentiates the effects of Ang II in renovascular hypertension.  相似文献   

10.
Since angiotensin-(1-12) [Ang-(1-12)] is a non-renin dependent alternate precursor for the generation of cardiac Ang peptides in rat tissue, we investigated the metabolism of Ang-(1-12) by plasma membranes (PM) isolated from human atrial appendage tissue from nine patients undergoing cardiac surgery for primary control of atrial fibrillation (MAZE surgical procedure). PM was incubated with highly purified 125I-Ang-(1-12) at 37°C for 1 h with or without renin-angiotensin system (RAS) inhibitors [lisinopril for angiotensin converting enzyme (ACE), SCH39370 for neprilysin (NEP), MLN-4760 for ACE2 and chymostatin for chymase; 50 µM each]. 125I-Ang peptide fractions were identified by HPLC coupled to an inline γ-detector. In the absence of all RAS inhibitor, 125I-Ang-(1-12) was converted into Ang I (2±2%), Ang II (69±21%), Ang-(1-7) (5±2%), and Ang-(1-4) (2±1%). In the absence of all RAS inhibitor, only 22±10% of 125I-Ang-(1-12) was unmetabolized, whereas, in the presence of the all RAS inhibitors, 98±7% of 125I-Ang-(1-12) remained intact. The relative contribution of selective inhibition of ACE and chymase enzyme showed that 125I-Ang-(1-12) was primarily converted into Ang II (65±18%) by chymase while its hydrolysis into Ang II by ACE was significantly lower or undetectable. The activity of individual enzyme was calculated based on the amount of Ang II formation. These results showed very high chymase-mediated Ang II formation (28±3.1 fmol×min−1×mg−1, n = 9) from 125I-Ang-(1-12) and very low or undetectable Ang II formation by ACE (1.1±0.2 fmol×min−1×mg−1). Paralleling these findings, these tissues showed significant content of chymase protein that by immunocytochemistry were primarily localized in atrial cardiac myocytes. In conclusion, we demonstrate for the first time in human cardiac tissue a dominant role of cardiac chymase in the formation of Ang II from Ang-(1-12).  相似文献   

11.
The renin-angiotensin system (RAS) plays an important role in renal physiology and kidney injury. Although the cellular effects of the RAS activation are generally attributed to angiotensin II (ANG II), the recent identification of angiotensin-converting enzyme 2 has shifted the focus to other peptides including Ang-(1-7). The G protein-coupled receptor for Ang-(1-7), mas, is expressed by mesangial cells (MC) but the signal transduction pathways activated by Ang-(1-7) in MC have not been fully elucidated. Accordingly, we studied the effect of Ang-(1-7) on extracellular signal-related kinase (ERK)1/2 activation in rat MC. Ang-(1-7)-induced ERK1/2 phosphorylation in MC is time- and concentration-dependent. Pretreatment of MC with the mas receptor antagonist A-779 but not the AT(1) antagonist losartan or the AT(2) antagonist PD123319 abrogated ERK1/2 activation. Neither pretreatment with the NADPH oxidase inhibitors diphenyleneiodonium and apocynin nor pretreatment with the epidermal growth factor (EGF) receptor antagonists AG1478 and PD158780 attenuated Ang-(1-7)-induced activation of ERK1/2. Even though each of these compounds abolished ANG II-induced activation of ERK1/2. Ang-(1-7) increased intracellular cAMP levels and activated protein kinase A (PKA) and inhibition of either adenylyl cyclase or PKA activity attenuated Ang-(1-7)-induced ERK1/2 activation. In conclusion, Ang-(1-7)-induced activation of ERK1/2 is cAMP/PKA-dependent in MC, but independent of NADPH oxidase and the EGF receptor.  相似文献   

12.
Angiotensin-(1-7): an update   总被引:12,自引:0,他引:12  
The renin-angiotensin system is a major physiological regulator of arterial pressure and hydro-electrolyte balance. Evidence has now been accumulated that in addition to angiotensin (Ang) II other Ang peptides [Ang III, Ang IV and Ang-(1-7)], formed in the limited proteolysis processing of angiotensinogen, are importantly involved in mediating several actions of the RAS. In this article we will review our knowledge of the biological actions of Ang-(1-7) with focus on the puzzling aspects of the mediation of its effects and the interaction Ang-(1-7)-kinins. In addition, we will attempt to summarize the evidence that Ang-(1-7) takes an important part of the mechanisms aimed to counteract the vasoconstrictor and proliferative effects of Ang II.  相似文献   

13.
We have shown that angiotensin II (Ang II) and angiotensin-(1–7) [Ang-(1–7)] increased arterial blood pressure (BP) via glutamate release when microinjected into the rostral ventrolateral medulla (RVLM) in normotensive rats (control). In the present study, we tested the hypothesis that Ang II and Ang-(1–7) in the RVLM are differentially activated in stress-induced hypertension (SIH) by comparing the effects of microinjection of Ang II, Ang-(1–7), and their receptor antagonists on BP and amino acid release in SIH and control rats. We found that Ang II had greater pressor effect, and more excitatory (glutamate) and less inhibitory (taurine and γ-aminobutyric acid) amino acid release in SIH than in control animals. Losartan, a selective AT1 receptor (AT1R) antagonist, decreased mean BP in SIH but not in control rats. PD123319, a selective AT2 receptor (AT2R) antagonist, increased mean BP in control but not in SIH rats. However, Ang-(1–7) and its selective Mas receptor antagonist Ang779 evoked similar effects on BP and amino acid release in both SIH and control rats. Furthermore, we found that in the RVLM, AT1R, ACE protein expression (western blot) and ACE mRNA (real-time PCR) were significantly higher, whereas AT2R protein, ACE2 mRNA and protein expression were significantly lower in SIH than in control rats. Mas receptor expression was similar in the two groups. The results support our hypothesis and demonstrate that upregulation of Ang II by AT1R, not Ang-(1–7), system in the RVLM causes hypertension in SIH rats by increasing excitatory and suppressing inhibitory amino acid release.  相似文献   

14.

Objectives

Hypertension is one of the major cardiovascular diseases. It affects nearly 1.56 billion people worldwide. The present study is about a particular genetic polymorphism (A1166C), gene expression and protein expression of the angiotensin II type I receptor (AT1R) (SNP ID: rs5186) and its association with essential hypertension in a Northern Indian population.

Methods

We analyzed the A1166C polymorphism and expression of AT1R gene in 250 patients with essential hypertension and 250 normal healthy controls.

Results

A significant association was found in the AT1R genotypes (AC+CC) with essential hypertension (χ2 = 22.48, p = 0.0001). Individuals with CC genotypes were at 2.4 times higher odds (p = 0.0001) to develop essential hypertension than individuals with AC and AA genotypes. The statistically significant intergenotypic variation in the systolic blood pressure was found higher in the patients with CC (169.4±36.3 mmHg) as compared to that of AA (143.5±28.1 mmHg) and AC (153.9±30.5 mmHg) genotypes (p = 0.0001). We found a significant difference in the average delta-CT value (p = 0.0001) wherein an upregulated gene expression (approximately 16 fold) was observed in case of patients as compared to controls. Furthermore, higher expression of AT1R gene was observed in patients with CC genotype than with AC and AA genotypes. A significant difference (p = 0.0001) in the protein expression of angiotensin II Type 1 receptor was also observed in the plasma of patients (1.49±0.27) as compared to controls (0.80±0.24).

Conclusion

Our findings suggest that C allele of A1166C polymorphism in the angiotensin II type 1 receptor gene is associated with essential hypertension and its upregulation could play an important role in essential hypertension.  相似文献   

15.
Angiotensin-(1-7) (Ang-(1-7)) modulates the Na+-ATPase, but not the Na+,K+-ATPase activity present in pig kidney proximal tubules. The Na+-ATPase, insensitive to ouabain, but sensitive to furosemide, is stimulated by Ang-(1-7) (68% by 10(-9) M), in a dose-dependent manner. This effect is due to an increase in Vmax, while the apparent affinity of the enzyme for Na+ is not modified. Saralasin, a general angiotensin receptor antagonist, abolishes the stimulation, demonstrating that the Ang-(1-7) effect is mediated by receptor. The Ang-(1-7) stimulatory effect is not changed by either PD 123319, an AT2 receptor antagonist, or A779, an Ang-(1-7) receptor antagonist. On the other hand, increasing the concentration of the AT1 receptor antagonist losartan from 10(-11) to 10(-9) M, reverses the Ang(1-7) stimulation completely. A further increase to 10(-3) M losartan reverses the Na+-ATPase activity to a level similar to that obtained with Ang-(1-7) (10(-9) M) alone. The stimulatory effect of Ang-(1-7) at 10(-9) M is similar to the effect of angiotensin II (AG II) alone. However, when the two peptides are both present, Na+-ATPase activity is restored to control values. These data suggest that Ang-(1-7) selectively modulates the Na+-ATPase activity present in basolateral membranes of kidney proximal tubules through a losartan-sensitive receptor. This receptor is probably different from the receptor involved in the stimulation of the Na+-ATPase activity by angiotensin II.  相似文献   

16.
The authors’ previous studies have indicated that angiotensin(Ang)-(1-7) protects the heart against reperfusion arrhythmias. The aim of this study was to determine whether a functional angiotensin-converting enzyme2 (ACE2)/Ang-(1-7)/Mas receptor axis is present in the sinoatrial node (SAN) of Wistar rats. SAN cells were identified by Masson’s trichrome staining, HCN4 expression, and lack of connexin43 expression. Immunohistochemistry technique was used to detect the expression of ACE2, Ang-(1-7), and Mas in the SAN. To evaluate the role of this axis in the SAN function, atrial tachyarrhythmias (ATs) were induced in isolated rat atria perfused with Krebs-Ringer solution (KRS) alone (control) or KRS containing Ang-(1-7). The specific Mas antagonist, A-779, was used to evaluate the role of Mas in the Ang-(1-7) effects. The findings showed that all components of the ACE2/Ang-(1-7)/Mas branch are present in the SAN of rats. Importantly, it was found that this axis is functional because perfusion of atria with Ang-(1-7) significantly reduced the duration of ATs. Additionally, this anti-arrhythmogenic effect was attenuated by A-779. No significant changes were observed in heart rate, contractile tension, or ±dT/dt. These observations demonstrate that the ACE2/Ang-(1-7)/Mas axis is expressed in SAN cells of rats. They provide the morphological support to the anti-arrhythmogenic effect of Ang-(1-7).  相似文献   

17.
Previous studies showed that angiotensin-(1-7) [Ang-(1-7)] attenuates cardiac remodeling by reducing both interstitial and perivascular fibrosis. Although a high affinity binding site for Ang-(1-7) was identified on cardiac fibroblasts, the molecular mechanisms activated by the heptapeptide hormone were not identified. We isolated cardiac fibroblasts from neonatal rat hearts to investigate signaling pathways activated by Ang-(1-7) that participate in fibroblast proliferation. Ang-(1-7) reduced (3)H-thymidine, -leucine and -proline incorporation into cardiac fibroblasts stimulated with serum or the mitogen endothelin-1 (ET-1), demonstrating that the heptapeptide hormone decreases DNA, protein and collagen synthesis. The reduction in DNA synthesis by Ang-(1-7) was blocked by the AT((1-7)) receptor antagonist [d-Ala(7)]-Ang-(1-7), showing specificity of the response. Treatment of cardiac fibroblasts with Ang-(1-7) reduced the Ang II- or ET-1-stimulated increase in phospho-ERK1 and -ERK2. In contrast, Ang-(1-7) increased dual-specificity phosphatase DUSP1 immunoreactivity and mRNA, suggesting that the heptapeptide hormone increases DUSP1 to reduce MAP kinase phosphorylation and activity. Incubation of cardiac fibroblasts with ET-1 increased cyclooxygenase 2 (COX-2) and prostaglandin synthase (PGES) mRNAs, while Ang-(1-7) blocked the increase in both enzymes, suggesting that the heptapeptide hormone alters the concentration and the balance between the proliferative and anti-proliferative prostaglandins. Collectively, these results indicate that Ang-(1-7) participates in maintaining cardiac homeostasis by reducing proliferation and collagen production by cardiac fibroblasts in association with up-regulation of DUSP1 to reduce MAP kinase activities and attenuation of the synthesis of mitogenic prostaglandins. Increased Ang-(1-7) or agents that enhance production of the heptapeptide hormone may prevent abnormal fibrosis that occurs during cardiac pathologies.  相似文献   

18.
Angiotensin-(1-7) (Ang-(1-7)), a bioactive peptide in the renin-angiotensin system, has counterregulatory actions to angiotensin II (Ang II). However, the mechanism by which Ang-(1-7) enhances vasodepressor responses to bradykinin (BK) is not well understood. In the present study, the effects of Ang-(1-7) on responses to BK, BK analogs, angiotensin I (Ang I), and Ang II were investigated in the anesthetized rat. The infusion of Ang-(1-7) (55 pmol/min i.v.) enhanced decreases in systemic arterial pressure in response to i.v. injections of BK and the BK analogs [Hyp3, Tyr(Me)8]-bradykinin (HT-BK) and [Phe8psi (CH2-NH) Arg9]-bradykinin (PA-BK) without altering pressor responses to Ang I or II, or depressor responses to acetylcholine and sodium nitroprusside. The angiotensin-converting enzyme (ACE) inhibitor enalaprilat enhanced responses to BK and the BK analog HT-BK without altering responses to PA-BK and inhibited responses to Ang I. The potentiating effects of Ang-(1-7) and enalaprilat on responses to BK were not attenuated by the Ang-(1-7) receptor antagonist A-779. Ang-(1-7)- and ACE inhibitor-potentiated responses to BK were attenuated by the BK B2 receptor antagonist Hoe 140. The cyclooxygenase inhibitor sodium meclofenamate had no significant effect on responses to BK or Ang-(1-7)-potentiated BK responses. These results suggest that Ang-(1-7) potentiates responses to BK by a selective B2 receptor mechanism that is independent of an effect on Ang-(1-7) receptors, ACE, or cyclooxygenase product formation. These data suggest that ACE inhibitor-potentiated responses to BK are not mediated by an A-779-sensitive mechanism and are consistent with the hypothesis that enalaprilat-induced BK potentiation is due to decreased BK inactivation.  相似文献   

19.
To determine circulating angiotensin-(1-7) [Ang-(1,7)] levels in rats with different angiotensin converting enzyme (ACE) genotypes and to evaluate the effect of hypertension on levels of this heptapeptide, plasma levels of angiotensin II (Ang II) and Ang-(1-7) were determined by HPLC and radioimmunoassay in (a) normotensive F0 and F2 homozygous Brown Norway (BN; with high ACE) or Lewis (with low ACE) rats and (b) in hypertensive F2 homozygous male rats (Goldblatt model). Genotypes were characterized by PCR and plasma ACE activity measured by fluorimetry. Plasma ACE activity was 2-fold higher (p < 0.05) in homozygous BN compared to homozygous Lewis groups. In the Goldblatt groups, a similar degree of hypertension and left ventricular hypertrophy was observed in rats with both genotypes. Plasma Ang II levels were between 300-400% higher (p < 0.05) in the BN than in the Lewis rats, without increment in the hypertensive animals. Plasma Ang-(1-7) levels were 75-87% lower in the BN rats (p < 0.05) and they were significantly higher (p < 0.05) in the hypertensive rats from both genotypes. Plasma levels of Ang II and Ang-(1-7) levels were inversely correlated in the normotensive rats (r = -0.64; p < 0.001), but not in the hypertensive animals. We conclude that there is an inverse relationship between circulating levels of Ang II and Ang-(1-7) in rats determined by the ACE gene polymorphism. This inverse relation is due to genetically determined higher ACE activity. Besides, plasma levels of Ang-(1-7) increase in renovascular hypertension.  相似文献   

20.
It was investigated if high-intensity interval training (HIT) at the expense of total training volume improves performance, maximal oxygen uptake and swimming economy. 41 elite swimmers were randomly allocated to a control (CON) or HIT group. For 12 weeks both groups trained ∼12 h per week. HIT comprised ∼5 h vs. 1 h and total distance was ∼17 km vs. 35 km per week for HIT and CON, respectively. HIT was performed as 6-10×10-30 s maximal effort interspersed by 2–4 minutes of rest. Performance of 100 m all-out freestyle and 200 m freestyle was similar before and after the intervention in both HIT (60.4±4.0 vs. 60.3±4.0 s; n = 13 and 133.2±6.4 vs. 132.6±7.7 s; n = 14) and CON (60.2±3.7 vs. 60.6±3.8 s; n = 15 and 133.5±7.0 vs. 133.3±7.6 s; n = 15). Maximal oxygen uptake during swimming was similar before and after the intervention in both the HIT (4.0±0.9 vs. 3.8±1.0 l O2×min−1; n = 14) and CON (3.8±0.7 vs. 3.8±0.7 l O2×min−1; n = 11) group. Oxygen uptake determined at fixed submaximal speed was not significantly affected in either group by the intervention. Body fat % tended to increase (P = 0.09) in the HIT group (15.4±1.6% vs. 16.3±1.6%; P = 0.09; n = 16) and increased (P<0.05) in the CON group (13.9±1.5% vs. 14.9±1.5%; n = 17). A distance reduction of 50% and a more than doubled HIT amount for 12 weeks did neither improve nor compromise performance or physiological capacity in elite swimmers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号